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ABSTRACT 
 

Lack of knowledge and comprehension of critical input parameters and material machinability has 
limited the industry's use of machining, making it challenging to meet requirements for machining 
responses and numerous other problems. This study uses response surface methods to evaluate 
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Aluminum Alloy 6351 Eggshell Reinforced Composite as a turning machining material. The material 
removal rate (MRR), cutting force (Fc), and surface roughness (Ra) of the samples were examined. 
The mass percentage of the composite is 15% egg shell reinforcement and 85% aluminum alloy. 
Cutting force (Fc), surface roughness (Ra), and material removal rate (MRR) ANOVA tables show 
that several models have significant probability values (P-values) less than 0.05. Numerical 
optimization was used to identify combinations of process parameters that will give the best 
response of cutting force (Fc), surface roughness (Ra), and material removal rate (MRR). The 
Cutting force (Fc), surface roughness (Ra), and material removal rate (MRR) can all be predicted 
using the regression equation model that was created. The only input variable that significantly 
affects the cutting force is cutting speed. 
 The three-input variable studied has a significant effect on surface roughness (Ra) and material 
removal rate (MRR). 
The optimization result obtained indicates that the optimal response for turning an aluminum alloy 
6351 eggshell reinforced composite is 1.39676µm, 101.333N, and 2016.77mm3/min for surface 
roughness (Ra), cutting force (Fc), and material removal rate (MRR), respectively. This is achieved 
when the input variables of cutting speed (Vc), feed rate (Fr), and depth of cut (Dc), which are 
589.479 rpm, 0.205976 mm/min, and 0.315524 mm, respectively, are used. 

 
Keywords: Numerical optimization; regression equation; material removal rate; surface roughness; 

cutting force. 
 

ABBREVIATIONS 
 
MRR  Material removal rate 
AAERC  Aluminum alloy eggshell reinforced composite 
AMMC   Aluminum metal matrix composites  
BBD  Box-Behnken design  
DOE  Design of experiment 
Ra  Surface roughness 
𝑉𝐶  Cutting speed 

𝐹𝐶  Cutting force 

𝐷𝐶  Depth of cut 

𝐹𝑟  Feed rate 
 

1. INTRODUCTION 
 

CNC lathes have revolutionized the machining 
industry by automating turning processes. The 
computer numerical control lathe (CNC) is a type 
of machining tool that can be used to execute 
various operations on a workpiece. Among the 
several machining operations carried out by the 
CNC lathe, the most important operation is 
machine turning. Turning is one of the major 
machining techniques that is used to machine 
the outside diameter of a revolving cylindrical 
work piece [1,2]. Rotating the work item till it 
reaches a pre-established size can help to 
decrease its diameter through turning process. In 
order to obtain the desired diameter and reduce 
the diameter, the work item is frequently turned 
[3,4,5]. Parts that are cylindrical are created 
during the turning process [6,7]. Hence, it can be 
defined as the act of milling the outside of a work 
piece while it revolves in opposition to a cutting 
tool that is supplied perpendicular to the axis of 
the work piece. 

The majority of operations requiring accuracy 
and surface smoothness use CNC. It is 
significant to note that the surface finish is 
impacted by the utilized operation speed [8-10]. 
𝑉𝐶, 𝐷𝐶, and 𝐹𝑟 being among the selected cutting 
parameters are utilized to create the expected 
response of MRR, 𝐹𝐶 , and Ra [11-15]. The 
component's surface polish has been blamed for 
a variety of failures, some of which are 
catastrophic and cause enormous losses. In 
order to maximize the machining conditions and 
achieve a high surface polish, research has been 
developed for these reasons [16-22]. The 
measurement of a material's surface roughness 
is its micro-irregularities [23]. Many of a 
material's mechanical qualities, such as its 
capacity to withstand friction and wear, are 
predicted and determined by its surface 
roughness [16, 23-25]. When machining results 
in surface specification variations, high surface 
integrity may not be produced by finishing 
[26,27]. As a result, sufficient control measures 
must be taken to maintain surface roughness
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Fig. 1. Turning operation concept [76] 
 
