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From a variety of yield stress fluid models, an elastoviscoplastic Herschel-

Bulkley (EVPHB) model written in 3D is selected and coupled with a Finite

Element Method with Lagrangian Integration Points (FEMLIP) to solve boundary

value problems with large deformation process. By tracing the historical

variables of a material point, it is verified that in a time-independent flow the

elastic strain and viscous strain rate could be accurately reproduced by EVPHB

model. For a time-dependent flow, because of the addition of elasticity, the

EVPHB model makes the material experience a deformation process which is

significantly distinctive from that produced by a pure regularized Herschel-

Bulkley model. Benchmarks also show that in FEMLIP the yielded and unyielded

zones could be easily defined by EVPHB model according to the stress of a

material point. Lastly, it is shown that EVPHB model also induces a stress

relaxation process for materials under constant strain. The suitability of

FEMLIP to model elastoviscoplastic fluid is verified.

KEYWORDS

debris flow, fluid, phase transition, numerical simulation, yield stress

1 Introduction

Yield stress fluids are widely encountered in our surroundings, such as landslides,

mud-debris flows and lava flows in mountain hazards; foams, emulsions, polymer pastes

and chocolate in industries (Takeshi and Sekimoto, 2005; Ancey, 2007; Marmottant and

Graner, 2007; Bénito et al., 2008; Balmforth et al., 2014). The fundamental feature of a

yield stress fluid is that it behaves like a fluid once the yield stress is exceeded but deforms

in a finite way like a solid if the material is not sufficiently stressed. In the history of

constitutive models’ development for yield stress fluids, these materials were firstly treated

as viscoplastic fluids, and thereafter, with the addition of elasticity, described by several

types of elastoviscoplastic models.
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1.1 Elastoviscoplasticity of yield stress fluid

Current popular viscoplastic models generally include

Bingham (Bingham, 1922; Sousa and Voight, 1991; Whipple

and Dunne, 1992), Herschel-Bulkley (Herschel and Bulkley,

1926; Laigle and Coussot, 1997) and bilinear rheological

models (Locat, 1997). Bingham model (linear viscoplastic

model) was the first model used to describe the viscoplastic

behavior of yield stress fluids, in which the material behaves like a

rigid solid and the magnitude of symmetric rate-of-strain tensor

(| _ε|) is zero when shear stress (τ) is lower than a yield stress (τ0),

(Eq. 1), whereas when stress is greater than yield stress, stress is a

function of shear strain rate ( _ε) with a viscosity η (Eq. 2). As a

further improvement, large number of laboratory rheological

tests indicate that real yield stress fluids are generally better

described, over a wide range of shear rates, by Herschel-Bulkley

model (nonlinear viscoplastic model) in which a nonlinear

relation is postulated above the yield stress in terms of a

consistency coefficient k and a flow index n (Eq. 3) (Coussot

and Piau, 1994; Huang and García, 1999; Chambon et al., 2009,

2014).

when

|τ|< τ0, | _ε| � 0 (1)
when

|τ|≥ τ0, τ � η _ε + τ0
_ε

| _ε| (Binghammodel) (2)

when

|τ|≥ τ0, τ � k( _ε)n + τ0
_ε

| _ε| (Herschel − Bulkley model) (3)

Because the original Bingham or Herschel-Bulkley models

present a sharp discontinuity at the yield stress which is difficult

to handle in numerical methods, Papanastasiou (Papanastasiou,

1987) proposed a regularization of Bingham model which

eliminates the need for explicit yield-surface tracking

(Papanastasiou model). Further developments of this

approach were achieved by Mitsoulis et al. (Mitsoulw et al.,

1993) and Papanastasiou and Boudouvis (Papanastasiou and

Boudouvis, 1997), they proposed a regularized HB model by

combining the original Herschel–Bulkley and Papanastasiou

models, as shown in Eq. 4 in which the effective viscosity ηeff
is a function of k, n, τ0, | _ε|, and of a regularization parameter m

introduced to smooth the transition between fluid and solid

behaviors. Other methods, such as the Augmented Lagrangian

Method (ALM), were also developed to locate the yield surface

more precisely by decoupling the computation of the

nonlinearity introduced by the complex rheological behavior

of viscoplastic models from that of the velocity (Liu and

Barrett, 1994). However, the ALM requires more complicated

iterative schemes (Huilgol and You, 2005; Roquet and Saramito,

2008; Fernández-Nieto et al., 2014).

