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ABSTRACT 
 

This paper (the first part of two sibling parts) provides a tutorial exposition of indicators derived of 
the ubiquitous two-by-two contingency table (confusion matrix) that has widespread applications in 
many fields, including, in particular, the fields of  binary classification and clinical or epidemiological 
testing. These indicators include the eight most prominent indicators used in diagnostic testing, 
namely the Sensitivity or True Positive Rate (TPR), the Specificity or True Negative Rate (TNR), 
the Positive and Negative Predictive Values (PPV and NPV), together with their respective 
complements, namely the False Negative Rate (FNR), False Positive Rate (FPR), False Discovery 
rate (FDR) and False Omission Rate (FOR). We consider also some other indicators, such as the 
total error and accuracy, pre-test prevalence, the diagnostic odds ratio (DOR), the inverse DOR, 
the F-scores, Youden’s Index (Informedness), Markedness and the Index of Association (Matthews 
Correlation Coefficient (MCC)). We review recent studies asserting that the MCC is the most 
reliable single metric derivable from the contingency matrix. We suggest that any mean (signed 
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geometric mean, arithmetic mean, or harmonic mean) of Informedness and Markedness might be 
as effective as the MCC in summarizing the contingency matrix into a single value. We set criteria 
in terms of basic and composite indicators for identifying the quality of binary classification, going 
down from the perfect type to the completely-contradictory type, where random-guessing-like 
classification marks the middle point of transition between good and bad classification.  In a sequel 
paper, we present a potpourri of example or test cases to reveal and unravel many of the 
properties and inter-relationships among binary and composite indicators.   
 

 
Keywords: Diagnostic testing; binary classification; sensitivity; specificity; predictive values; F scores; 

Matthews correlation coefficient; means of Informedness and Markedness. 
 

1. INTRODUCTION 
 
A contingency table is a powerful tool in data 
analysis employing matrix format for comparing 
two categorical variables [1-9]. This table (known 
also by a variety of other names such as the 
confusion table, the frequency matrix or the 
agreement table) is a ubiquitous tool of scientific 
analysis and research. It originates in a variety of 
applications such as clinical testing, criminal 
investigations, judicial trials, lie detection, null-
hypothesis acceptance/rejection, quality         
control, industrial management, satellite mapping, 
text classification, communications, DNA 
identification, forensic reasoning and machine 
classification. Our current treatment will be 
mainly in the context of clinical testing or binary 
classification. Generally, the table is a means of 
classification of data describing a discrete 
sample of an arbitrary kind in which each 
individual case of the sample either possesses or 
does not possess a certain attribute, trait, or 
condition to be detected. This attribute is possibly 
a categorical binary variable (sick/healthy, 
guilty/innocent, false/true, black/white, …, etc.) or 
a continuous variable to be dichotomized using a 
specific threshold.  A certain test, operator or 
metric  𝑗 (called a reference or a standard) 
partitions the sample into two groups, one with 
the attribute and another without it. A second test, 
operator or metric 𝑖 (called the assessed metric 
or predictor) introduces its own partitioning of the 
sample, again into two groups. Therefore, each 
individual case among the population sample 
must fall into one of four categories. The total 
numbers of cases within these categories are 
entered into the four cells of the contingency 
table or matrix (See Fig. 1). 
 

This paper is a tutorial exposition of the most 
important indicators used in diagnostic testing. 
The most prominent among these are the 
Sensitivity or True Positive Rate (TPR), the 
Specificity or True Negative Rate (TNR), the 
Positive and Negative Predictive Values (PPV 

and NPV), together with their respective 
complements (to 1.0), namely the False Negative 
Rate (FNR), False Positive Rate (FPR), False 
Discovery rate (FDR) and False Omission Rate 
(FOR) [10-20]. Other important indicators 
included herein are the total error and accuracy, 
the pre-test prevalence, the diagnostic odds ratio 
(DOR), the inverse DOR, the F-scores, Youden’s 
Index (Informedness), Markedness and the  
Index of Association (Matthews Correlation 
Coefficient) [13].  Other important metrics not 
discussed herein include the Brier score [21], 
Cohen’s Kappa [22], the K measure [23], the 
Fowlkes-Mallows index [24] and the H-index  
[25]. 
 
The organization of the rest of this paper is as 
follows. Section 2 is a brief primer about 
diagnostic testing and its basic measures. 
Section 3 introduces the eight most prominent 
basic indicators of diagnostic testing. It reports 
and points out the existence of formulas of inter-
dependence among the four direct measures 
among them (the two predictive values, 
sensitivity, and specificity). These formulas 
express any one of these four indicators in terms 
of the other three, under the assumption that 
each of the four exists, and no division by zero is 
encountered [16-19]. Section 3 also reports 
formulas of inter-dependence among the four 
complementary measures. Section 4 is a brief 
presentation of F-scores, while Section 5 
introduces and comments on Matthews 
Correlation Coefficient. Moreover, Section 5 
suggests that any mean (signed geometric 
mean, arithmetic mean, or harmonic mean) of 
Informedness and Markedness might be as 
effective as the MCC in summarizing the 
contingency matrix into a single value. Section 5 
also sets criteria (in terms of basic and 
composite indicators) for identifying the quality of 
binary classification, going down from the perfect 
type to the completely-contradictory type, where 
random-guessing-like classification marks the 
middle point of transition between good and bad 
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classification. Section 6 presents a brief outline 
of a novel technique for solving ternary problems 
of conditional probability, which is instrumental 
for full characterization of the contingency table. 
Section 7 concludes the paper.  

 
2.  ON DIAGNOSTIC TESTING AND ITS 

BASIC INDICATORS 

 
This section is intended for a brief primer about 
diagnostic testing and its most basic indicators 
[10-20]. Fig. 1 demonstrates a two-by-two 
contingency matrix for test or classification 𝑖 with 

respect to test or classification  𝑗. Each of the two 

variables 𝑖  and 𝑗 is a dichotomous variable that 
belongs to the set {+1, −1} of indices. The test 𝑖  
reports ‘positive’ cases (arbitrarily assigned the 
value +1), in which a certain disease, attribute, 
trait, or condition is present, or reports ‘negative’ 
cases (arbitrarily assigned the value −1 ), in 
which this condition is absent. This test is 
assessed or evaluated by a reference or gold 
standard test  𝑗 , which has its own labeling of 
cases, again as positive or negative. The 
reference test 𝑗 designates various cases of the 

assessed test 𝑖  as “true” or “false,” depending on 

whether it agrees or disagrees with test  𝑖 , 
respectively. As a result, the matrix four entries 
are called True Positives, False Positives, False 
Negatives, and True Negatives. These entries 
are usually assigned the standard abbreviations 
𝑇𝑃, 𝐹𝑃, 𝐹𝑁, and 𝑇𝑁. In the sequel, we will use the 
subscripted abbreviations 𝑇𝑃𝑖𝑗 , 𝐹𝑃𝑖𝑗 , 𝐹𝑁𝑖𝑗 , and 

𝑇𝑁𝑖𝑗 , where we use the subscripts 𝑖𝑗  for all 

measures (and later for indicators derived from 
them) to assert the notion that 𝑖  is assessed, 

judged or measured relative to 𝑗 . The sum of 
these four entries is the size of the reported 
population or the total number of reported cases 
N. If the test𝑠 𝑖 and 𝑗 interchange their roles (so 

that test 𝑗 is now assessed relative to test 𝑖) then 
the four measures are relabeled as 
𝑇𝑃𝑗𝑖 , 𝐹𝑃𝑗𝑖 ,𝐹𝑁𝑗𝑖 ,and 𝑇𝑁𝑗𝑖  such that 𝑇𝑃𝑗𝑖 = 𝑇𝑃𝑖𝑗 ,  and 

𝑇𝑁𝑗𝑖 = 𝑇𝑁𝑖𝑗 but with 𝐹𝑃𝑗𝑖 = 𝐹𝑁𝑖𝑗, and 𝐹𝑁𝑗𝑖 =  𝐹𝑃𝑖𝑗. 

This is the reason why omission of the subscripts 
is not desirable, as it leads to an inadvertent 
ambiguity as to which assesses which. We will 
see later that a few indicators (that we call self-
transposed ones) might dispense with these 
subscripts due to their inherent symmetry.   
These include the 𝐹1  score, the MCC, and the 
product (or the geometric, arithmetic, or 
harmonic mean) of the Informedness and 
Markedness indicators. 
 