within allowable bounds, as this is a crucial 
criterion and technical prerequisite for assessing 
the quality of a product [28,29]. The tool shape, 
tool material, cutting condition, and finishing of 
the tool are some of the aspects that actually 
determine surface roughness [16]. 𝑉𝐶, 𝐷𝐶, and 𝐹𝑟 
are three key machining characteristics that 
affects the machined Ra [15]. The measured 
volume of the material removed or the weight 
difference between the initial and post-machining 
states can be used to calculate the material 
removal rate which is the amount of material 
removed from the workpiece in a certain amount 
of time [30]. To guarantee the best possible 
machined output, the MRR idea must be taken 
into account when developing metal cutting 
techniques and selecting cutting instruments [31-
34]. The force generated by the cutting tool as it 
slices the workpiece is known as the cutting 
force. Machining errors can result from issues 
with the equipment, process, and procedures 
used in metal machining [35-37]. The main 
issues with machining operations are the 
mistakes brought on by strong cutting force [38-
41]. As a result, cutting force is now an essential 
factor to take into account to ensure a stable and 
effective machining operation [42-45]. 
 
Aluminum metal matrix composites (AMMC), are 
a valuable and quickly expanding material with 
strong mechanical and physical characteristics 
that make them ideal for a various technical 
application [46-52]. The exceptional mechanical 
and physical qualities of AMMC make them 
suitable materials for a wide range of 
applications [46-49, 53-57]. Reinforced metallic 
materials provide superior mechanical and 
chemical properties compared to ordinary 

engineering materials [58,59]. Recently, interest 
has risen in creating composites using 
inexpensive and low-density reinforcements to 
achieve engineering aims and specific objectives 
[60-62]. Aluminum Matrix Composites (AMCs), 
having aluminum as a principal constituent, are a 
high performance, lightweight class of materials 
[7]. The reinforcement in AMCs can be 
continuous or discontinuous fibers, whiskers, or 
particles, with the highest significant dominant 
material [52,63,64]. Many composite materials 
used today are in line with applications needing 
the most outstanding levels of performance due 
to their performance, high availability, and 
affordability [65-67]. The matrix and 
reinforcement of the composite serve, 
respectively, to improve mechanical properties, 
facilitate load transmission, and ensure structural 
integrity [46-49, 53-55]. 
 

2. MATERIALS AND METHODS 
 

2.1 Materials  
 

The materials and equipment utilized to do this 
task included a veneer caliper, measuring tape, 
Aluminum Alloy 6351, eggshell waste, a 
dynamometer (XXR-UN01), a surface tester 
(Mitutoyo sj-210), and a CNC lathe machine (250 
PCD Boxford CNC lathe machine). Fig. 2 to Fig. 
7, shows the Eggshells, Eggshell powder, 
Aluminum Alloy 6351 eggshell composite, 
Mutotuyo surface measuring instrument, 
mechanical stirrer with furnace and CNC lathe 
tool dynamometer respectively. Table 1 and 
Table 2 shows chemical compositions and the 
mechanical properties of the Aluminum alloy 
6351, respectively. 
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Fig. 2. Egg shells 
 

 
Fig. 3. Egg shell powder 

  
 

Fig. 4. Aluminum alloy 6351 eggshell 
composite 

 

 
Fig. 5. Mutotuyo surface measuring 

instrument 

  
 

Fig. 6. Mechanical Stirring with furnace 
 

 
Fig. 7. CNC lathe tool dynamometer 

Table 1. Composition of the A6351 alloy 
 

Al Si Fe Cu Mn Mg Zn Ti V 

Bal 7.0 0.1 0.002 0.006 0.4 0 0.13 0.02 
 

Table 2. Mechanical properties of Al-6351 alloy 
 

Sample Specimen  Toughness (Joules) Hardness (BHN) 

1 Al-6351 6.638 60 
 

2.2 Methods  
 

2.2.1 Aluminum Alloy 6351 eggshell 
reinforced composite preparation 

 
The egg shells were collected and cleaned to 
remove the dust and particles after which they 

were washed thoroughly with water and allowed 
to dry in an oven heated to a temperature of 
1000°C for a period of one hour. The desiccated 
egg shells were crushed and pulverized to room 
temperature to obtain the desired and finest 
crushed particle [68]. The resulting powder was 
passed through the necessary size sieves (>106 
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to <850 microns) to produce particles with a 
consistent size distribution. The composite 
composition by mass contained 85% Aluminum 
alloy and 15% Egg shell reinforcement [68]. The 
weights of the reinforcements (pulverized egg 
shell) were determined using electronic compact 
scale. The sourced Aluminum weight for the 
composite was determined using a weighing 
balance. The patterns used were made of wood 
while natural sand was used to prepare the sand 
mold. 
 