Regularized Herschel-Bulkley model (RHB):

τ � (k(| _ε|)n−1 + τ0[1 − exp(−m| _ε|)]
| _ε| ) _ε � ηeff _ε (4)

As an additional complexity, many yield stress fluids were

proven to be elastoviscoplastic, with elastic deformations below the

yield stress and a combination of recoverable (elastic) and

unrecoverable (viscous) deformation above the yield stress

(Yano and Daido, 1965; Luu and Forterre, 2009). The most

widely used elastoviscoplastic model is the Perzyna model

(Perzyna, 1962; Perzyna, 1966), and similar models were also

proposed for different applications (Luu and Forterre, 2009;

Cheddadi et al., 2012). The difference lies in the behavior of the

viscous element, which is related to the second invariant of elastic

strain tensor, follows either Bingham (linear) or Herschel-Bulkley

(exponential) laws. A one-dimensional illustration of this class of

models is shown in Figure 1A: before yielding the model behaves

like an elastic solid (Eq. 5); and once stress is above yield stress, the

model is a Maxwell fluid with a Bingham or Herschel-Bulkley

viscosity (Eq. 6). In Eqs. 5, 6, μ is the elastic shear modulus; ε is the

shear strain; _τ is the shear stress rate; η′ is the apparent viscosity.
For a Bingham model, η′ is a function of τ0 and η, while for

Herschel-Bulkley model it is a function of τ0, k and n. A more

general elastoviscoplastic model was proposed by Saramito

(Saramito, 2007, 2009), as shown in Figure 1B, under the form

of a three-dimensional combination of the viscoelastic Oldroyd-B

model (Oldroyd, 1950) and a viscoplastic Bingham (or viscoplastic

Herschel-Bulkley) model. Before yielding Saramito’s model is a

Kelvin-Voigt fluid, in which total stress (σ) is the sum of elastic

stress (τ) and a solvent viscous stress (ηs _ε); after yielding it is a

coupling of Bingham model or Herschel-Bulkley model with a

Kelvin-Voigt model. Besides Saramito’s model, Isayev and Fan

(Isayev and Fan, 1990), Puzrin and Houlsby (Puzrin and Houlsby,

2003) also proposed other elastoviscoplastic models.

when

|τ|< τ0, τ � με (5)
when

|τ|≥ τ0, _τ

μ
+ τ

η′ � _ε (6)

1.2 Numerical simulation method

Yield stress fluids have been intensively modelled by

conventional numerical methods, such as Finite Volume

Method (FVM) (de Souza Mendes et al., 2007; Turan et al.,

2012; Syrakos et al., 2013), Finite Difference Method (FDM)

(Olshanskii, 2009; Muravleva et al., 2010) and Finite Element

Method (FEM) (Adams et al., 1997; Blackery andMitsoulis, 1997;

Alexandrou et al., 2001; Saramito and Roquet, 2001). FVM and

FDM are also categorized into Eulerian FEM, and are suitable for
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handling large deformations of history-independent materials

without the problem of mesh distortion. However, these methods

generally present severe numerical diffusion at the interfaces

between different materials (Lenardic and Kaula, 1993; Van

Keken et al., 1997), and render also difficult to track material-

dependent properties. The conventional FEM, that is also

categorized into Lagrangian FEM, is ideal for tracking history-

dependent variables of a specified material point, such as stress,

strain, displacement and so on. However, it presents severe mesh

distortion for extremely large deformations.

To benefit from the capability of handling large deformation of

Eulerian FEM and the tracking ability of historical properties of

Lagrangian FEM, a lot of efforts were paid to develop new

methods, such as Arbitrary Lagrangian-Eulerian method (Hirt

et al., 1974; Donea et al., 1982), Material Point Method (Sulsky

et al., 1994, 1995), Particle Finite Element Method-second

generation (Idelsohn et al., 2013) and Finite Element Method

with Lagrangian Integration Points (Moresi and Solomatov, 1995;

Moresi et al., 2003). Arbitrary Lagrangian-Eulerian method (ALE)

is the most classical method that attempts to capture the

advantages of both the Lagrangian and the Eulerian methods in

modelling large deformation problems by allowing the mesh in the

interior of the domain to move independently of the material.

However, this requires an additional remeshing algorithm and

computational cost (Margolin, 1997; Knupp et al., 2002). Besides,

ALE cannot handle properly very large deformation and history

variable tracking in the same setting. The Material Point Method

(MPM) (Sulsky et al., 1994, 1995) is an extension of the Particle-in-

Cell (PIC) method (Harlow, 1964) which takes advantage of the

combined Eulerian-Lagrangian approach. In MPM the material is

represented as a collection of material points and their

displacements are determined by Newton’s laws of motion,

while the computational nodes are on a background mesh.