We use the symbols 𝐴 = {𝑗 = +1} and 𝐵 = {𝑖 =
+1}  to denote the events of positive cases 
(presence of the considered condition) according 
to the tests 𝑗 and 𝑖 , respectively. Hence, the 

complementary events 𝐴 = {𝑗 = −1}  and 𝐵 =
{𝑖 = −1}  denote the events of negative cases 
(absence of the considered condition) according 
to the tests 𝑗 and 𝑖, respectively. There are eight 
conditional probabilities concerning these two 
events and their complements, as shown in Fig. 
2. These can be identified as the eight most 
prominent indicators used in diagnostic testing. 
These are the Sensitivity (𝑆𝑒𝑛𝑠𝑖𝑗) or True Positive 

Rate ( 𝑇𝑃𝑅𝑖𝑗 ), the Specificity ( 𝑆𝑝𝑒𝑐𝑖𝑗 ) or True 

Negative Rate ( 𝑇𝑁𝑅𝑖𝑗 ), and the Positive and 

Negative Predictive Values ( 𝑃𝑃𝑉𝑖𝑗  and 𝑁𝑃𝑉𝑖𝑗 ), 

together with their respective complements (to 
1.0), namely the False Negative Rate (𝐹𝑁𝑅𝑖𝑗 ), 

False Positive Rate (𝐹𝑃𝑅𝑖𝑗), False Discovery rate 

(𝐹𝐷𝑅𝑖𝑗 ) and False Omission Rate (𝐹𝑂𝑅𝑖𝑗 ) [10-

20]. The former four indicators are considered 
more popular, more basic or more prominent, 
and they act as direct or agreement measures 
while the latter four serve as discrepancy or 
disagreement measures between the two 
tests  𝑖 and  𝑗.  Due to the four complementation 
relations within pairs of these eight measures, 
the number of independent quantities among 
them is at most four. It seems that there is a 
widespread (and at least implicit) belief that this 
number is exactly four (usually obtained by 
counting the four direct indicators 
𝑆𝑒𝑛𝑠𝑖𝑗 , 𝑆𝑝𝑒𝑐𝑖𝑗 , 𝑃𝑃𝑉𝑖𝑗  and 𝑁𝑃𝑉𝑖𝑗) . We show in 

Section 3 that this number is, in fact, three, by 
simply being able to express any of the four 
direct indicators in terms of the other three 
[13,16-19].  
 

Table 1 (adapted from [13]) lists some of the 
measures or indicators commonly used in 
diagnostic testing or binary classification, 
including the afore-mentioned eight indicators. 
The table expresses each of these quantities in 
terms of the elements of the contingency matrix, 
states its range of values, and identifies its value 
for perfect testing or classification. Many 
quantities have ranges [ 0.0, 1.0]  (and hence 
might be viewed as probabilities or have 
probability interpretations), but a few belong to 
[0.0, ∞) or to [ −1.0, +1.0]. Direct measures and 
indicators are highlighted in a greenish color, 
while inverse or opposite ones are shown with a 
reddish color. Pre-test quantities are designated 
neither way since they are test-independent. 
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    𝒋 
𝒊   

+𝟏 −𝟏 

+𝟏 
𝑻𝑷𝒊𝒋 

(True Positives) 

𝑭𝑷𝒊𝒋 

(False Positives) 
(When normalized: 
Type I Error) 

−𝟏 

𝑭𝑵𝒊𝒋 

(False Negatives) 
(When normalized: 
Type II Error) 

𝑻𝑵𝒊𝒋 

(True Negatives) 

 

Fig. 1. The two-by-two contingency matrix of test or classification 𝒊 with respect to test or 
classification  𝒋. This matrix has integer entries that add to the total number of cases 𝑵. The 

symbols 𝑨 = {𝒋 = +𝟏} and 𝑩 = {𝒊 = +𝟏} denote the events of positive cases according to tests 𝒋 
and 𝒊, respectively 

 

   
𝐵 conditioned 

 

𝑃(�̅�|�̅�) = 
𝑃( 𝑗 = −1|𝑖 = −1)
= 𝑁𝑃𝑉𝑖𝑗 

𝑃(𝐴|�̅�) = 

𝑃( 𝑗 = +1|𝑖 = −1)
= 𝐹𝑂𝑅𝑖𝑗 

𝑃(𝐵|�̅�) = 
𝑃(𝑖 = +1|𝑗 = −1)
= 𝐹𝑃𝑅𝑖𝑗 

𝑃(�̅�|�̅�) = 
𝑃(𝑖 = −1|𝑗 = −1)
= 𝑆𝑝𝑒𝑐𝑖𝑗 = 𝑇𝑁𝑅𝑖𝑗 

Conditioning 
uncomplemented 

𝑃(�̅�|𝐵) = 
𝑃( 𝑗 = −1|𝑖 = +1)
= 𝐹𝐷𝑅𝑖𝑗 

𝑃(𝐴|𝐵) = 

𝑃( 𝑗 = +1|𝑖 = +1)
= 𝑃𝑃𝑉𝑖𝑗 

𝑃(𝐵|𝐴) = 

𝑃(𝑖 = +1|𝑗 = +1)
= 𝑆𝑒𝑛𝑠𝑖𝑗 = 𝑇𝑃𝑅𝑖𝑗 

𝑃(�̅�|𝐴) = 

𝑃(𝑖 = −1|𝑗 = +1)
= 𝐹𝑁𝑅𝑖𝑗 

 
 Conditioned uncomplemented  

 

Fig. 2. Definition of the eight conditional probabilities concerning events 𝑨 = {𝒋 = +𝟏} and 𝑩 =
{𝒊 = +𝟏}, which constitute the eight most prominent indicators of diagnostic testing. The four 

shaded entries are direct indicators, usually taken for the most basic ones. The four unshaded 
entries are complementary to the horizontally-adjacent shaded ones. Each conditional 

probability has a ‘dual’ one obtained by complementing both the conditioned and conditioning 
events, and also has an inverse or transposed one, obtained by swapping the conditioned  and 

conditioning events. Relations among the ordered set 
 

{𝑆𝑒𝑛𝑠𝑖𝑗 , 𝑆𝑝𝑒𝑐𝑖𝑗 , 𝑃𝑃𝑉𝑖𝑗, 𝑁𝑃𝑉𝑖𝑗} = {𝑃(𝐵|𝐴), 𝑃(�̅�|�̅�), 𝑃(𝐴|𝐵), 𝑃(�̅�|�̅�)} 
 

might be replaced by relations for the ordered set 
 

{𝐹𝑁𝑅𝑖𝑗 , 𝐹𝑃𝑅𝑖𝑗 , 𝐹𝑂𝑅𝑖𝑗 , 𝐹𝐷𝑅𝑖𝑗} =  {𝑃(�̅�|𝐴), 𝑃(𝐵|�̅�), 𝑃(𝐴|�̅�), 𝑃(�̅�|𝐵)} 
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Table 1. Commonly used quantities pertaining to diagnostic testing (adapted from [13]). Direct 
measures and indicators are highlighted in a greenish color, while inverse ones are shown 

with a reddish color. Pre-test quantities are designated neither way [13] 
 

Measure or indicator Formula in terms of entries of the 
contingency matrix 

Range Perfect 
value 

Sensitivity (True Positive Rate 
(TPR), Recall, Probability of 
Detection) 

𝑆𝑒𝑛𝑠𝑖𝑗 = 𝑇𝑃𝑖𝑗/(𝑇𝑃𝑖𝑗 + 𝐹𝑁𝑖𝑗) [0.0, 1.0] 1.0 

Specificity, Inverse recall 
(True Negative Rate (TNR)) 

𝑆𝑝𝑒𝑐𝑖𝑗 = 𝑇𝑁𝑖𝑗/(𝑇𝑁𝑖𝑗 + 𝐹𝑃𝑖𝑗) [0.0, 1.0] 1.0 

Precision (Positive Predictive Value 
(PPV)) 

𝑃𝑃𝑉𝑖𝑗 = 𝑇𝑃𝑖𝑗/(𝑇𝑃𝑖𝑗 + 𝐹𝑃𝑖𝑗) [0.0, 1.0] 1.0 

Inverse precision (Negative 
Predictive Value (NPV)) 

𝑁𝑃𝑉𝑖𝑗 = 𝑇𝑁𝑖𝑗/(𝑇𝑁𝑖𝑗 + 𝐹𝑁𝑖𝑗) [0.0, 1.0] 1.0 

False Negative Rate (FNR) 𝐹𝑁𝑅𝑖𝑗 = 1 − 𝑆𝑒𝑛𝑠𝑖𝑗 = 𝐹𝑁𝑖𝑗/(𝑇𝑃𝑖𝑗 +

𝐹𝑁𝑖𝑗)  

[0.0, 1.0] 0.0 

False Positive Rate (FPR) (Fall-Out, 
False Alarm) 

𝐹𝑃𝑅𝑖𝑗 =  1 − 𝑆𝑝𝑒𝑐𝑖𝑗 = 𝐹𝑃𝑖𝑗/(𝑇𝑁𝑖𝑗 +

𝐹𝑃𝑖𝑗)  

[0.0, 1.0] 0.0 

False Discovery Rate (FDR) 𝐹𝐷𝑅𝑖𝑗 = 1 − 𝑃𝑃𝑉𝑖𝑗 = 

𝐹𝑃𝑖𝑗/(𝑇𝑃𝑖𝑗 + 𝐹𝑃𝑖𝑗) 

[0.0, 1.0] 0.0 

False Omission Rate (FOR) 𝐹𝑂𝑅𝑖𝑗 = 1 − 𝑁𝑃𝑉𝑖𝑗 = 

𝐹𝑁𝑖𝑗/(𝑇𝑁𝑖𝑗 + 𝐹𝑁𝑖𝑗) 

