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Abstract: Reliability-based design optimization (RBDO) has become a prevalent design for aeronau-
tical and aerospace engineering. The main problem is that it is impractical in complex cases with
multi-failure regions, especially in multi-objective optimization. The active learning method can
obtain an adaptive size of samples to get a relatively acceptable accuracy. The problem of RBDO
using the traditional active learning Kriging (ALK) method is that the design space is generally still
and only one training point is selected, which is not reasonable based on the concept of importance
sampling and parallel calculation. As a consequence, the accuracy improvement is limited. In this
paper, we investigate the method of obtaining an optimal size of design and reliability to assess space
in parallel, simultaneously. A strategy of parallel adaptive candidate (PAIC) region with ALK is
proposed and a sequential optimization and reliability assessment (SORA) method is modified to
efficiently improve the accuracy. Importance sampling is used as a demonstration for the modified
SORA with more accuracy. The method is then verified using mathematical cases and a scooping
system of an amphibious aircraft.

Keywords: reliability-based optimization design; active learning kriging method; importance
sampling; parallel adaptive candidates

1. Introduction

Traditional reliability-based multidisciplinary optimization design (RBMDO) requires
a large number of limit state function (LSF) calls or objective function (OBF) calls, which is
time-consuming for the design of industrial products [1]. Meanwhile, the use of surrogate
models, such as response surface, Kriging, neutral networks model and so on, can avoid
directly calling the real LSFs and OBFs to increase the efficiency [2]. Besides, the accuracy
of surrogate models can be improved furtherly by the process of sampling. The typical
sampling method for the RBDO surrogate model generates all the samples at once, such
as Monte Carlo, Orthogonal and Latin hypercube sampling [3]. Efforts have been made
to minimize the samples of function evaluations and the active learning Kriging (ALK)
method can increase the accuracy of the interest region by continuously and adaptively
adding the training points, which has recently attracted interest for its better performance
in solving complex problems (e.g., non-linear structures), with an acceptable computational
cost and accuracy [4]. Based on the efficient global optimization (EGO), some have focused
on developing the learning algorithm, or learning function (LF), to select new training
points to increase accuracy [5–7].

For optimization with the Kriging model, LF has been improved and adapted into
different types by different importance sampling purposes, including expected improve-
ment (EI) [8], U-function [2], expected feasibility function (EFF) [9], expected risk function
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(ERF) [10], importance learning method (IL) [11], etc., and is then adopted in the RBDO
problem. Further, some research applied them in combinations. Song et al. used the
Bayesian probabilistic integration for data-driven and active learning of sensitivity indices
and proved its efficiency with an original importance sampling method [12]. Zhang et al.
proposed a novel LF, called reliability-based expected improvement function (REIF), for
structural reliability problems [13]. Considering the distance from the real optimum and
importance of reliability region, we have also proposed an expected improvement exponent
(EIE) for optimization and expected risk function with importance (ERFI) for reliability [14].

The concept of importance sampling can also be used to increase the accuracy of relia-
bility assessment with the efficient global reliability assessment (EGRA) [15]. Zhang et al.
combined the low-discrepancy samples and adaptively truncated sampling regions to
initiate efficient active learning iterations [13]. Wen et al. proposed an adaptive sampling
region method, ISKRA, to avoid selecting the additional points where the probability
density is low [16]. Yang developed a strategy to determine the minimal or optimal size of
candidate points to handle the system reliability analysis, which focused on the problems
in parallel computation [5]. They proposed a truncated candidate region Tk approach to
approximate the kth adaptive sample region by deleting sample points from the adaptive
insignificant region (AIR) T̃, which is determined by the average and deviation value of
current predictive LSF. Yun et al. proposed an adaptive subdomain sampling method,
which is determined by distance index PA and estimation failure probability Pf [17]. They
gave a method for estimating the probability of the possible domain of uncertain variables
that affect the failure probability, then, the possible domain of the uncertain distribution
region is flexibly obtained. However, a method should include the capacity of parallel
computing for systematic reliability problems. Influence function (IF) is introduced for
parallel computing for optimization [18] and it could be modified for systematic reliability
analysis. Wen et al. applied K-means for parallel computing in systematic reliability anal-
ysis [16]. These studies showed it would be of good performance if we combined IF and
AIC, producing the PAIC method.