MPM use linear shape functions which cause cell crossing noise

in large deformation problems. Bardenhagen aned Kober

(Bardenhagen and Kober, 2004) proposed to use higher-

dimensional shape functions to improve the original MPM and

developed the Generalized Interpolation Material Point Method

(GIMP), which requires greater computational time. Particle Finite

Element Method-second generation (PFEM-2) uses two

approaches to communicate particle and mesh data. The first

one is called Moving Mesh, which follows the original idea of

PFEM (Idelsohn et al., 2004) creating a new mesh using the new

position of the particles as nodes. This Moving Mesh approach

leads to the evaluation of the mesh distortions and re-meshing

processes which are always computationally expensive. The second

version, named Fixed Mesh, projects the particle states to nodes

while preserving the initial background mesh (Idelsohn et al.,

2014), which avoids the remeshing at each time step.

In this paper we refer to a method that is quite similar to the

PFEM-2 of Fixed Mesh version. It was firstly introduced by Moresi

and Solomatov (Moresi and Solomatov, 1995) and named as Finite

Element Method with Lagrangian Integration Points (FEMLIP).

Similar to MPM or PFEM-2, FEMLIP is based on a kinematic

FIGURE 1
(A) Perzyna’s model or Cheddadi’s model or Luu and Forterre’s model, (B) Saramito’s elastoviscoplastic model.
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dissociation between the Lagrangian material points and the

computational nodes of the finite element Eulerian mesh. For a

given material configuration, the material points are used as

integration points on one element. The resolution of the

equilibrium equations at the nodes gives a velocity field, and at

the end of each step the velocity is interpolated from the nodes to the

material points which are sequentially moved throughout the fixed

mesh to a new configuration. This enables the use of standard,

proven, structured grid solvers, and also enables the modelling of

numerous, interacting materials, without the concern of numerical

diffusion (Lenardic and Kaula, 1993; Van Keken et al., 1997).

Historical variables of a material point or particle, such as strain,

strain rate, or stress could be easily traced, which alleviates problems

with the standard Eulerian formulation. The particularity of

FEMLIP is its fast-implicit solution method and various particle-

reweighting steps. At each time step, the particle weights are varied

in order to obtain the correct integral for a given element and

improve the accuracy in large fluid deformations (Moresi et al., 2003;

Dufour and Pijaudier-Cabot, 2005). The Eulerian-Lagrangian dual

traits of FEMLIP makes it well-suited for dealing with large

transformations, and meanwhile tracking internal variables

during material movement (Moresi et al., 2003; Dufour and

Pijaudier-Cabot, 2005; Cuomo et al., 2013; Prime et al., 2014).

Due to their ability to deal both with small, solid-like, and

large, fluid-like, deformations, coupled Eulerian-Lagrangian

numerical methods appear attractive to model yield stress

materials. Yet, the aforementioned state of art discloses that

elastoviscoplastic models, which are currently the most advanced

to represent the constitutive behavior of these materials, have

rarely been implemented in such numerical approaches. In this

paper, we investigate the interplay of elasticity, viscosity and

plasticity in an elastoviscoplastic Herschel-Bulkley model

(EVPHB for short) shown in Figure 1A in the framework of

FEMLIP. Through several boundary value problems and

demonstrative simulations, the implementation of EVPHB in

FEMLIP will be verified by tracking the historical variables and

the yielded and unyielded zones.

2 Implementation of herschel-bulkley
and RHB models in finite element
method with lagrangian integration
points

2.1 Three dimensional constitutive model

For the simplicity of numerical implementation, Eqs. 5, 6 are

unified into Eq. 7, where the total strain rate ( _ε) is the sum of

elastic strain rate ( _εe) and viscous strain rate ( _εv). Eq. 7 has the

form of Maxwell model for stresses below or above yield stress.

When stress is below yield stress, the apparent viscosity (η′) tends
to be infinite, and the model returns to pure elasticity. In the

numerical implementation, a numerical viscosity (η∞) with a

large value greater than 1010 Pa·s is used in this solid regime.

When stress is greater than yield stress, the apparent viscosity is a

function of τ0, k and n, the specific form of which stemming from

the Herschel-Bulkley model (Eq. 3).

_τ

μ
+ τ

η′ � _εe + _εv � _ε (7)

when |τ|< τ0, η′ � η∞; when |τ|≥ τ0, η′ � f(k, n/)
In addition, referring to, e.g., Oldroyd (Oldroyd, 1950) and

Mitsoulis (Papanastasiou and Boudouvis, 1997), equations are

generalized to three-dimensions by introducing the deviatoric

stress tensor (τij), its rate ( _τij) and the rate of viscous strain

tensor (Dv)ij. Eq. 7 is transformed into Eq. 8 by introducing the

second invariant of the stress tensor (J2σ) and the second

invariant of the viscous strain rate tensor (J2 Dv) defined in

Eqs. 11, 12. The Herschel-Bulkley model in Eq. 3 is finally written

into a three-dimensional form in Eq. 9, Finally, as shown in Eq.

