Meteorite Impact Origin of Yellowstone Hotspot

Burchard, Hermann G. W. (2016) Meteorite Impact Origin of Yellowstone Hotspot. Open Journal of Philosophy, 06 (04). pp. 412-419. ISSN 2163-9434

[thumbnail of OJPP_2016110218095349.pdf] Text
OJPP_2016110218095349.pdf - Published Version

Download (619kB)

Abstract

Origin of the Yellowstone hotspot & Columbia River Basalts has remained uncertain until now. Here, we present evidence of meteorite impact origin. The hotspot is shallow, only 200 km deep, invalidating a theory of mantle plume origin. The hotspot track runs from the Yellowstone National Park in NW Wyoming to the volcanic Modoc Plateau in NE California. We present evidence of apparent remnants of an impact crater existing in the Modoc, a large multi-ring structure at least 160 km diameter. Much of the complex crater has become obliterated by later Cascadia and Sierra orogenies. The crater has a tall 4,100 foot central uplift cone, locally known as Chalk Mountain, consisting of diatomaceous earth, presumably the rebound cone of a meteorite impact. This falsifies a theoretical prohibition of cosmic impact volcanism. Based on recent insights into explosive volcanism a plausible mechanism is proposed for how meteorite impacts can lead to resurgent calderas of the Yellowstone type, & of apparent LIP origin from thin crust ET impacts, invalidating theoretical constructs of mantle plumes. We mention chaotic terrains, including plutons, arising antipodal to impacts.

Item Type: Article
Subjects: STM Article > Social Sciences and Humanities
Depositing User: Unnamed user with email support@stmarticle.org
Date Deposited: 27 Feb 2023 08:08
Last Modified: 25 May 2024 08:33
URI: http://publish.journalgazett.co.in/id/eprint/580

Actions (login required)

View Item
View Item