Recent works also focused on the strategy of RBDO’s solving loop structure, such as
traditional double loop [19], single loop [20], subset simulation-based reliability analysis
(SSRA) [21], multilevel nested system [22], and sequential optimization and reliability
assessment (SORA) strategy [22,23]. We also presented a sequential reliability assessment
and optimization (SRAO) strategy to simplify this computational structure [24]. Some
impressive attempts have been made combined with simplifying the solving loop structures
and the use of the active learning surrogate model.

In this paper, we propose an ALK method to update the adaptive importance candidate
(AIC) region for RBDO problems. Combining with the LF method, the AIC region can fully
use the information obtained from the irritated Kriging model and continually update the
pre-selected sample regions according to this information. The AIC can be moved and
shrunk with the optimization continuing, so that a simple sampling method can be applied
to require a relatively high accuracy. With the modified SORA method, this paper tries to
give a relatively simple method for RBDO. Then, some mathematical problems are verified
and every case is tested several times, in order to demonstrate the stability.

2. Proposed Methods
2.1. Kriging Model

Kriging interpolation method is flexible and suitable for the approximation of many
cases, because a wider range of correlation functions is presented for building the meta-
model. Here, a series of response functions is assumed Y = [Y(x1), Y(x2), . . . , Y(xn)]T, where
n is the sample size. Then, the predictive value of target function Ŷ(x) that is required to
predict is:

Ŷ(x) =
p

∑
i=1

βi fi(x) + z(x) = f(x)T
β+ z(x) (1)
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where z(x) is the random item, f(x) = [f 1(x), f 2(x), . . . , fp(x)]T is the regression polynomial
basis function vector, p is the size of the regression polynomial. β = [β1, β2, . . . , βp]T is the
regression coefficients vector. The covariance for w and x can be respectively described as

cov(z(w), z(x)) = σ2R(θ, w, x) (2)

where R is correlation function and θ = [θ1, θ2, . . . , θn]T are correlation parameters. Be-
cause the Gaussian correlation function is widely used when the function is smooth or
continuously differentiable, R(θ, w, x) is set as Gaussian form and can be written as

R(θ, w, x) =
n

∏
k

Rk(θk, wk − xk) = exp(−
n

∑
k=1

θk|wk − xk|2) (3)

The process variance σ and regression coefficients β can be written by the least
square regression

β= (FTR−1F
)−1

FTR−1Y (4)

σ2 =
1
k
(Y− Fβ)TR−1(Y− Fβ) (5)

where F is a matrix with Fij = fj(xi), i = 1, 2, . . . , k, j = 1, 2, . . . , m. Then, we can predict the
value of target function using the following formulas

Ŷ(x0) = f(x0)
T
β+ rT

0 R−1(Y− Fβ) (6)

σ̂ĝ
2 = σ̂2(1+uT(FTR−1F)

−1
u− rT

0 R−1r0) (7)

u = FTR−1r0 − f(x0) (8)

where r0 is the correlation vector between x and each training point.

2.2. Learning Functions in Active Learning Method

Learning function (LF) is the key technique in ALK, can give a mathematical method
to judge which sample has the most value to train the ALK model. They have been studied
and developed to increase the accuracy of ALK for different purposes.

Expected improvement (EI) function is widely used in global optimization problem [8],
the kth EI is

EIk =
(

gmin − ĝk(x)
)

φ

(
gmin − ĝk(x)

σ̂ĝk(x)

)
+ σ̂ĝ

k(x)ψ

(
gmin − ĝk(x)

σ̂ĝk(x)

)
(9)

where gmin = min[ĝ(x)], φ(·) and ψ(·) are the standard normal cumulative function and
the standard normal probability density function, respectively. Thus, samples can gradually
focus on the region near the optimum gmin.

Expected risk function (ERF) can improve the accuracy of LSF predicting by learning
the training point with the largest risk that its sign is wrongly predicted [5]

ERFk = −sign
(

ĝ(k)(x)
)

ĝ(k)(x)φ

(
−sgn

(
ĝ(k)(x)

) ĝ(k)(x)
σ̂ĝ

(k)(x)

)
+ σ̂ĝ

(k)(x)ψ
ĝ(k)(x)
σ̂ĝ

(k)(x)
(10)

The larger the value of ERF means a higher possibility of predicting wrongly from
positive to negative or from negative to positive.