10, the effective viscosity η′ is expressed as a function of k, n, τ0
and J2 Dv.

_τ ij
2μ

+ τ ij
2η′ � (De)ij + (Dv)ij � (D)ij (8)

when

|τ|≥ τ0, τ ij � τ0
τ ij
J2σ

+ k(2Dv)nij � τ0
(Dv)ij
J2 Dv

+ k(2Dv)nij
� 2η′(Dv)ij (9)

where

η′ � τ0
2J2 Dv

+ k(2J2 Dv)n−1 (10)

J2σ � ⎛⎝1
2
∑2
i�1
∑2
j�1
(τ ij)2⎞⎠

1/2

(11)

J2 Dv � ⎛⎝1
2
∑2
i�1
∑2
j�1
(Dv)2ij⎞⎠

1/2

(12)

In order to compare this elastovisoplastic Herschel-

Bulkley model (EVPHB) with a Herschel-Bulkley model

without elasticity, we also introduce the three-dimensional

tensorial form of the regularized Herschel-Bulkley model

(RHB) introduced in Eq. 4 (Papanastasiou and Boudouvis,

1997):

τ ij � 2(k(2J2 Dv)n−1 + τ0[1 − exp( − 2mJ2 Dv)]
2J2 Dv

)(Dv)ij
� 2ηeff(Dv)ij (13)

2.2 Implementation in finite element
method with lagrangian integration points

The Stokes equations solved in FEMLIP are shown in Eqs. 14,

15 in strong form, in which fext is the external force vector, pis the
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pressure and v is the velocity vector. In FEMLIP, all the constitutive

laws should bewritten into the formof a relation between the stress

and rate of strain tensors, τij � 2ηeff(Dv)ij(Moresi et al., 2003;

Dufour and Pijaudier-Cabot, 2005; Prime et al., 2014). The RHB

model is already written in this form, as shown in Eq. 13, and

therefore immediate to implement in FEMLIP. To implement the

EVPHB model, the deviatoric stress rate ( _τij) in Eq. 8 is firstly

discretized from the current time t using an elastic timestep (Δte)
which captures the relevant timescale of the changes in elastic

stresses, see Eq. 16 (Moresi et al., 2003). This timestep Δtecould, in
fact, differ from the advection timestep (Δt) that is chosen for

updating the particle positions. In Eq. 16,W is the rotation tensor

introduced in the definition of the Jaumann derivative of the stress

tensor. Inserting Eq. 16 into Eq. 8, the time-discretized EVPHB

model has a form shown in Eq. 17, in which ηeff is the effective

viscosity. Accordingly the time-discretization at timet + Δte of the

momentum conservation relation Eq. 14 yields the form of Eq. 18,

where all the terms that depend on the previous timestep have been

gathered in an elastic force term (fext), Eq. 19 represents the

EVPHB model implemented in FEMLIP.

(fext)i + τ ij,j − p,i � 0 (14)
vi,j � 0 (15)

Time discretization:

_τt+Δt
e

ij � τt+Δteij − τtij
Δte + τtijW

t
ij −Wt

ijτ
t
ij (16)

τt+Δt
e

ij � ηeff(2(Dt+Δte)
ij
+ τtij
μΔte +

Wt
ijτ

t
ij − τtijW

t
ij

μ
) (17)

where ηeff � η′ μΔte
μΔte+η′

(ft+Δte
ext )

i
+ 2ηeff(Dt+Δte)

ij,j
+ (ft+Δte

e )
i
− pt+Δte

,i � 0 (18)

where (ft+Δte
e )i � ηeff(

τtij,j
μΔte +

τtij,jW
t
ij,j−Wt

ij,jτ
t
ij,j

μ )

3 Analysis and validation of EVPHB
model

In order to investigate the traits of EVPHB model, as well as

to see its difference from a Herschel-Bulkley model without

elasticity (RHB), several numerical simulations were

performed with FEMLIP. Figure 2 shows the sketch of the

shear test of an infinite layer simulated in FEMLIP, in which

a square of yield-stress material with a length of 0.03 m is fixed at

the bottom while a constant deviatoric stress (τxz) is applied on

the top, with periodic boundary conditions in the horizontal

direction (x). The zone of interest has an 80 × 80 mesh density.

Material parameters were chosen after Luu and Forterre (Luu

and Forterre, 2009) who reported several sets of elastoviscoplastic

parameters for different materials such as Carbopol, Bentonite

and Kaolin. As shown in Table 1, parameters representative of a

Kaolin slurry (K55) with a concentration of 55% were selected for

the following analysis. In the following simulations the particle

convection timestepΔt and elastic timestepΔteare set to be equal.
Since Δte is included in EVPHB model, the influence of this

parameter on the results will be systematically investigated. In the

following, for these shear tests with homogenous stress or strain

distribution in z direction, a value of m = 1020 is used for the

regularization parameter. In this particular configuration, the

effective viscosity is everywhere the same, and m could therefore

be chosen arbitrarily large value without causing any ill-

conditioned matrix for numerical solution.