[0.0, 1.0] 0.0 

Likelihood Ratio for Positive Test (𝐿𝑅+)𝑖𝑗  = 𝑆𝑒𝑛𝑠𝑖𝑗/(1 − 𝑆𝑝𝑒𝑐𝑖𝑗) [0.0, ∞) ∞ 

Likelihood Ratio for Negative Test (𝐿𝑅−)𝑖𝑗  = (1 − 𝑆𝑒𝑛𝑠𝑖𝑗)/𝑆𝑝𝑒𝑐𝑖𝑗 [0.0, ∞) 0.0 

Diagnostic Odds Ratio 𝐷𝑂𝑅𝑖𝑗 = (𝑇𝑃𝑖𝑗 ∗ 𝑇𝑁𝑖𝑗)/(𝐹𝑃𝑖𝑗 ∗ 𝐹𝑁𝑖𝑗) [0.0, ∞) ∞ 

Inverse of the DOR 𝐷𝑂𝑅𝑖𝑗
−1 = (𝐹𝑃𝑖𝑗 ∗ 𝐹𝑁𝑖𝑗)/(𝑇𝑃𝑖𝑗 ∗ 𝑇𝑁𝑖𝑗) [0.0, ∞) 0.0 

Youden’s Index (Informedness) 𝑌𝐼𝑖𝑗 = 𝑆𝑒𝑛𝑠𝑖𝑗+𝑆𝑝𝑒𝑐𝑖𝑗 − 1 [−𝟏. 𝟎, 𝟏. 𝟎] 1.0 

Markedness 𝑀𝑖𝑗 = 𝑃𝑃𝑉𝑖𝑗+𝑁𝑃𝑉𝑖𝑗 − 1 [−𝟏. 𝟎, 𝟏. 𝟎] 1.0 

Error of the First Kind 𝐸1𝑖𝑗 = 𝐹𝑃𝑖𝑗/𝑁 [0.0, 1.0] 0.0 

Error of the Second Kind 𝐸2𝑖𝑗 = 𝐹𝑁𝑖𝑗/𝑁 [0.0, 1.0] 0.0 

Total Diagnostic Error 𝐸𝑖𝑗 = (𝐹𝑃𝑖𝑗 + 𝐹𝑁𝑖𝑗)/𝑁 [0.0, 1.0] 0.0 

Diagnostic Accuracy 𝐴𝑖𝑗 = (𝑇𝑃𝑖𝑗 + 𝑇𝑁𝑖𝑗)/𝑁 [0.0, 1.0] 1.0 

Pre-Test Prevalence 𝑃𝑇𝑃𝑖𝑗 = (𝑇𝑃𝑖𝑗 + 𝐹𝑁𝑖𝑗)/𝑁 [0.0, 1.0] − 

Pre-Test Odds 𝑃𝑇𝑂𝑖𝑗 = (𝑇𝑃𝑖𝑗 + 𝐹𝑁𝑖𝑗)/(𝐹𝑃𝑖𝑗 + 𝑇𝑁𝑖𝑗) [0.0, ∞) − 

Post-Positive-Test Odds 𝑃𝑃𝑇𝑂𝑖𝑗 = 𝑃𝑇𝑂𝑖𝑗(𝐿𝑅+)𝑖𝑗 = 𝑇𝑃𝑖𝑗/𝐹𝑃𝑖𝑗 [0.0, ∞) ∞ 

Post-Negative-Test Odds 𝑃𝑁𝑇𝑂𝑖𝑗 = 𝑃𝑇𝑂𝑖𝑗(𝐿𝑅−)𝑖𝑗 = 𝐹𝑁𝑖𝑗/𝑇𝑁𝑖𝑗 [0.0, ∞) 0.0 

𝐹1 score 𝐹1 =  2 𝑇𝑃𝑖𝑗  / (2 𝑇𝑃𝑖𝑗  + 𝐹𝑃𝑖𝑗 + 𝐹𝑁𝑖𝑗).                                       [0.0, 1.0] 1.0 

Index of Association or Matthews 
Correlation Coefficient (MCC) ∅𝑖𝑗 =

∅𝑗𝑖 

∅𝑖𝑗 = ∅𝑗𝑖 = (𝑇𝑃𝑖𝑗 ∗ 𝑇𝑁𝑖𝑗 − 𝐹𝑃𝑖𝑗 ∗

𝐹𝑁𝑖𝑗)/ 𝑆𝑄𝑅𝑇((𝑇𝑃𝑖𝑗 + 𝐹𝑁𝑖𝑗)(𝑇𝑃𝑖𝑗 +

𝐹𝑃𝑖𝑗)(𝑇𝑁𝑖𝑗 + 𝐹𝑃𝑖𝑗)(𝑇𝑁𝑖𝑗 + 𝐹𝑁𝑖𝑗))  

[−𝟏. 𝟎, 𝟏. 𝟎] 1.0 

 

3. FORMULAS RELATING THE MOST 
PROMINENT BASIC INDICATORS 

 

We now express each of the four most prominent 
basic indicators of diagnostic testing (Specificity, 

Negative Predictive Value, Sensitivity, and 
Positive Predictive Value) solely in terms of the 
other three (provided each of the four indicators 
exists, and no division by zero is encountered), 
namely [16-19]. 
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𝑆𝑒𝑛𝑠𝑖𝑗 =
 𝑃𝑃𝑉𝑖𝑗 ∗   𝑁𝑃𝑉𝑖𝑗  [1 − 𝑆𝑝𝑒𝑐𝑖𝑗]

𝑃𝑃𝑉𝑖𝑗   𝑁𝑃𝑉𝑖𝑗 + 𝑆𝑝𝑒𝑐𝑖𝑗  [1 − 𝑃𝑃𝑉𝑖𝑗 − 𝑁𝑃𝑉𝑖𝑗]
 ,                                                                                (1) 

 

𝑆𝑝𝑒𝑐𝑖𝑗 =
𝑃𝑃𝑉𝑖𝑗 ∗ 𝑁𝑃𝑉𝑖𝑗  [1 −  𝑆𝑒𝑛𝑠𝑖𝑗]

𝑃𝑃𝑉𝑖𝑗 ∗ 𝑁𝑃𝑉𝑖𝑗 + 𝑆𝑒𝑛𝑠𝑖𝑗  [1 −  𝑃𝑃𝑉𝑖𝑗 − 𝑁𝑃𝑉𝑖𝑗]
,                                                                              (2) 

 

𝑃𝑃𝑉𝑖𝑗 =
𝑆𝑒𝑛𝑠𝑖𝑗 ∗ 𝑆𝑝𝑒𝑐𝑖𝑗  [1 − 𝑁𝑃𝑉𝑖𝑗]

𝑆𝑒𝑛𝑠𝑖𝑗 ∗ 𝑆𝑝𝑒𝑐𝑖𝑗 + 𝑁𝑃𝑉𝑖𝑗  [1 − 𝑆𝑒𝑛𝑠𝑖𝑗 − 𝑆𝑝𝑒𝑐𝑖𝑗]
,                                                                            (3) 

 

𝑁𝑃𝑉𝑖𝑗 =
𝑆𝑒𝑛𝑠𝑖𝑗 ∗ 𝑆𝑝𝑒𝑐𝑖𝑗  [1 − 𝑃𝑃𝑉𝑖𝑗]

𝑆𝑒𝑛𝑠𝑖𝑗 ∗ 𝑆𝑝𝑒𝑐𝑖𝑗 + 𝑃𝑃𝑉𝑖𝑗[1 −  𝑆𝑒𝑛𝑠𝑖𝑗 − 𝑆𝑝𝑒𝑐𝑖𝑗]
 .                                                                            (4) 

 
We note that relations (1-4) among the ordered set  
 

{𝑆𝑒𝑛𝑠𝑖𝑗 , 𝑆𝑝𝑒𝑐𝑖𝑗 , 𝑃𝑃𝑉𝑖𝑗, 𝑁𝑃𝑉𝑖𝑗} = {𝑃(𝐵|𝐴), 𝑃(�̅�|�̅�), 𝑃(𝐴|𝐵), 𝑃(�̅�|�̅�)},                                           (5) 

 
might be replaced by relations for the following ordered set (arbitrarily obtained by complementing the 
event 𝐵) 
 

{𝐹𝑁𝑅𝑖𝑗 , 𝐹𝑃𝑅𝑖𝑗 , 𝐹𝑂𝑅𝑖𝑗 , 𝐹𝐷𝑅𝑖𝑗} =  {𝑃(�̅�|𝐴), 𝑃(𝐵|�̅�), 𝑃(𝐴|�̅�), 𝑃(�̅�|𝐵)}.                                           (6) 