Reference [14] proposed a new acquisition function, named EI with exponent accelera-
tion (EIE), to avoid selecting the boundary points even when they are far from the optimum
point. In this paper, we improve EIE acquisition function for a more stable performance
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EIE =
(

gmin − ĝ(k)(x)
)

φ

(
gmin − ĝ(k)(x)

σ̂ĝ
(k)(x)

)
EXP

(
−‖xmin − x‖k

η

)
+ σ̂ĝ

(k)(x)ψ

(
gmin − ĝ(k)(x)

σ̂ĝ
(k)(x)

)
(11)

where η = max(‖xmin − x1‖k, ‖xmin − x2‖k, . . . , ‖xmin − xn‖k), xmin is minimal point, n is
the number of elements in the total candidates, which is often larger than the number
of original sample points. Its convergence condition is δmax = max

[
EIE( f̂ (x))

]
≤ ε.

However, this leads to a higher probability to fall into a local optimum.
Thus, an improvement exponent distance (EID) function that adds a new item repre-

senting the error of selecting points too far from the current predicted optimum point: EID(1) = EIE
(

f̂ (x)
)

EID(p)
(

f̂ (x)
)
= EI(p)

(
f̂ (x)

)
+ EID(p−1)

(
f̂ (x)

)
· EXP

(
− ‖xmin−x‖k

η

) (12)

where p is a positive integer indicating the number of iterations. Convergence condition is

δmax = max(EID(p))−max(EID(p−1)) ≤ ε (13)

If we want to obtain a global optimum with the error of ε, N is required above
102−log(ε). For example, ε = 0.01 requires 104 samples.

2.3. Coupling Methods for MDO

A typical RBMDO includes the analyses of several different disciplines, which are
often coupled with each other. The mathematical model of RBMDO can be described as

f ind d, µx;
min f (d, µx,µP)
s.t. prob(Gi(d, X, P) ≥ 0) ≥ Ri, i = 1, 2, . . . , n

gj(d, µx,µP) ≥ 0, j = 1, 2, . . . , n
h(d, µx) = 0∀(i, j) ∈ {1, . . . , N}, i 6= j, yij = cji(d, y∗j)

d ∈ [dL, dU ], X ∼ N(µx,σx)

(14)

where d is deterministic design vector, µx is averaged uncertain design vector, µP is the
uncertain parameters, Gi(d, X, P) ≥ 0 and gj(d, µx,µP) are reliability and deterministic
constraints, respectively, i and j are the number of uncertain and deterministic constraints.
f (d, µx,µP) is objectives function (OBF), and h is the constraint vector of inter-disciplinary
consistency, which can be stated as the maximal difference between yij and yji, where{

yij = cji(d, y∗j)

yji = cji(d, y∗j)
(15)

The multidisciplinary feasible method (MDF) sequentially analyses the different disci-
plines and connects them by solving the interdisciplinary consistency (shown in Figure 1).
Thus, the h can be set as one of constraints when conducting the RBMDO.
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2.4. Parallel Adaptive Importance Candidate Region (PAIC)

However, general methods of the ALK model need to build a relatively large enough
size of initial candidate training points, which is sampled at the first time and keeps constant
through the whole modelling process. Problems occur, where the accuracy will reach a
limit threshold value if real optimum is not covered by the initial samples.

In system reliability assessment, importance sampling (IS) is widely used to reduce
the number of Monte Carlo simulations. The core of IS is to adjust the sampling center to
the failure region, called importance sampling density (ISD). Then, the failure probability is

Pf (x) =
∫ +∞

−∞
. . .
∫ +∞

−∞
I f (x)

f (x)
h(x)

h(x)dx = E
[

I f (x)
f (x)
h(x)

]
(16)

where hX (x1, x1, . . . , xn) is the density function (PDF) of a new distribution. If(x) is the
failure indicator function for g(x), which can be expressed as

I f (x) =
{

1, gmin(x) ≤ 0
0, gmin(x) > 0

(17)

Then Pf can be estimated by IS by

P̂f =
1
N

N

∑
i=1

[
I f (xi)

f (xi)

h(xi)

]
(18)

Var
[

P̂f

]
=

1
N − 1

{
1
N

N

∑
i=1

[
I f (xi)

f (xi)
2

h(xi)
2

]
− (P̂f )

2
}

(19)

Generally, main task of IS is to construct sampling function h(x) based on the design
point x*, which is called most probable point (MPP) in reliability assessment or current
optimal point (COP) in optimization. Here, normal hX(x) is built for AIR as

hX(x) =
1√

2πσ∗
exp

(
− (1− x*)

2

2πσ∗2

)
(20)

where x = [x1, x2, . . . , xn]
T is the probable sample point, n is the dimension of variables.