3.1 Simple shear test with constant applied
stress

3.1.1 Shear stress boundary condition lower than
yield stress

A constant shear stress (80 Pa) smaller than the yield stress of

the material (91 Pa), is applied on the top boundary of shear layer

(Figure 2). From Eq. 6, it is known that strain rate induced by a

stress is composed of an elastic part and a viscous part, and this

even when the stress is smaller than yield stress since the

numerical viscosity η′ � η∞produces a very small viscous

deformation. Therefore, the strain rate produced by EVPHB

model will generically be named as total strain rate.

FIGURE 2
Sketch of an infinite shear layer.
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As shown in Figure 3A, EVPHB model produces a very high

total shear strain rate in the first timestep. This is explained by the

abrupt boundary stress change from 0 to 80 Pa in the first

timestep which produces a great elastic strain rate (see Eq. 6)

and, consequently, a great jump of the total strain rate. For the

same applied stress change, larger timestep causes smaller stress

rate, which is why in Figure 3A the elastic strain rate increase

from 1.1594 s−1 to 11.594 s−1 and 115.94 s−1 for timestep values of

10−3 s, 10−4 s and 10−5 s, respectively. Theoretically, Eq. 5 implies

that for a constant stress condition, the strain is also constant, i.e.

the corresponding strain rate should be 0. However, Figure 3A

shows that after the first timestep, the strain rate sharply

decreases to a level smaller than 10−13 s−1 and then oscillates

around this value. This oscillation around small value is expected

anyway due to numerical viscosity (η′ � η∞), but in the

computations shown, the extremely small value of this strain

rate appears to be in fact mainly controlled by numerical noise.

Practically, however, the integration of this error in each step is

smaller than 10−16, and its influence on total strain is negligible

compared to the elastic deformation, as shown in Figure 3C. This

numerical error is therefore negligible and the EVPHB model

precisely produces the expected elastic strain when stress

TABLE 1 Properties of elastoviscoplastic fluids.

Fluid Concentration (%) τ0 (Pa) k (Pa sn) n μ (Pa) ρ (kg m−3)

Kaolin

K55 55 91 68 0.36 69,000 1630

FIGURE 3
Shear stress lower than yield stress. The total shear strain rate and strain produced by EVPHB model were separately plotted in (A) and (C), the
shear strain rate and strain produced by RHB model were separately plotted in (B) and (D).
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condition is below yield stress since the strain value in Figure 3C

is exactly the applied stress divided by the elastic shear modulus.

RHB model also produces a very small shear strain rate of

value about 10−20 s−1 (Figure 3B), which is very close to the 0 value

expected for a pure Herschel-Bulkley model, and which is caused

in this case by the regularization. This small value integrated over

0.1 s (Figure 3D) only produces a strain increment about

3.1×10−21, and the fluid under yield stress can effectively be

considered as rigid with the very large value of regularization

parameter m used here, in contrary to the EVPHB model for

which the total strain is finite and due to elasticity.

3.1.2 Shear stress boundary condition larger than
yield stress

For a constant boundary stress (100 Pa) which is larger than

the yield stress of the studied material (91 Pa), the shear strain

rate initiates with a very high value in the first timestep, and

reaches the theoretical shear strain rate (0.00363 s−1) from the

second step regardless of the timestep value (Figure 4A). The

cause for the initial jump of shear strain rate is the same as in

Figure 3A, due to the initial stress change from 0 Pa to 100 Pa

which produce a great elastic strain rate in the EVPHBmodel. As

previously, it is also observed that the length of timestep

influences the initial shear strain rate which decreases from

144.92754 s−1 to 1.4492754 s−1 for different timesteps from

10−5 s to 10−3 s. After the first time step, the stress is constant

(stress rate is 0) and therefore, according to Eq. 6, only a viscous

strain rate (of theoretical value 0.00363 s−1) is produced from the

second timestep on. Hence, as expected, the elastic strain (black

dot) is formed in the first timestep and thereafter keeps constant

as shown in Figure 4C. Since the constant stress produces a

constant viscous strain rate, the corresponding viscous strain

(pink dot) increases linearly in time. It is also clear that regardless

of the timestep value, the numerical strain produced by EVPHB

model is the same as the theoretical value, which validates the

proper implementation of EVPHB model in FEMLIP.