 
Equations (1-4) might be rewritten as relations among the four complementary indicators (namely the 
False Negative Rate (𝐹𝑁𝑅𝑖𝑗 = 1 − 𝑆𝑒𝑛𝑠𝑖𝑗), False Positive Rate (𝐹𝑃𝑅𝑖𝑗 = 1 −  𝑆𝑝𝑒𝑐𝑖𝑗), False Discovery 

rate (𝐹𝐷𝑅𝑖𝑗 = 1 − 𝑃𝑃𝑉𝑖𝑗) and False Omission Rate (𝐹𝑂𝑅𝑖𝑗 = 1 − 𝑁𝑃𝑉𝑖𝑗). The resulting relations are: 

  

𝐹𝑁𝑅𝑖𝑗 =
 𝐹𝑂𝑅𝑖𝑗 ∗  𝐹𝐷𝑅𝑖𝑗  [1 − 𝐹𝑃𝑅𝑖𝑗]

𝐹𝑂𝑅𝑖𝑗   𝐹𝐷𝑅𝑖𝑗 + 𝐹𝑃𝑅𝑖𝑗  [1 − 𝐹𝑂𝑅𝑖𝑗 − 𝐹𝐷𝑅𝑖𝑗]
 ,                                                                               (7) 

 

𝐹𝑃𝑅𝑖𝑗 =
𝐹𝑂𝑅𝑖𝑗 ∗ 𝐹𝐷𝑅𝑖𝑗  [1 − 𝐹𝑁𝑅𝑖𝑗]

𝐹𝑂𝑅𝑖𝑗 ∗ 𝐹𝐷𝑅𝑖𝑗 + 𝐹𝑁𝑅𝑖𝑗  [1 −  𝐹𝑂𝑅𝑖𝑗 − 𝐹𝐷𝑅𝑖𝑗]
 ,                                                                            (8) 

 

𝐹𝐷𝑅𝑖𝑗 =
𝐹𝑁𝑅𝑖𝑗 ∗ 𝐹𝑃𝑅𝑖𝑗  [1 − 𝐹𝑂𝑅𝑖𝑗]

𝐹𝑁𝑅𝑖𝑗 ∗ 𝐹𝑃𝑅𝑖𝑗 + 𝐹𝑂𝑅𝑖𝑗[1 −  𝐹𝑁𝑅𝑖𝑗 − 𝐹𝑃𝑅𝑖𝑗]
  .                                                                            (9) 

 

𝐹𝑂𝑅𝑖𝑗 =
𝐹𝑁𝑅𝑖𝑗 ∗ 𝐹𝑃𝑅𝑖𝑗  [1 − 𝐹𝐷𝑅𝑖𝑗]

𝐹𝑁𝑅𝑖𝑗 ∗ 𝐹𝑃𝑅𝑖𝑗 + 𝐹𝐷𝑅𝑖𝑗  [1 −  𝐹𝑁𝑅𝑖𝑗 − 𝐹𝑃𝑅𝑖𝑗]
  ,                                                                        (10) 

 
Note that each conditional probability in Fig. 2 
has a ‘dual’ one obtained by complementing both 
the conditioned and conditioning events [7,18], 
and also has an inverse or transposed one, 
obtained by swapping or interchanging the 
conditioned and conditioning events [12,15]. Our 
definitions of duality and transposition mean that 

each conditional probability 𝑃  has a dual 𝑃𝑑 , a 
transpose or inverse 𝑇 , and a dual of its 

transpose or inverse (a transpose of its dual) 𝑇𝑑. 
Note that both the duality and transposition 
operators are involutary or self-inverse operators, 
i.e., each of them satisfies ‘the law of involution’ 
(applying any of them twice to a specific 
conditional probability leaves it intact).  Table 2 

defines the four possible sets {𝑃 , 𝑃𝑑 , 𝑇 , 𝑇𝑑} 

pertaining to the set of four direct indicators of 
diagnostic testing [19], and also the four possible 
sets pertaining to the set of four complementary 
indicators of diagnostic testing. Equations (1-4, 
7-10) might be rewritten in a unified generic form 
(See Table 2) as [19] 
 

𝑃 =
𝑇 ∗ 𝑇𝑑  [1 − 𝑃𝑑]

𝑇 ∗ 𝑇𝑑 + 𝑃𝑑[1 − 𝑇 − 𝑇𝑑]
                         (11) 

 
Equation (11) suggests the existence of a 
universal diagnostic identity 
 

𝑃 ∗ 𝑃𝑑  [𝑇 + 𝑇𝑑 − 1] −   𝑇 ∗ 𝑇𝑑 [𝑃 + 𝑃𝑑 − 1] =
0.                                                              (12) 
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Rushdi and Serag [19] noted that the quantity 

𝑓(𝑃) =  ( 𝑃 ∗ 𝑃𝑑  [𝑇 + 𝑇𝑑 − 1] ), which is naturally 
invariant to the replacement of every term by its 
dual, is also (thanks to (12)) invariant to the 
replacement of every term by its transpose. With 
a little abuse of notation, we wrote this function 

as 𝑓(𝑃)  rather than 𝑓(𝑃, 𝑃𝑑 , 𝑇, 𝑇𝑑), since 𝑃𝑑 , 𝑇 , 

and 𝑇𝑑  are uniquely determined by 𝑃 . We 
suggest that it might serve as a composite 
diagnostic indicator, which satisfies  
 

𝑓(𝑃) = 𝑓(𝑃𝑑) =  𝑓(𝑇) = 𝑓(𝑇𝑑) =  𝑃 ∗ 𝑃𝑑  [𝑇 +
𝑇𝑑 − 1] = 𝑇 ∗ 𝑇𝑑 [𝑃 + 𝑃𝑑 − 1].                        (13) 
 

Table 2 asserts that there are four pairs of dual 
conditional probabilities {𝑆𝑒𝑛𝑠𝑖𝑗 , 𝑆𝑝𝑒𝑐𝑖𝑗} , 

{𝑃𝑃𝑉𝑖𝑗 , 𝑁𝑃𝑉𝑖𝑗} , {𝐹𝑁𝑅𝑖𝑗 , 𝐹𝑃𝑅𝑖𝑗} ,  and 

{𝐹𝐷𝑅𝑖𝑗 , 𝐹𝑂𝑅𝑖𝑗} . Therefore, Eq. (13) might be 

rewritten as 
 

𝑓(𝑆𝑒𝑛𝑠𝑖𝑗) = 𝑓(𝑆𝑝𝑒𝑐𝑖𝑗) =  𝑓(𝑃𝑃𝑉𝑖𝑗) =  𝑓(𝑁𝑃𝑉𝑖𝑗) 

= 𝑆𝑒𝑛𝑠𝑖𝑗 ∗ 𝑆𝑝𝑒𝑐𝑖𝑗  [𝑃𝑃𝑉𝑖𝑗 + 𝑁𝑃𝑉𝑖𝑗 − 1] 

=  𝑃𝑃𝑉𝑖𝑗 ∗  𝑁𝑃𝑉𝑖𝑗  [𝑆𝑒𝑛𝑠𝑖𝑗 + 𝑆𝑝𝑒𝑐𝑖𝑗 − 1],                                    

(14) 
 

or it might be rewritten as 
 

𝑓(𝐹𝑁𝑅𝑖𝑗) = 𝑓(𝐹𝑃𝑅𝑖𝑗) =  𝑓(𝐹𝐷𝑅𝑖𝑗) =  𝑓(𝐹𝑂𝑅𝑖𝑗) 

= 𝐹𝑁𝑅𝑖𝑗 ∗ 𝐹𝑃𝑅𝑖𝑗  [𝐹𝐷𝑅𝑖𝑗 + 𝐹𝑂𝑅𝑖𝑗 − 1] 

=  𝐹𝐷𝑅𝑖𝑗 ∗  𝐹𝑂𝑅𝑖𝑗  [𝐹𝑁𝑅𝑖𝑗 + 𝐹𝑃𝑅𝑖𝑗 − 1].                                   

(15) 
 

Equations (14) and (15) involve the pair of 
unbiased indicators called Youden’s Index (𝑌𝐼𝑖𝑗) 

(Informedness ( 𝐼𝑖𝑗 )), and Markedness ( 𝑀𝑖𝑗 ) 

defined by [13,19] 

𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 = 𝑌𝐼𝑖𝑗 =  𝐼𝑖𝑗 = 𝑆𝑒𝑛𝑠𝑖𝑗 + 𝑆𝑝𝑒𝑐𝑖𝑗

− 1 

=  −[𝐹𝑁𝑅𝑖𝑗 + 𝐹𝑃𝑅𝑖𝑗 − 1] = 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑗𝑖,                          

(16) 

 
𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 = 𝑀𝑖𝑗 = 𝑃𝑃𝑉𝑖𝑗 + 𝑁𝑃𝑉𝑖𝑗 − 1 

= −[𝐹𝐷𝑅𝑖𝑗 + 𝐹𝑂𝑅𝑖𝑗 − 1] = 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑗𝑖.                               