The sample points in IS set are remarked as x ⊂ IS(x∗,σ∗). The density center of sampling
function h(x) is therefore equal to the x*. Based on this, we proposed two different im-
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portance learning methods for sequential optimization and reliability assessment (SORA),
respectively. Obtaining x* for reliability assessment, or xMPP, is defined as an optimal problem

f ind xMPP
min

U
gi(x)

s.t. ‖U‖ = β

(21)

where the index β relates to reliability requirement R, this method is therefore called
reliability index method. It requires one to transfer the random abnormal or non-standard
normal parameters into the mutually independent standard normal space (Ux, Up) by
Rosenblatt or Nataf method [25]. Then, the probability can be calculated by

Pr(gi(x) ≥ 0) = Φ(β) (22)

Here Φ is the standard normal distribution function. Add the points set

xadd =
{

xadd|
∣∣∣g(x)∣∣∣≤ ε IS ∩ IS(x∗,σ∗)

}
(23)

to update the ALK model, and ε IS is user-designed error parameter which is related to
the accuracy. The value of σ∗ is equal to index β. Then we can obtain the reliability by
Equation (20). Parallel computing method IF is applied when multilocal optimal points or
multi-failure regions exist, which can be written as

IF(x, xu) = 1− exp

(
−

d

∑
k=1

θk

∣∣∣x(i)k − xu
k

∣∣∣Pk
)

(24)

where xu
k is the update point, d is the number of test points, θk and Pk can be set as required,

generally, θk = 1 and Pk = 2 [18]. The xu
k is therefore degraded to select the second parallel

training point. The number of parallel samples np in one iteration can be also adaptive
based on the convergence criterion ε. Here, np can be simply set as

n(i+1)
p =

 i + 1, ε
(i)
p ≥ ε/ζ[

ζn(i)
p

]
, ε

(i)
p < ε/ζ

where ε
(i)
p = 1− |max(LF(x)·IF(x,xu))−ε|

(max(LF(x)·IF(x,xu)))

(25)

ζ ∈ (0, 1] are the adaptive shrunk coefficients related to required accuracy ε, generally
set ζ = 0.6 ∼ 0.8.

For optimization, the point with the largest value of learning function LF(x), such as
EI or EIE, is set as the update (training) point x*,

x∗ = arg
n

max
i=1

[LF(x) · IF(x, xu)] (26)

We can then define the probability when the real optimal point locates in the current
PAIC regions as

P(x) =
∫ β

−∞
. . .
∫ β

−∞
f (x)dx > PPAIC (27)

Here, the estimated value f (x)~N(µf(x), σ2
f(x)) by ALK, where µ f (x) = f̂ (x) and

σf (x) = s f (x). We can then obtain ith PAIC region with a center of x̂*
PAIC and a radii-vector

s*
PAIC
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x̂*
PAIC = arg

n
max
i=1

[LF(x) · IF(x, xu)]

s*
PAIC = φ(−1)(PPAIC

N) ·
σ̂ f̂

(i)

σ̂ f̂
(0)

(28)

where, PPAIC
N is the transferred probability in standard normal space based on Equation (28).

By solving estimated average value x̂* and estimated standard variance ŝ* of design point,
PAIC regions can therefore be updated at each iteration. Different from the adaptive
regions proposed by other studies [5,16], the area changes in PAIC regions are treated as a
probability event.

For reliability, the point with the largest value of learning function, such as ERF
(Equation (10)), is set as the update point xu. If we treat the PAIC region as a high-
dimensional ellipsoid, then the s*

PAIC can be seen as its minimal diameter. If the predicted
optimal value of the objective functions stands still, the index should be further shrunk
to help convergence. In Equation (28), the item of σ̂ f̂

(i)/σ̂ f̂
(0) relating to the accuracy of

ALK, will decrease with the continuous learning from the additional training points and
the areas of PAIC regions will shrink and the accuracy of the optimal point will increase.
Therefore, we can use the term σ̂ f̂

(i)/σ̂ f̂
(0) < ε as a stopping criterion. Steps are as follows:

Step (1) Build initial ALK for optimization. Use initial smaller size of samples and build
ALK for optimization (Optmodeli) with additional p samples to find estimated
optimum d(0) by updating LF, where i is the number of OBFs.