For RHB model (Figure 4B), a purely viscous strain rate with

a value perfectly agreeing with the theoretical value (0.00363 s−1)

calculated from Eq. 3 is obtained, irrespective of the length of the

timestep. Accordingly the viscous strain linearly increased in

Figure 4D, and for different timesteps the numerical strain is

exactly the same as the theoretical prediction. It is also found that

FIGURE 4
Shear stress larger than yield stress. The total shear strain rate and strain produced by EVPHBmodel were separately plotted in (A) and (C), shear
strain rate and strain produced by RHB model were separately plotted in (B) and (D).
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for the same stress condition, the strain produced by RHB model

is much smaller than that produced by EVPHBmodel, due to the

absence of elastic behavior in the former.

3.1.3 Heterogeneous shear layer in a gravity-
driven flow

A second benchmark was designed to verify the

implementation of the EVPHB model. It consists of an

infinite layer of material of thickness H flowing in steady

regime under gravity on a slope of angle α as shown in

Figure 5. This configuration is characterized by heterogeneous

stress, strain and strain rate distributions in the depth direction.

In Figure 5 the green part represents the unsheared plug layer

where the shear stress τ is lower than the yield stress τ0, while the

red part is the sheared layer where τ > τ0. In the simulations, a

square of material with a length of H is defined, and the effect of

infinite length is produced by periodic boundaries in x direction.

The distribution of shear stress in the depth of the flow layer is

linear, and can be calculated by Eq. 19, in which (H-z) is the

depth in z direction. The condition at the base of the flow is

supposed to be non-slip. Associated with the equations of

Herschel-Bulkley model (Eqs. 1–3) and with a straightforward

integration, the theoretical distributions of velocity, strain rate

and strain in the depth direction can be calculated: see Eqs.

20–23, where h0 is the thickness of the plug layer at the top of the

flowing layer and v(z) is the velocity at depth (H-z).

τ(z) � ρg(H − z) sin α (19)
v(z) � n

n + 1
(ρg sin α

k
) 1

n[(H − h0) n+1
n − (H − z − h0) n+1

n ]
when

z<H − h0 � H − τ0
ρg sin α

(20)

v(z) � n

n + 1
(ρg sin α

k
) 1

n(H − h0) n+1
n , when z> � H − h0 (21)

_ε � (τ − τ0
k

) 1
n (22)

ε � _εt (23)

Using the parameters of K55 in Table 1, we considered an

infinite layer with a depth ofH = 0.03 m flowing on a slope of 20°,

and Δte � Δt � 10−5s. For RHB model, a value of 105 was chosen

for the regularization parameter m. In this configuration with

heterogeneous strain rate distribution, a larger value of m could

cause the ratio of maximum effective viscosity over minimum

effective viscosity to become too large, resulting in ill-conditioned

matrices for the solution. In the current FEMLIP code, it is found

that the valuem = 105 is optimized for numerical solution.Which

is the same with the result of Burgos et al. (Burgos et al., 1999)

that the regularized Herschel-Bulkley model is most approximate

with the ideal Herschel-Bulkley model when m = 105.

In Figure 6 the stress, velocity, shear strain rate and strain

were sampled in the depth direction (z) after 1000 timesteps (at

time 0.01 s). The theoretical thicknesses of plug and sheared

layers are also indicated. First, Figure 6A shows the linear

increase of stress in depth direction: for both EVPHB and

RHB models the numerical results are identical to theoretical

predictions. From this distribution, the depth of plug layer is

calculated to be 0.01336 m according to value of the yield stress

(91Pa). In Figures 6B,C the velocity and shear strain rate

produced by EVPHB and RHB models also seem perfectly

collapse onto the results calculated by Eqs. 21–23. In the plug

layer or solid zone, the velocity is uniformly distributed, while in

the sheared layer or fluid zone the velocity in the vicinity of yield

surface first has a very slow decrease and after a short distance

rapidly decreases to zero at the bottom. Similar plug shape is also

observed in Figure 6C for the shear strain rate distribution, where

it is clear that in the plug layer shear strain rate is 0, and increases

to its maximum in the sheared layer at the bottom. In Figure 6D

the strain produced by EVPHB model is greater than those of

RHB and theoretical HB, due to the elastic deformation

accounted for in EVPHB model. For RHB and theoretical HB

models, the strain in the solid zone is zero and exponentially

increases in the fluid zone.

In Figure 6 because of the linear coordinate system, the layer

thicknesses obtained with EVPHB and RHB have nearly

negligible difference. A specific comparison of the plug layer

FIGURE 5
Flow of infinite layer under gravity on a slope. The green
(resp. red) area represents the plug (resp. sheared) layer in the
steady solution, as computed with the EVPHB model.
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thickness obtained with EVPHB and RHB model is portrayed in

a logarithm coordinate system in Figure 7.