(17) 

 
Each of these two quantities belongs to 
[−1.0, +1.0].   We note that the 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 

and 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗  indicators is the transpose of 

each other. They share the same sign, a result 
that is obvious from the universal identity (12). 
We also suggest that the sum of the two 
composite indicators in (14) and (15) is yet a 
stronger non-negative composite indicator, of 
values in [0.0, 1.0], given by 

 
𝑓(𝑆𝑒𝑛𝑠𝑖𝑗) + 𝑓(𝐹𝑁𝑅𝑖𝑗)

=  𝑆𝑒𝑛𝑠𝑖𝑗 ∗ 𝑆𝑝𝑒𝑐𝑖𝑗

∗  𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 + 

(1 − 𝑆𝑒𝑛𝑠𝑖𝑗) ∗ (1 − 𝑆𝑝𝑒𝑐𝑖𝑗) ∗ (−𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗) 

= 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 ∗ 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 = 

𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 ∗ 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑗𝑖 

= 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑗𝑖 ∗ 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗.                    (18) 

 
We now add formulas that include also one or 
two marginal probabilities representing the pre-
test prevalence or true prevalence (𝑃𝑟𝑒𝑣 = 𝑃(𝐴)) 

and the apparent prevalence (𝑃𝑟𝑒𝑣 ′ = 𝑃(𝐵)). We 
have the following formulas [13,16], in each of 
which a certain probability is expressed in terms 
of three others. 

 

𝑃(𝐴) = 𝑃𝑟𝑒𝑣 =  𝑃𝑃𝑉𝑖𝑗  𝑃𝑟𝑒𝑣′ + (1 − 𝑁𝑃𝑉𝑖𝑗)(1 − 𝑃𝑟𝑒𝑣 ′),                                                                       (19) 
 

𝑃(𝐵) = 𝑃𝑟𝑒𝑣′ =  𝑆𝑒𝑛𝑠𝑖𝑗  𝑃𝑟𝑒𝑣 + (1 − 𝑆𝑝𝑒𝑐𝑖𝑗)(1 − 𝑃𝑟𝑒𝑣 ),                                                                     (20) 
 

𝑃𝑃𝑉𝑖𝑗 = 𝑃(𝐴|𝐵)  =  
𝑆𝑒𝑛𝑠𝑖𝑗  𝑃𝑟𝑒𝑣

𝑆𝑒𝑛𝑠𝑖𝑗  𝑃𝑟𝑒𝑣 + (1 − 𝑆𝑝𝑒𝑐𝑖𝑗)(1 − 𝑃𝑟𝑒𝑣)
 .                                                                (21) 

 

𝑁𝑃𝑉𝑖𝑗 = 𝑃(�̅�|�̅�)  =  
𝑆𝑝𝑒𝑐𝑖𝑗  (1 − 𝑃𝑟𝑒𝑣)

(1 − 𝑆𝑒𝑛𝑠𝑖𝑗) 𝑃𝑟𝑒𝑣 + 𝑆𝑝𝑒𝑐𝑖𝑗(1 − 𝑃𝑟𝑒𝑣)
 ,                                                                (22) 

 

𝑆𝑒𝑛𝑠𝑖𝑗 = 𝑃(𝐵|𝐴) =  
𝑃𝑃𝑉𝑖𝑗  (𝑁𝑃𝑉𝑖𝑗 +  𝑃𝑟𝑒𝑣 − 1)

(𝑃𝑃𝑉𝑖𝑗 + 𝑁𝑃𝑉𝑖𝑗 − 1)𝑃𝑟𝑒𝑣
 .                                                                                      (23) 

 

𝑆𝑝𝑒𝑐𝑖𝑗 =  𝑃(�̅�|�̅�) =  
𝑁𝑃𝑉𝑖𝑗  (𝑃𝑃𝑉𝑖𝑗 − 𝑃𝑟𝑒𝑣)

(𝑃𝑃𝑉𝑖𝑗 + 𝑁𝑃𝑉𝑖𝑗 − 1)(1 − 𝑃𝑟𝑒𝑣)
 ,                                                                           (24) 

  

𝑃𝑟𝑒𝑣

=  
 (𝑆𝑝𝑒𝑐𝑖𝑗 +  𝑃𝑟𝑒𝑣′ − 1)

  (𝑆𝑝𝑒𝑐𝑖𝑗 + 𝑆𝑒𝑛𝑠𝑖𝑗 − 1) 
.                                                                                                                               (25) 
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Table 2. Possible definitions of  a probability 𝑃,  its dual 𝑃𝑑, its transpose or inverse 𝑇, and the 

dual of its transpose or inverse (transpose of its dual) 𝑇𝑑. These definitions pertain to the set 

of four direct indicators of diagnostic testing {𝑆𝑒𝑛𝑠𝑖𝑗 , 𝑆𝑝𝑒𝑐𝑖𝑗 , 𝑃𝑃𝑉𝑖𝑗, 𝑁𝑃𝑉𝑖𝑗}, and also to the set of 

four complementary indicators of diagnostic testing {𝐹𝑁𝑅𝑖𝑗 , 𝐹𝑃𝑅𝑖𝑗 , 𝐹𝑂𝑅𝑖𝑗 , 𝐹𝐷𝑅𝑖𝑗}. Note that there 

are four pairs of dual conditional probabilities{𝑆𝑒𝑛𝑠𝑖𝑗 , 𝑆𝑝𝑒𝑐𝑖𝑗}, {𝑃𝑃𝑉𝑖𝑗 , 𝑁𝑃𝑉𝑖𝑗}, {𝐹𝑁𝑅𝑖𝑗 , 𝐹𝑃𝑅𝑖𝑗},  and 

{𝐹𝐷𝑅𝑖𝑗 , 𝐹𝑂𝑅𝑖𝑗} 

 

𝑷 𝑷𝒅 𝑻 𝑻𝒅 

𝑆𝑒𝑛𝑠𝑖𝑗 𝑆𝑝𝑒𝑐𝑖𝑗 𝑃𝑃𝑉𝑖𝑗 𝑁𝑃𝑉𝑖𝑗 

𝑆𝑝𝑒𝑐𝑖𝑗 𝑆𝑒𝑛𝑠𝑖𝑗 𝑁𝑃𝑉𝑖𝑗 𝑃𝑃𝑉𝑖𝑗 

𝑃𝑃𝑉𝑖𝑗 𝑁𝑃𝑉𝑖𝑗 𝑆𝑒𝑛𝑠𝑖𝑗 𝑆𝑝𝑒𝑐𝑖𝑗 

𝑁𝑃𝑉𝑖𝑗 𝑃𝑃𝑉𝑖𝑗 𝑆𝑝𝑒𝑐𝑖𝑗 𝑆𝑒𝑛𝑠𝑖𝑗 

𝐹𝑁𝑅𝑖𝑗 𝐹𝑃𝑅𝑖𝑗 𝐹𝑂𝑅𝑖𝑗 𝐹𝐷𝑅𝑖𝑗 

𝐹𝑃𝑅𝑖𝑗 𝐹𝑁𝑅𝑖𝑗 𝐹𝐷𝑅𝑖𝑗 𝐹𝑂𝑅𝑖𝑗 

𝐹𝑂𝑅𝑖𝑗 𝐹𝐷𝑅𝑖𝑗 𝐹𝑁𝑅𝑖𝑗 𝐹𝑃𝑅𝑖𝑗 

𝐹𝐷𝑅𝑖𝑗 𝐹𝑂𝑅𝑖𝑗 𝐹𝑃𝑅𝑖𝑗 𝐹𝑁𝑅𝑖𝑗 

 

4. THE F SCORES 
  
A plausible measure of a test’s accuracy would 
be some mean (arithmetic, geometric or 
harmonic) of two dual or transposed probabilities, 
such as the transposed quantities of (a) precision 
(positive predictive value) 
 
𝑃𝑃𝑉𝑖𝑗 = 𝑇𝑃𝑖𝑗/(𝑇𝑃𝑖𝑗 + 𝐹𝑃𝑖𝑗) = 𝑆𝑒𝑛𝑠𝑗𝑖, 

                                               (26) 
 

and  (b) recall (sensitivity) 
 

𝑆𝑒𝑛𝑠𝑖𝑗 = 𝑇𝑃𝑖𝑗/(𝑇𝑃𝑖𝑗 + 𝐹𝑁𝑖𝑗) =  𝑃𝑃𝑉𝑗𝑖 

.                                            (27) 
 

where we make use of the fact that {𝑇𝑃𝑗𝑖 = 𝑇𝑃𝑖𝑗 ,

𝑇𝑁𝑗𝑖 = 𝑇𝑁𝑖𝑗 .  𝐹𝑃𝑗𝑖 = 𝐹𝑁𝑖𝑗 , 𝐹𝑁𝑗𝑖 =  𝐹𝑃𝑖𝑗}  to assert 

that precision and recall are swapped if the roles 
of reference and assessed tests are 
interchanged. The geometric mean is already in 
use under the name of the Fowlkes–Mallows 
index [24]. Of a much wider use is the traditional 
F-measure or balanced F-score (F1 score), which 
is the harmonic mean (the reciprocal of the 
arithmetic mean of the reciprocals). This score 
derives its mathematical simplicity from the fact 
that precision and recall have a common 
numerator (as can be seen from (26) and (27)), 
and hence their reciprocals have a common 
denominator, namely. 
 