Step (2) Find MPPs by ALK. Compute reliability index β by transferring the random
parameters to the standard normal distribution. Generate a point set in size j
within β, and build ALK for reliability (Relmodelj). The updating by learning
function of Relmodelj is used for searching the minimum LSFs of points Gj(xβ). It
should be noted that the rough MPP candidate points xβ with lower accuracy are
based on IS.

Step (3) Update the initial design by reliability requirements. Add new points xadd for
IS(x*, σ*) in parallel to train the Relmodelj with higher accuracy based on formular
Equation (24) (j is the number of OBFs and LSFs). The accuracy is related to ε IS.

Step (4) Estimated optimum searching under estimated probabilistic constraints. Set initial
convergence ε(0) is 1000. Search the optimum by the ALK optimization. The MPP
search is based on existing Relmodelj without calling LSF.

Step (5) Judge the real reliability. Search MPP at the estimated optimum based on step (2)
and use IS method to calculate the reliability. However, if Gj(xβ) > 0, ALK is
unnecessary; otherwise, LF method is used to train points to update the Relmodelj.

Step (6) Use IS to calculate the reliability requirements. If Gj(xβ) < 0, calculate the reliability
with IS by ALK. If Gj(xβ) is still below zero, return to step (4), and if all G(xβ) > 0,
reliability meets the requirement and optimization convergence is also achieved,
then, dopt = d(k) (Equation (29)) and end.

d(k+1) = d(k) − ds ·

∣∣∣Gmin(x̂MPP
(k))
∣∣∣

G(d(k))−Gmin(x̂MPP
(k))

(x̂MPTP
(k) − d(k)) (29)

3. Analysis and Results
3.1. Optimization of Double-Peak Function

This example has two peaks but only one global optimum, from reference [26]
(Figure 2a), where z1, z2 and z3 are three coupled disciplines, and h(z1, z2, z3) is the inter-
disciplinary consistency, as shown in Equation (30).
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find X = [X1, X2]
T

min y(X) = −(z1 + z2 + z3)

s.t. z1 = 60/[1 + (X1 + 1)2 + (X2 − 3)2];
z2 = 20/[1 + (X1 − 1)2 + (X2 − 3)2];
z3 = 30/[1 + X1

2 + (X2 + 4)2];
Xi ∈ [−8, 8], i = 1, 2

(30)
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EID, (c) Predictive function by EIE, (d) Predictive function by AIC, (e) Predictive function by PAIC,
where asterisk (*) denotes the original points, square (�) denotes the additional training points, red
dot denotes the predictive global optimum.

The results are shown in Figure 2. EID could find the global optimum (Figure 2b),
while EIE would have a large probability to find the local optimum (Figure 2c). EIE
accelerates the convergence but is easily trapped in the error local result. AIC will find the
global optimum by the least training points (Figure 2d). Besides, PAIC can also find the
local optimum, as shown in Figure 2e. The IF can degrade the global learning potential
points and search the extra important region where the local candidate points may be
located. This demonstrates that AIC has a relatively high efficiency and PAIC has an ability
to search the local optimum, as well as the global optimum.

3.2. Multi-Failure Systems with Four Branches

Systemic reliability analysis generally includes several limit states functions. This
example includes four branches, which is a systemic reliability problem, from reference [16],
and is presented here to show its performance on the reliability assessment, shown in
Equation (31). MX = (1,1) and β = 1.8 are selected as the base point and reliability index,
respectively and the limit state function (LSF) is
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g(X) = min


3 + 0.1(X1 − X2)

2 − (X1 + X2)/
√

2
3 + 0.1(X1 − X2)

2 + (X1 + X2)/
√

2
(X1 − X2) + 8/

√
2

(X2 − X1) + 8/
√

2

 (31)

The ALK-AIC method can rapidly find out the MPP for the further RBDO, shown in
Figure 3. The learning function is ERF. It can be observed that the space of IS continuously
shrunk and the sampling points become fewer and fewer (Figure 3a). The AIC was small
enough to get the MPP (Figure 3b). Only 5 additional points are selected by the AIC
method, while 13 points are learned without the AIC method, shown in Figure 3a,c. It
can be easily found that the MMP is successfully obtained by AIC techniques. Compared
with real optimization from searching MPP, the accuracy of AIC is 30% higher than that of
no-ACI method. The advantages of IS can be easily observed.
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The results of PAIC regions (ε = 10−7) are shown in Figure 3d, where the same color
of training points means that they are trained together in the same learning iteration. The
number of learning iterations averaged 11.60 in 100 repetitions. The average number of the
adaptive parallel number is 5.546.