Since in FEMLIP the stress state of each particle can be

tracked, it is natural for EVPHB model to define the solid or

fluid state of a particle according to the yield stress criterion,

and to derive the plug thickness accordingly. Particle was in

solid state when its stress was within the yield stress. Then all

the particles in solid state can be obtained to calculate the plug

thickness. As expected, in Figure 7, the plug thickness obtained

with EVPHB model is therefore in excellent agreement with the

theoretical value. On the contrary, with RHB model, an

arbitrary threshold on strain rate has to be chosen, which is

generally not very accurate due to the smooth shape of the

profiles at the transition. For instance the apparent yield

surfaces respectively determined by a strain rate of 10−5,

10−4, 10−3 and 10−2 s−1 with RHB model are shown in

Figure 7, all of them lying apart from the theoretical plug

layer interface. The more accurate tracking of the plug zone

through a stress criterion here clearly appears as an advantage

of EVPHB model over RHB model.

It is also worthy of note that the strain rate in the plug layer

produced by EVPHBmodel is here smaller than that produced by

RHB model, unlike what was observed in Figures 3A,B for the

homogeneous shear test. These non-negligible strain rate values

produced here by RHB model are clearly related to the value of

the regularization parameter m, which cannot be chosen

arbitrarily large for the sake of avoiding ill-conditioned

matrix. In other words, for a practical simulation, such as any

free surface simulations, to insure the priority of successful and

accurate numerical solution, EVPHB model has more advantage

over RHB model.

From the evolutions of stress, strain rate and strain sampled

in the depth direction, the relations between stress and strain, and

between stress and strain rate can be reconstructed (Figures

8A,B). As shown in Figure 8A, in the solid zone the stress

and strain produced by EVPHB model are linearly dependent

(red square line), and consistent with the theoretical elastic

constitutive law (blue dash line), i.e. EVPHB model is

effectively capable to describe elastic deformation when stress

is below yield stress. On the contrary, nearly no strain is produced

FIGURE 6
(A) Stress distribution in depth direction, (B) Velocity distribution in depth direction, (C) Shear strain rate distribution in depth direction, (D) Strain
distribution in depth direction.
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by RHB model in the solid zone (green square line); in other

words, this model treats the material as nearly rigid when stress is

below yield stress. In the fluid zone, because of elasticity the two

EVPHB and RHB models produce different strains.

In Figure 8B, in the fluid zone the stress and shear strain rate

curves produced by both EVPHB and RHB models well collapse

onto the theoretical HB constitutive curve, which indicates that both

models can represent Herschel-Bulkley relation. In the solid zone, in

spite of the stress changes, the strain rate is nearly zero. Therefore,

fromFigures 8A,B it is again reasonable to conclude that the EVPHB

model is capable to accurately describe both elastic (linear stress and

strain relation) and viscous (nonlinear stress and strain rate relation)

FIGURE 7
Yield surface determined with EVPHB and RHB models. For RHB model, the apparent yield surface corresponding to different strain rate
threshold are indicated.

FIGURE 8
(A) Stress and strain relation in depth direction, (B) Stress and shear strain rate relation in depth direction.
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deformations in a flow and that there are remarkable differences

between EVPHB and RHB models.

3.2 Simple shear test with time-dependent
boundary conditions

3.2.1 Varying shear stress boundary condition
Previous analyses indicate that for a constant stress condition, the

elastoviscoplastic traits of a yield stress fluid could be well

represented. In this section the response of EVPHB model to a

variable stress condition is investigated by continuously changing the

boundary stress shown in Figure 2. In Figure 9A, the whole boundary

stress variation process is divided into 6 segments numbered from I

to VI. The stress increases from 80 Pa to 104 Pa at a rate of 10 Pa/s,

and then decreases back at the same rate. The boundary stress in

segments I and VI is constant, variable but below the yield stress in

segments II and V, and above the yield stress in segments III and IV.

For different stress and stress rate values, the corresponding

strain rate and strain are produced by EVPHB and RHB models

in different ways, as demonstrated in Figures 9B,C. For EVPHB

model, the numerical total strain rate (red line) fully collapses

onto the theoretical total strain rate (shallow blue dash line)

calculated from Eqs. 5, 6. For RHB model the numerical strain

rate (red square) also well collapses onto the theoretical (HB)

viscous strain rate (green dot) calculated from Eqs. 1, 3. It is

noteworthy that when stress is below the yield stress, the strain

rate produced by RHB model is negligible, which indicates that

by choosing a proper regularization parameter in Eq. 4, the RHB

model can represent an almost rigid material. Similarly,

Figure 9C shows that the numerical total strain produced by

EVPHB (red line) and RHB models (red square) well agree with

FIGURE 9
(A) Boundary stress development in a time-dependent shear flow, (B) Strain rate development produced by both EVPHB and RHB models,
(C) Strain development produced by both EVPHB and RHB models.
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the corresponding theoretical values (shallow blue dash line and

green dots, respectively).