1/𝐹1 = ((1/𝑃𝑃𝑉𝑖𝑗)   +   (1/𝑆𝑒𝑛𝑠𝑖𝑗))/ 2 

2/𝐹1 = (𝑇𝑃𝑖𝑗 + 𝐹𝑃𝑖𝑗)/ 𝑇𝑃𝑖𝑗    + (𝑇𝑃𝑖𝑗 + 𝐹𝑁𝑖𝑗)/ 𝑇𝑃𝑖𝑗. 

 𝐹1 =  2 𝑇𝑃𝑖𝑗  / (2 𝑇𝑃𝑖𝑗  + 𝐹𝑃𝑖𝑗 + 𝐹𝑁𝑖𝑗).                                       

(28) 
 

The value of 𝐹1 varies from 0.0 (𝑇𝑃𝑖𝑗 = 0) to 1.0 

(𝐹𝑃𝑖𝑗 = 𝐹𝑁𝑖𝑗 = 0, i.e., no error). Compared to the 

arithmetic mean, the harmonic mean punishes a 
low value of precision or recall more. In other 
words, for the 𝐹1  score to be high, both              

precision and recall should be high. The 𝐹1    
score assigns an equal weight to precision and 
recall. It might be generalized to a more generic 
𝐹  score, which assigns different weights                    
to them, thereby valuing one of them more than 
the other.  
 
Since the 𝐹 score does not take true negatives 
into account, it is deemed less informative than 
measures such as the Matthews correlation 
coefficient (MCC). In Section 5, we will see that 
the 𝐹1 score can be misleading, since it does not 
fully consider the size of the four classes of the 
confusion matrix (contingency table) in the final 
score computation.  
  

5. THE MATTHEWS CORRELATION 
COEFFICIENT (MCC) 

 
The Matthews correlation coefficient (MCC) [26, 
27] (known also as the Index of Association [13], 
Yule phi coefficient [28] or Pearson phi 
coefficient [29,30]) is commonly used in machine 
learning as a measure of the quality of binary 
(two-class) classifications. The MCC enjoys a 
striking balance in its dependence on the four 
entries of the contingency table (𝑇𝑃𝑖𝑗, 𝐹𝑃𝑖𝑗, 𝐹𝑁𝑖𝑗, 

and 𝑇𝑁𝑖𝑗), a balance that renders it one of the 

most beautiful or elegant mathematical formulas 
[13,31]. 
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∅𝑖𝑗 = ∅𝑗𝑖 = (𝑇𝑃𝑖𝑗 ∗ 𝑇𝑁𝑖𝑗 − 𝐹𝑃𝑖𝑗 ∗ 𝐹𝑁𝑖𝑗)/

 𝑆𝑄𝑅𝑇((𝑇𝑃𝑖𝑗 + 𝐹𝑁𝑖𝑗)(𝑇𝑃𝑖𝑗 + 𝐹𝑃𝑖𝑗)(𝑇𝑁𝑖𝑗 +

𝐹𝑃𝑖𝑗)(𝑇𝑁𝑖𝑗 + 𝐹𝑁𝑖𝑗))                                          (29) 

 
The MCC is a partially-symmetric function in 
𝑇𝑃𝑖𝑗  and 𝑇𝑁𝑖𝑗, as well as in 𝐹𝑃𝑖𝑗  and 𝐹𝑁𝑖𝑗 .  Unlike 

other metrics of diagnostic testing in Table 1, the 
MCC does not depend on which metric or test is 
assessed relative to which (∅𝑖𝑗 = ∅𝑗𝑖). The MCC 

value belongs to [−1.0, +1.0],  with a value of 

+1.0  representing a total agreement or perfect 
prediction, a value of 0 being no better than 
random prediction and a value of −1.0 indicating 
total disagreement or completely contradictory 
prediction (See Table 3). The MCC can also be 
calculated by a formula comprising the eight 
most prominent indicators of diagnostic testing 
depicted in Fig. 2, namely  
 
∅𝑖𝑗 = ∅𝑗𝑖 = 𝑆𝑄𝑅𝑇(𝑆𝑒𝑛𝑠𝑖𝑗 ∗ 𝑆𝑝𝑒𝑐𝑖𝑗 ∗ 𝑃𝑃𝑉𝑖𝑗 ∗

𝑁𝑃𝑉𝑖𝑗) −  𝑆𝑄𝑅𝑇(𝐹𝐷𝑅𝑖𝑗 ∗ 𝐹𝑁𝑅𝑖𝑗 ∗ 𝐹𝑃𝑅𝑖𝑗 ∗ 𝐹𝑂𝑅𝑖𝑗)   

 (30) 
 
Equation (30) is also strikingly beautiful. By 
contrast, the 𝐹1 score utilizes only two of these 
eight metrics in (28). Chicco and Jurman [32] 
assert that the Matthews correlation coefficient 
(MCC), produces a high score only if the 
prediction obtained good results in all of the four 
confusion matrix categories (true positives, false 
negatives, true negatives, and false positives), 
proportionally both to the size of positive 
elements and the size of negative elements in 
the dataset. If we assume 𝑃 is one of the four 
direct basic indicators, then (30) might be 
rewritten in the more generic form 
 

∅𝑖𝑗 = ∅𝑗𝑖 = 𝑆𝑄𝑅𝑇(𝑃 ∗  𝑃𝑑 ∗  𝑇 ∗  𝑇𝑑) − 𝑆𝑄𝑅𝑇((1 −

𝑃) ∗ (1 − 𝑃𝑑) ∗ (1 −  𝑇) ∗ (1 − 𝑇𝑑)).            (30a) 
 
We can use the universal diagnostic identity (12) 

to prove that the condition {𝑃 + 𝑃𝑑 = 1.0}  is 

equivalent to the condition {𝑇 + 𝑇𝑑 = 1.0} , and 
then use (30a) to show that any of these two 
conditions is equivalent to the condition that the 
prediction cannot be distinguished from random 
guessing (∅𝑖𝑗 = ∅𝑗𝑖 = 0). 

 

Chicco [31] considers a faulty algorithm which 
always predicts positive, and by applying this 
only-positive predictor to an imbalanced 
validation set (of 95 positives and 5 negatives), 

the four contingency matrix categories obtained 
are 𝑇𝑃𝑖𝑗 = 95, 𝑇𝑁𝑖𝑗 = 0, 𝐹𝑃𝑖𝑗 = 5,  and 𝐹𝑁𝑖𝑗 = 0.  

These values translate into assuring 
performance values of accuracy = 0.95 and 𝐹1 
score = 180/185 = 0.9744 . However, MCC 

yields an undefined value of 0/0, thereby alerting 
the user that some problem exists. Alternatively, 
a set of matrix entries, 𝑇𝑃𝑖𝑗 = 90, 𝑇𝑁𝑖𝑗 = 1, 𝐹𝑃𝑖𝑗 =

5,  and 𝐹𝑁𝑖𝑗 = 4  (obtained by another algorithm 

on the same validation set) yields accuracy =
0.91,  𝐹1  score = 180/189 = 0.95 , and MCC =
(90 − 20)/𝑆𝑄𝑅𝑇(94 ∗ 95 ∗ 5 ∗ 6) = 0.1352 .  Here, 

both the accuracy and 𝐹1 score are too high for a 
classifier unable to recognize negative data 
elements, albeit doing well with positive ones. 
Chicco [31] also notes that the  𝐹1  score 
behaviour depends on which class is defined as 
the positive class. If one applies an only-negative 
predictor to the earlier imbalanced validation set 
(of 95 positives and 5 negatives), the four 
contingency matrix categories obtained are 
𝑇𝑃𝑖𝑗 = 0, 𝑇𝑁𝑖𝑗 = 5, 𝐹𝑃𝑖𝑗 = 0, and 𝐹𝑁𝑖𝑗 = 95. In this 

case, the 𝐹1 score catches the faulty behaviour of 
the algorithm by reporting an extremely 
cautionary value of 0. By contrast, the MCC does 
not depend on which class is the positive one 
and which is the negative one. 
 
Several scientific studies (mostly by Chicco and 
his co-workers [31-38]) show why the Matthews 
correlation coefficient (MCC) is more informative 
and trustworthy than confusion-entropy error, 
accuracy, F1 score, bookmaker informedness, 
markedness,  balanced accuracy, and the 
diagnostic odds ratio (DOR). A high Matthews 
correlation coefficient (close to +1 ) means 
always high values for all the four basic 
indicators 𝑆𝑒𝑛𝑠𝑖𝑗 , 𝑆𝑝𝑒𝑐𝑖𝑗 , 𝑃𝑃𝑉𝑖𝑗  and 𝑁𝑃𝑉𝑖𝑗 . Chicco 

et al. [36] identify it as the only metric that 
possesses this property. For comparison, a high 
 𝐹1 score means high values for just two of these 
basic indicators 𝑆𝑒𝑛𝑠𝑖𝑗 , and 𝑃𝑃𝑉𝑖𝑗 . Chicco et al. 