In order to test the performance of the PAIC method in small failure reliability assess-
ment, we set Xi ∼ N(0, 1), i = 1, 2 and all the tests were repeated 50 times. Initial samples
for all the Kriging models in Table 1 are 10. K-MCS uses Kriging directly to build the
surrogate model and additional training points would be learned if the required accuracy
(ε = 10−7) is not achieved. We used MCS and IS to obtain the failure probability. The
result from MCS with 1.0 × 109 simulations is treated as the comparison standard, i.e.,
Pf = 1.218 × 10−5. Therefore, MCS requires at least 1.0 × 107, which is set as the number of
other methods by ALK-MC. Compared with ISKRA, the number of Np is also dynamic,
related to the distance to required accuracy, and here, ζ = 0.8 in Equation (23). The dynamic
np in each iteration is shown in Figure 4. We can easily find that PAIC uses the least number
of LSF calling and iterations.

Table 1. The results of four branches case by different methods.

Methods Avg. N Avg. Nadd Avg. Iter Avg. Np Avg. Pf Avg. |εf|

MCS
1.0 × 109 / / / 1.218 × 10−5 /
1.0 × 107 / / / 1.220 × 10−5 1.642 × 10−3

EGRA 116.25 106.25 116.25 / 1.275 × 10−5 4.680 × 10−2

K-MCS (nMC = 1.0 × 107) 765.12 755.12 755.12 / 1.240 × 10−5 1.806 × 10−2

ALK-MCS (nMC = 1.0 × 107) 116.25 106.25 116.25 / 1.176 × 10−5 3.448 × 10−2

ISKRA (K-m × 10 ans) 115.8 105.8 17.63 6 1.170 × 10−5 3.941 × 10−2

ALK-PAIC (nMC = 1.0 × 107) 86.47 76.42 11.65 6.56 1.192 × 10−5 2.135 × 10−2

ALK-PAIC (nMC = 1.0 × 105) 86.47 76.42 11.65 6.56 1.165 × 10−5 4.351 × 10−2

ALK-PAIC (IS) 86.47 76.42 11.65 6.56 1.158 × 10−5 4.926 × 10−2
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3.3. RBMDO with Three Modes in Failure

An RBMDO example with the coupling of three failure modes, which is a type of sys-
temic reliability assessment, is presented here, from reference [24], to show the performance
of the PAIC technique, shown in Equation (32).

find µX = [µX1 , µX2 ]
T

min y(µX) =
1
2 sin(

µX1
2 ) + sin(

3µX2
2 )

s.t. prob[(gi(X)) ≥ 0] ≥ 0.999, i = 1, 3
prob[(g2(X)) ≤ 0] ≥ 0.999
µXi ∈ [0, 10]

where g1(X) =
x1

2x2
20 − 1 + g3(X)

80 ,

g2(X) =
(x1+x2−5)2

30 + (x1−x2−12)2

120 − 2 + g1(X)
20 ,

g3(X) = 80
x1

2+8x2+5 − 0.5 + g2(X),
h(gj(X)) ≤ 10−4, j = 1, 2, 3; X ∼ N(µX, 0.5)

(32)

Using SORA to solve the RBDO problem, the searching (100 repetitions) history
figures are shown in Figure 5, with the convergence criterion ε = 10−5 and the iterative
index ds = 1.2 and 0.5 (the definition of d can be referred from [14]). Because the objective
function of optimization is simple, 20 points (10 for initial modelling and 10 for active
updating by learning function) are sufficient for ALK modelling. Comparing Figure 5a,b,
AIC can focus on the importance region, e.g., the intersection area between the regions of
most probable optimum and the edge of G2(x) = 0. When d = 1.2, the iterative step becomes
larger, which can accelerate the optimization process (Figure 5c). From Figure 5d, it can
be observed that the optimal points under multidisciplinary and reliability constraints are
updated carefully by SORA.

The details of the results under the same level of accuracy are shown in Table 2. We
can find that, although the total calling of actual functions is almost the same, PAIC reduces
the iteration times with the help of parallel computing, compared to the algorithms without
parallel methods, which is of significance for the efficiency of RBDO.

Table 2. The optimum point with systemic reliability constraints predicted by different models (n is
original number, m is number of adding points).