Themost significant difference between EVPHB andRHBmodels

is the addition of elasticity, which makes EVPHBmodel produce both

elastic and viscous deformations. In order to show this difference, the

theoretical elastic strain and strain rate are calculated according to the

corresponding boundary stress and separately plotted in Figures 9B,C

(blue dots). As expected, regardless of whether the stress is below or

above the yield stress, as soon as it is it is not constant the elasticity

always produces an elastic strain rate in Figure 9B, and consequently an

elastic strain in Figure 9C.What is also clearly portrayed by Figure 9B is

that for EVPHB model the total strain rate (red line or shallow blue

dash line) is the sum of elastic (blue dot) and viscous (green dot)

components, which is also true for the strain in Figure 9C.

3.2.2 Relaxation under constant strain
From Eq. 6, it is seen that when stress is above yield stress,

EVPHBmodel is basically aMaxwell model. In other words, under

a constant boundary strain condition, EVPHB model is expected

to result in a stress relaxation process. This is verified by applying a

constant boundary strain (2.33333×10−3) on the top of the square

shown in Figure 2. In this shear test, the constant boundary strain

was achieved by applying a constant boundary velocity (0.007 m/s)

for 0.009 s, after which the boundary velocity is set to be 0.

Figure 10 shows the corresponding stress response, characterized

by a sharp decrease from a value greater than 130 Pa–91 Pa (yield

stress) in less than 10 s, unlike in a classical Maxwell-type stress

relaxation, the final stress keeps constant after reaching the yield

stress. This is because once the stress is below the yield stress,

EVPHBmodel reduces to a pure elasticmodel, i.e. only when stress

is above the yield stress does EVPHBmodel show time-dependent

behavior. The characteristic relaxation time cannot be theoretically

calculated since the apparent viscosity of EVPHB model (η′ in Eq.

6) is strain-rate-dependent, and thus here time-dependent, as

shown in Figure 11. At the beginning of stress relaxation, the

apparent viscosity is almost relatively small, and then sharply

increases with time since the strain rate progressively gets smaller

as the stress gets closer to the yield stress.

4 Conclusion

On the basis of a comprehensive review of the current

viscoplastic models and elastoviscoplastic models proposed for

yield stress fluids, a complete elastoviscoplastic Herschel-Bulkley

model was considered in this numerical study. The three-

dimensional form of the elastoviscoplastic Herschel-Bulkley

model (EVPHB) was derived, and the resolution of EVPHB

model in Finite Element Method with Lagrangian Integration

Points was developed. As a comparison, a regularized Herschel-

Bulkley model (RHB) was also implemented in FEMLIP to

demonstrate how the elasticity makes the EVPHB model

distinctive. The conclusions are summarized as follows:

1) Finite Element Method with Lagrangian Integration Points

(FEMLIP) method is suitable for the solution of

elastoviscoplastic Herschel-Bulkley model, as well as for

regularized Herschel-Bulkley model. The implementation of

EVPHB and RHB models are verified to be correct by using

four boundary value problems. FEMLIP approach makes the

difference over classical numerical method since elastic stresses

stored onmaterial pointsmust be carried out over a long distance.

2) In the simple shear tests with constant applied stress and the

heterogeneous gravity-driven flow test, the EVPHB model

FIGURE 10
Stress relaxation under constant boundary strain produced by
EVPHB model.

FIGURE 11
Apparent viscosity variation produced by EVPHB model.
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could reproduce the theoretical elastic strain and stress-strain

constitutive relation when stress is below yield stress; when

stress is above yield stress, it could reproduce a Herschel-

Bulkley stress - strain rate constitutive relation.

3) Since FEMLIP provides the tracing of particle stress and other

historical variables and EVPHB model could define the solid or

fluid state of a particle according to stress criteria, EVPHBmodel

shows the capability of a more accurate tracking of plug zones

over RHB model. For practical simulations, such as free surface

simulations, the regularization parameter used in RHB model

could not be chosen too large to avoid ill-conditioned matrix,

which impedes the accurate determination of plug zones.

4) For a time-dependent boundary stress, the elasticity included in

the EVPHBmodel makes thematerial under shear experience a

deformation process which is significantly distinctive from the

deformation process produced by the RHB model. The strain

and strain rate produced by EVPHB model includes both

elastic and viscous components. EVPHB model also results

in a stress relaxation process for materials under constant strain

conditions. In this relaxation process, with time going on, the

stress first sharply decreases from its initial value above the

yield stress, and then slowly reaches the yield stress.
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