[36] still plan to compare the Matthews 
correlation coefficient with other metrics, such as 
Brier score [21], Cohen’s Kappa [22], K measure 
[23], Fowlkes-Mallows index [24] and H-index 
[25].  The results of Chicco et al. [36] are in line 
with the fact that the MCC has attracted the 
attention of the machine learning and the 
diagnostic testing communities as a method that 
summarizes the contingency matrix into a single 
value [37,38]. 
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Table 3. Types of prediction in terms of indicators 
 

 Direct Basic Indicators 

{𝑺𝒆𝒏𝒔𝒊𝒋, 𝑺𝒑𝒆𝒄𝒊𝒋, 𝑷𝑷𝑽𝒊𝒋, 

𝑵𝑷𝑽𝒊𝒋} 

Complementary Basic 
Indicators 

{𝑭𝑵𝑹𝒊𝒋, 𝑭𝑷𝑹𝒊𝒋, 𝑭𝑶𝑹𝒊𝒋, 𝑭𝑫𝑹𝒊𝒋} 

Good 
Composite 
indicators 

𝑴 

∈ {𝑰𝒊𝒋, 𝑴𝒊𝒋, 𝑴𝑪𝑪,

𝑺𝑮𝑴, 𝑨𝑴, 𝑯𝑴} 

Perfect 
Prediction 

𝑆𝑒𝑛𝑠𝑖𝑗 + 𝑆𝑝𝑒𝑐𝑖𝑗 = 2.0, 

𝑃𝑃𝑉𝑖𝑗  +  𝑁𝑃𝑉𝑖𝑗 = 2.0, 

𝑆𝑒𝑛𝑠𝑖𝑗 =  𝑆𝑝𝑒𝑐𝑖𝑗 =

 𝑃𝑃𝑉𝑖𝑗 = 𝑁𝑃𝑉𝑖𝑗 = 1.0 

𝐹𝑁𝑅𝑖𝑗 +  𝐹𝑃𝑅𝑖𝑗 = 0.0, 

𝐹𝑂𝑅𝑖𝑗+  𝐹𝐷𝑅𝑖𝑗 = 0.0, 

𝐹𝑁𝑅𝑖𝑗 =  𝐹𝑃𝑅𝑖𝑗 =  𝐹𝑂𝑅𝑖𝑗 = 

𝐹𝐷𝑅𝑖𝑗 = 0.0 

𝑀 = +1.0 

Good Prediction 1 < 𝑆𝑒𝑛𝑠𝑖𝑗 +  𝑆𝑝𝑒𝑐𝑖𝑗 ≤ 2, 

1 < 𝑃𝑃𝑉𝑖𝑗  +  𝑁𝑃𝑉𝑖𝑗 ≤ 2, 

0 ≤ 𝐹𝑁𝑅𝑖𝑗 +  𝐹𝑃𝑅𝑖𝑗 < 1, 

0 ≤ 𝐹𝑂𝑅𝑖𝑗  +  𝐹𝐷𝑅𝑖𝑗 < 1, 

0.0 < 𝑀 ≤ 1.0 

Random-
Guessing-Like 
Prediction 

𝑆𝑒𝑛𝑠𝑖𝑗 + 𝑆𝑝𝑒𝑐𝑖𝑗 = 1.0, 

𝑃𝑃𝑉𝑖𝑗  +  𝑁𝑃𝑉𝑖𝑗 = 1.0, 

𝐹𝑁𝑅𝑖𝑗 +  𝐹𝑃𝑅𝑖𝑗 = 1.0, 

𝐹𝑂𝑅𝑖𝑗  +  𝐹𝐷𝑅𝑖𝑗 = 1.0, 

𝑀 = 0.0 

Bad Prediction 0 ≤ 𝑆𝑒𝑛𝑠𝑖𝑗 +  𝑆𝑝𝑒𝑐𝑖𝑗 < 1, 

0 ≤ 𝑃𝑃𝑉𝑖𝑗  +  𝑁𝑃𝑉𝑖𝑗 < 1, 

1 < 𝐹𝑁𝑅𝑖𝑗 +  𝐹𝑃𝑅𝑖𝑗 ≤ 2, 

1 < 𝐹𝑂𝑅𝑖𝑗  +  𝐹𝐷𝑅𝑖𝑗 ≤ 2, 

−1.0 ≤ 𝑀 < 0.0 

Completely-
contradictory 
Prediction 

𝑆𝑒𝑛𝑠𝑖𝑗 + 𝑆𝑝𝑒𝑐𝑖𝑗 = 0.0, 

𝑃𝑃𝑉𝑖𝑗  +  𝑁𝑃𝑉𝑖𝑗 = 0.0, 

𝑆𝑒𝑛𝑠𝑖𝑗 =  𝑆𝑝𝑒𝑐𝑖𝑗 =

 𝑃𝑃𝑉𝑖𝑗 = 𝑁𝑃𝑉𝑖𝑗 = 0.0 

𝐹𝑁𝑅𝑖𝑗 +  𝐹𝑃𝑅𝑖𝑗 = 2.0, 

𝐹𝑂𝑅𝑖𝑗  +  𝑁𝑃𝑉𝑖𝑗 = 2.0, 

𝐹𝑁𝑅𝑖𝑗 =  𝐹𝑃𝑅𝑖𝑗 =  𝐹𝑂𝑅𝑖𝑗 = 

𝐹𝐷𝑅𝑖𝑗 = 1.0 

𝑀 = −1.0 

 
In passing, we claim that the new composite 
indicator introduced in (18) 
 

𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 ∗  𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 = (𝑆𝑒𝑛𝑠𝑖𝑗 +

𝑆𝑝𝑒𝑐𝑖𝑗 − 1) ∗ (𝑃𝑃𝑉𝑖𝑗 + 𝑁𝑃𝑉𝑖𝑗 − 1) 

= (𝐹𝑁𝑅𝑖𝑗 + 𝐹𝑃𝑅𝑖𝑗 − 1, ) ∗ (𝐹𝐷𝑅𝑖𝑗 + 𝐹𝑂𝑅𝑖𝑗 − 1),              

(31) 
 

has  two elegant formulas in terms of all the 
basic indicators, and would have proven to be a 
strong competitor to the MCC indicator had it not 
lost the sign information of its constituent 
elements ( 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗  and 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 ). 

Further, we note that 
 

 A high MCC (close to +1 ) means high 
values for 𝑆𝑒𝑛𝑠𝑖𝑗 , 𝑆𝑝𝑒𝑐𝑖𝑗 , 𝑃𝑃𝑉𝑖𝑗  and 𝑁𝑃𝑉𝑖𝑗 

(each close to +1) [36]. Likewise, a low 
MCC (close to −1) means low values for 

𝑆𝑒𝑛𝑠𝑖𝑗 , 𝑆𝑝𝑒𝑐𝑖𝑗 , 𝑃𝑃𝑉𝑖𝑗  and 𝑁𝑃𝑉𝑖𝑗  (each close 

to 0). 

 A high 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗  (close to +1 ) 

means high values for 𝑆𝑒𝑛𝑠𝑖𝑗  and 𝑆𝑝𝑒𝑐𝑖𝑗 

and at least one of 𝑃𝑃𝑉𝑖𝑗  and 𝑁𝑃𝑉𝑖𝑗 [36]. 

Likewise, a low 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗  (close to 

−1) means low values for 𝑆𝑒𝑛𝑠𝑖𝑗 and 𝑆𝑝𝑒𝑐𝑖𝑗 

and at least one of 𝑃𝑃𝑉𝑖𝑗 and 𝑁𝑃𝑉𝑖𝑗. 

 A high 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗  (close to +1) means 

high values for 𝑃𝑃𝑉𝑖𝑗  and 𝑁𝑃𝑉𝑖𝑗  and at 

least one of 𝑆𝑒𝑛𝑠𝑖𝑗  and 𝑆𝑝𝑒𝑐𝑖𝑗  [36]. 

Likewise, A low 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 (close to −1) 

means low values for 𝑃𝑃𝑉𝑖𝑗 and 𝑁𝑃𝑉𝑖𝑗 and 

at least one of 𝑆𝑒𝑛𝑠𝑖𝑗 and 𝑆𝑝𝑒𝑐𝑖𝑗. 

 
Therefore, a high value (close to +1) of our new 
product indicator in (18) or (31) means high 
magnitudes of 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗  and 

𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗  (with both close to +1  or both 

close to −1), which, in turn, means high values 

(close to +1 ) for all the four basic direct 

indicators 𝑆𝑒𝑛𝑠𝑖𝑗 , 𝑆𝑝𝑒𝑐𝑖𝑗 , 𝑃𝑃𝑉𝑖𝑗  and 𝑁𝑃𝑉𝑖𝑗 , or low 

values (close to 0) for all of them. Therefore, a 
better competitive indicator would be a signed 
geometric mean of the two indicators 
𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗  and 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 , which 

inherits their common sign as its own sign.               
This signed geometric mean might be as 
effective as MCC in summarizing the 
contingency matrix into a single value. However, 
its formula lacks the elegance of that of MCC, as 
it is given by. 
 