ALK
Methods

NOBF
n + (m)

Avg. NLSF
n + (m)

Step Length
ds

Avg. Iter. ε Optimal
Value

Optimal Points
x1 x2

ERF-PAIC 10 + (10) 20 + (35.12) 0.5 15.15 10−5 1.3746 4.2613 2.8257
ERF-PAIC 10 + (10) 20 + (39.65) 0.5 20.94 10−8 1.3749 4.2592 2.8281
ERF-PAIC 10 + (10) 20 + (26.23) 1.2 10.50 10−5 1.3748 4.2608 2.8261
ERF-AIC 10 + (10) 20 + (27.45) 1.2 67.45 10−5 1.3751 4.2617 2.8251

ERF 10 + (10) 20 + (39.10) 1.2 79.10 10−5 1.3752 4.2618 2.8249
/ 151 151 × 106 / / / 1.3750 4.2615 2.8225
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3.4. MDO of a Water-Scooping System in Amphibious Aircraft

Amphibious aircraft are often used for firefighting by obtaining water from natural
lakes or rivers; thus, its water-scooping structure is worth optimizing. Generally, the double-
water-scooping buckets locate at the bottom of the fuselage, which join four water tanks by
outlet 1 and outlet 2 with tubes, shown in Figure 6. When it works, the amphibious aircraft
can put down the scooping buckets and pump water into tanks by skimming quickly over
the water surface. In the simulation, the horizontal velocity of the aircraft is vf = 10 m/s and
the input angle α = 8◦. VBS is used as the development language for the parameterization
of the geometric model. The structural parameters are shown in Figure 6a and details can
be found in Table 3. In this paper, the commercial software Fluent and Ansys are used for
fluid and strength analysis. The water flow is governed by the fluid continuity equation,
momentum conservation equation and energy conservation equation. Tetrahedron mesh,
which is suitable for iterative optimization due to a higher accuracy and faster convergence
speed, is set as the global mesh. Besides, the meshes of key joints and buckets are replaced
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by the boundary layer mesh, as shown in Figure 6b. The calculation is highly nonlinear
and complex, which brings difficulties to ALK modeling.
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Figure 6. The schematic graph of scooping system in amphibious aircraft. (a) Structure; (b) Mesh.

Table 3. Parameters, design variables and objectives involved in optimization.

Type Symbol Description Unit Lower
Limits

Initial
Value

Upper
Limits

Parameters
P

(normal distribution,
σ = 0.5%)

Ws_R Radius of scoop mm / 260 /
R1 Radius of scoop rotary shaft ribs mm / 20 /
IW Inlet height of water scoop mm / 116.8 /
IL Length of scoop mm / 166 /
Rt Thickness of scoop rotary shaft ribs mm / 10 /
Hs Length of the side of hexagon mm / 11.5 /
d1 Thickness of horizontal baffle mm / 2 /
d2 Thickness of vertical baffle mm / 2 /
d3 Thickness of lower border mm / 2 /
d4 Thickness of the upper border mm / 2 /

Design variables
d

Radius_tube Radius of tube bend mm 225 250 275

Iv Distance from the horizontal baffle to the
upper border of scoop mm 54.4 68 81.6

Ih Distance from the vertical baffle to the left
border of scoop mm 64 80 96

D_angles Included angle between section of scooping
bucket and tube

◦ −8.547 −7.77 −6.216

Ws_angle Included angle between inlet and outlet
of scoop

◦ 72.9 81 89.1

Objectives m* Mass flow difference between two outlets kg/s / / /
σmax Max Mises stress in water scooping MPa / / /

The initial values come from an existing type of amphibious aircraft, shown in Table 3.
A better performance in water scooping heavily depends on the difference in mass flow
rate m* between the two outlets. The smaller m* means an optimal efficiency in water
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pumping. Meanwhile, a maximal equivalent stress should be limited in order to prolong
the life cycles. Therefore, m* and σmax are set as the objectives, and the model is

f ind d;
min Obj =wmm∗(d, P) + wσσmax(d, P)
s.t. d, P ∈ Ωgeo

hδstruc = max
[
δ
(

d, P, δ f luid(d,µX)
)]
≤ ε

d ∈ [dL, dU ]

(33)

where Ωgeo is the feasible geometric space for design variables d and normal uncertain
parameters P. When conducting the MDO of this model, we firstly establish an initial
Kriging model, ALK1 and ALK2, with lower fidelity by learning a small number of samples,
e.g., 10 samples, for 2 objects, m* and σmax. One must then judge the convergence condition
and obtain the final ALK models. Then, n parallel optimal points d∗n×m (m denotes the
number of design variables), obtained in the AIC region by optimization algorithms,
are selected to train the ALK model until the convergence of relative optimum error ε∗

is reached.
A total of 384 data points of FEM from our previous study has been used for building

the direct Kriging model for m* as a comparison. Figure 7a,b show the history of residual
convergence of fluid analysis. Figure 7c shows the search history of one design variable Iv
by direct FEM. Figure 7d shows the building process for ALK-PAIC.
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Figure 8a shows the pressure change in optimization, which is obviously that the
pressure difference between two outlets becomes smaller after optimization. This is because
the water-flow rate distrusted on the bucket surface is not uniform, and the optimization
design reassigns the four scoop regions compiled with the nonuniform flow. Figure 8b
shows that the stress distribution of the scoop bucket and the σmax are decreased from
23.23 MPa to 18.31 MPa by optimization. The design with the smaller Ws_angle and
bigger Iv is safer for the scooping bucket. When the Ws_angle becomes smaller, the normal
projection of pressure on the front surface of the scoop becomes strong, leading to a bigger
Mises stress. In order to compare the superiority of ALK combined with the EID acquisition
function (ALK-EID) with other methods, active radial basis function (RBF) neural networks
and direct Kriging with the same accuracy have also been presented here in Table 4. The
Kriging model can return the square error of prediction as the important input parameters
for the active learning function, while RBF needs extra computation for error analysis.
Here, leave-one-out cross validation error analysis Eloo is used for active RBF. Eloo can
be obtained by the mean value of repeated p times of cross validation errors with fitted
p-1 points by RBF, with one test point. We use p points to build the RBF and p points
to obtain the error analysis for active learning training. Therefore, the active RBF model
may need more computations compared with ALK. The results in Table 4 show that RBF
may perform better in stress prediction than ALK, and the parallel ALK-EGO has the best
balance between accuracy and efficiency by adaptively training the most sensitive region.
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Table 4. The comparison between the initial and optimal designs.

Initial GA with Direct FEM RBF-AIC with EGO Kriging with EGO Parallel ALK-AIC
with EGO

Value CR (%) Value Error (%) Value Error (%) Value Error (%)

Radius_tube (mm) 250 225.81 ↓9.676 226.51 0.310 227.91 0.930 227.25 0.638
Iv (mm) 68 81.328 ↑19.600 81.131 −0.242 81.421 0.114 81.187 −0.173
Ih (mm) 80 85.675 ↑7.094 85.761 0.100 85.733 0.068 87.576 2.219

D_angles (◦) 81 74.25 ↓8.333 74.280 0.040 74.288 0.051 74.058 −0.259
Ws_angle (◦) −7.77 −6.802 ↓12.458 −6.945 2.102 −6.928 1.852 −6.8 −0.029

m* (kg/h) 70.018 12.491 ↓82.160 15.91 11.360 15.668 9.423 11.564 −7.421
Max_stress (MPa) 23.228 17.75 ↓23.584 16.493 −7.082 15.073 −15.082 18.31 3.155

Number of
iterations / 401 (401 samples) 185 (195 samples) 374 (384 samples) 148 (190 samples)

Max_EID / / 0.0091 0.0100 0.0097

4. Conclusions

Based on the active learning Kriging (ALK) method, we fully used the returned
error analysis by Kriging modelling to form an adaptive changed sample region, called
adaptive importance candidate (AIC) region. With the help of parallel techniques influence
function (IF), the efficiency of PAIC, with efficient global optimization algorithms, can be
improved and has some unique advantages compared with other currently widely used
global optimization algorithms. Therefore, the ALK-PAIC method can be used alone as
an efficient Bayesian optimization algorithm for complex optimization problems, with
multilocal optima, small gradient and implicit objective functions.

Further, it can be modified as a method for searching the most probable failure point
(MPP) to solve the reliability problems. Our ALK-PAIC has also demonstrated its per-
formance with higher accuracy and efficiency in multi-mode problems. Specifically, the
ALK-PAIC method has potential application in reliability-based multidisciplinary design
optimization (RBMDO), with an acceptable computation cost, especially when more sample
points are required in small failure probability problems. Although the total number of
actual functions calling is almost the same, PAIC can reduce the iteration times with the
help of parallel computing compared to the algorithms without parallel methods. Finally,
we added an example of MDO for a water-scooping system in an amphibious aircraft to
demonstrate its efficiency.
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