𝑆𝐺𝑀 = 𝑆𝐺𝑀𝑖𝑗 = 𝑆𝐺𝑀𝑗𝑖 =  𝑆𝐺𝑁 ( 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 ) ∗

𝑆𝑄𝑅𝑇 (𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 ∗ 𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗).      (32) 

 
In addition to this signed geometric mean, there 
are two other means, the arithmetic mean and 
the harmonic mean given by 
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𝐴𝑀 =  𝐴𝑀𝑖𝑗 =  𝐴𝑀𝑗𝑖 =  (𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 +  

𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗)/ 2,                                           (33) 

 
𝐻𝑀 =  𝐻𝑀𝑖𝑗 =  𝐻𝑀𝑗𝑖 =  2 ∗ 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 ∗

𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗/ (𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 +  

𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠).                                                 (34) 
 
In (34), we assign to HM the value 0 (rather than 
the undefined 0/0) when it is the harmonic mean 
of two zeroes. Each of these three means enjoys 
inherent symmetry and belongs to the interval 
[−1.0, +1.0] like MCC, and might be a plausible 
competitor to it. These three novel metrics are 
included in Table 3 under the umbrella of good 
composite indicators, used in addition to the 
eight basic indicators, to identify various types of 
prediction, going down from the perfect type to 
the completely-contradictory type. 
 

6. ON THE SOLUTION OF TERNARY 
PROBLEMS OF CONDITIONAL 
PROBABILITIES 

 
A quick glance at our earlier equations (1-4, 7-
11, 19-25) suggest that techniques of solving 
ternary problems of conditional probability [10-
20,39-42] are essential for full characterization of 
the two-by-two contingency table. A normalized 
version of this table might be enhanced by being 
interpreted as a probabilistic Universe of 
Discourse. However, it still suffers from two inter-
related shortcomings, arising from lack of 
length/area proportionality and a potential 
misconception concerning a false assumption of 
independence between the two underlying 

events. Rushdi and Serag [16] proposed the use 
of Fig. 3 as a remedy of these two shortcomings 
by modifying the normalized contingency matrix 
into a new Karnaugh-map-like diagram that 
resembles an eikosogram [43,44]. Furthermore, 
they suggested the use of the pair of functionally 
complementary versions of this diagram (shown 
in Fig. 3) to handle any ternary problem of 
conditional probability. The two diagrams split the 
unknowns and equations between themselves in 
a fashion that allows the use of a divide and-
conquer strategy to handle such a problem. This 
methodology is particularly useful in various 
areas of diagnostic testing such as clinical or 
epidemiological testing, though it is still 
conveniently applicable in other types of 
problems of general nature involving conditional 
probabilities. Rushdi and Serag [16,17] explained 
why and how a conditional-probability problem 
(with exactly three appropriate quantities being 
given or pre-specified) can be solved. They also 
identified the case when an arithmetic solution is 
possible and differentiated this case from the 
case when an algebraic solution is warranted. 
The methodology proposed in [16] can be used 
to recover all known relations involving quantities 
pertinent to or derivable from the two-by-two 
contingency table. As a particularly significant 
offshoot, this methodology shows that the four 
most prominent indicators of diagnostic testing 
(Sensitivity, Specificity, Positive Predictive Value, 
and Negative Predictive Value) constitute three 
rather than four independent quantities. This 
observation is virtually unheard of, though it is 
implicit in earlier solutions of the ternary problem 
of conditional probability [12,13,15]. 

 

 
𝑷(𝑨) = 𝑷𝒓𝒆𝒗 

𝑷(�̅�)
= 𝟏 − 𝑷𝒓𝒆𝒗 

 

𝑷(𝑩|𝑨)
= 𝑺𝒆𝒏𝒔𝒊𝒋 

= 𝑻𝑷𝑹𝒊𝒋 

𝑷(𝑨 ∩ 𝑩) = 

𝑻𝑷𝒊𝒋 /𝑵 

 

𝑷(�̅� ∩ 𝑩) = 

𝑭𝑷𝒊𝒋  /𝑵 

 

𝑷(𝑩|�̅�)
= 𝑭𝑷𝑹𝒊𝒋 

𝑷(�̅� ∩ �̅�) = 

𝑻𝑵𝒊𝒋 /𝑵  

 

𝑷(�̅�|�̅�)
= 𝑺𝒑𝒆𝒄𝒊𝒋 

= 𝑻𝑵𝑹𝒊𝒋 

𝑷(�̅�|𝑨) 

= 𝑭𝑵𝑹𝒊𝒋 

𝑷(𝑨 ∩ �̅�) = 

𝑭𝑵𝒊𝒋 /𝑵 
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𝑷(𝑨|𝑩) = 𝑷𝑷𝑽𝒊𝒋 

𝑷(�̅�|𝑩)
= 𝑭𝑫𝑹𝒊𝒋 

𝑷(𝑩)
= 𝑷𝒓𝒆𝒗′ 

𝑷(𝑨 ∩ 𝑩) = 

𝑻𝑷𝒊𝒋 /𝑵 

 

𝑷(�̅� ∩ 𝑩) = 

𝑭𝑷𝒊𝒋 /𝑵 

 

𝑷(�̅�)
= 𝟏
− 𝑷𝒓𝒆𝒗′ 

𝑷(𝑨 ∩ �̅�) = 

𝑭𝑵𝒊𝒋 / 𝑵 

 

𝑷(�̅� ∩ �̅�) = 

𝑻𝑵𝒊𝒋 / 𝑵 

 

 𝑷(𝑨|�̅�)
= 𝑭𝑶𝑹𝒊𝒋 

𝑷(�̅�|�̅�) = 𝑵𝑷𝑽𝒊𝒋 

 

Fig. 3. The probability Universe of Discourse being replaced by two different length/area-
proportional Karnaugh-Map-like Diagrams (Eikosogram Diagrams). Each diagram is a liaison 
among the four conjunctive probabilities, two specific marginal probabilities and four specific 

conditional probabilities. Each map supplies four independent equations, each of which 
expresses a conjunctive probability (as a product of a conditional probability and a marginal 

one), as well as two additive relations for conditional probabilities. These twelve basic 
equations are supplemented by an independent equation (an additive relation for two marginal 

probabilities or four conjunctive probabilities) 
 
In passing, we note that all the quantities with 
values in the unit interval [0.0, 1.0] look like 
probabilities, and, in fact, have probability 
interpretations [10-16,45-49]. These 
interpretations are quite obvious for the basic 
indicators, and have been shown explicitly in Fig. 
2. However, certain considerations and 
deliberations might be needed for other 
indicators, such as the F-scores [50,51].  
Probabilistic interpretation is also possible for 
metrics located in the interval [− 1.0, 1.0] (such 
as the MCC [52]), by mapping this interval to the 
unit interval [0.0, 1.0]. 

  
7. CONCLUSIONS 
 
This paper dealt with indicators derived of the 
ubiquitous two-by-two contingency table 
(confusion matrix) that has widespread 
applications in many fields, including, in 
particular, the fields of binary classification and 
clinical or epidemiological testing. The paper 
presented a variety of these indicators, and 
stressed the fact that among these the Index of 
Association (Matthews Correlation Coefficient) 

has particular advantages. Other, novel and 
hopefully advantageous, metrics derived from the 
celebrated Informedness and Markedness 
metrics have been proposed herein.   
 

We implemented all the equations in Table 1 to 
compute all the metrics and indicators therein 
based on knowledge of either (a) the set of four 
entries of the contingency table {𝑇𝑃𝑖𝑗, 𝐹𝑃𝑖𝑗, 𝐹𝑁𝑖𝑗, 

𝑇𝑁𝑖𝑗}, or (b) the set of true (pre-test) prevalence, 

sensitivity, and specificity {𝑃𝑟𝑒𝑣, 𝑆𝑒𝑛𝑠𝑖𝑗 , 𝑆𝑝𝑒𝑐𝑖𝑗}. 

Techniques of solving ternary problems of 
conditional probability [10-20,37-40] were 
incorporated to attain the needed computations. 
We used a potpourri of test cases to reveal and 
unravel many of the properties and inter-
relationships among these indicators. Our 
results, reported in a sequel of this paper [53], 
assert that the MCC is the most reliable single 
metric that can be derived from the contingency 
table, and that all the four basic indicators 
𝑆𝑒𝑛𝑠𝑖𝑗 , 𝑆𝑝𝑒𝑐𝑖𝑗 , 𝑃𝑃𝑉𝑖𝑗  and 𝑁𝑃𝑉𝑖𝑗  must be high for 

the MCC to be high. Further work is warranted to 
assess the new indicators proposed herein in 
comparison with the MCC.  
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NOTE ADDED IN PROOF 
 
Equation (29) can be used to prove exact 
equivalence between the MCC and the signed 
geometric mean SGM of Informedness and 
Markedness. This equivalence has already been 
known in the open literature (see, e.g., [36,54-
56]). Although we regret oversight on our part 
leading us to overlook this equivalence, we are 
still investigating the utility and comparative 
merits of the two other means we introduced. 
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