Required amount of pulverized egg shell was 
kept in a furnace preheated in order to improve 
wettability [68]. A temperature probe was affixed 
to the aluminum to ensure total melting after the 
metal was heated to 700°C ± 50°C in a diesel-
powered crucible furnace. After being heated to a 
temperature of around 600°C, the liquid 
aluminum was carefully deposited into the 
furnace to achieve a semi-solid condition [69]. To 
further increase the metal's wettability by 
lowering surface tension, raising surface energy, 
and lowering matrix reinforcement interface 
energy, magnesium powder (2%) was first added 
to the molten metal [70-73]. The heated, 
grounded egg shell particles were charged into 
the semi-solid melt at different temperatures and 
stirring intervals [68]. An automatic mechanical 
stirrer was used to stir the semi-solid composite 
mixture after it had been superheated to 750°C ± 
50°C [68, 74,75]. To create sound castings, the 
fluid was then put into a sand mold and let to set. 
 
2.2.2 Design of experiment 
 
The objective of the experimental design was to 
choose the machining settings for 15 runs using 
three levels and three components at random 
value combinations. 
  
The goal of the studies was to find the ideal 𝑉𝐶, 

𝐷𝐶 , and 𝐹𝑟  combination as input variables to 
generate the best possible MRR, 𝐹𝐶 , and Ra. 
The desired experimental design's focal point 
was replicated three times in 15 runs using the 
Box-Behnken design (BBD) experimental design. 

The machining process variables and their levels 
are given in Table 3. 
 
2.2.3 Experimental set up 
 

Experiments on orthogonal turning was carried 
out on the 250 PCD Boxford CNC lathe 
machine multitasking machine tool at the 
University of Nigeria, LNG laboratory. The X, Y, 
and Z axes can all be linearly moved by the tool 
spindle. This arrangement made it simple to turn 
this machine and execute other tasks. 
 

Cylindrical work piece of Aluminum Alloy 6351 
eggshell composite of ∅220 mm diameter is 
fixed between the three jaws of the universal 
chuck. The three primary control variables 
chosen for this investigation are the 𝑉𝐶, 𝐷𝐶, and 
𝐹𝑟 . The performed experimental trials were 
carried out at various combinations of input 
variables (𝑉𝐶, 𝐷𝐶, and 𝐹𝑟). For each trial, values 

for MRR, 𝐹𝐶, and Ra were accurately recorded. 
Ensuring the accuracy of the turning process 
model requires careful consideration of selected 
factors. 
 

2.2.4 Cutting operation procedures 
 

The first turning operation on the CNC lathe was 
used to cut the AAERC to the required diameter 
of 220 mm for each of the several samples. 
 

AAERCs were turned to the required diameter 
of 220 mm for each of the samples using a CNC 
lathe. Process control parameters such as 𝑉𝐶 , 
𝐷𝐶 , and 𝐹𝑟  are combined to commence turning 
machining using DOE. Different machining 
settings are tested in order to obtain desired 
levels of MRR, 𝐹𝐶 , and Ra. The chuck was 
fastened with the work material centered. The 
tool holder was secured with the HSS cutting 
insert, and the required adjustments were done.  
𝐹𝐶 , and Ra were measured using a 
dynamometer and surface roughness tester 
(mitutoyo 2j-210) respectively. Fig. 8 and Fig. 9 
shows the experimental setup and machined 
Aluminum Alloy 6351 reinforced composite 
respectively. 
  

Table 3. Independent process variable and design levels 
 

Variables Units Low (-1) Medium (0) High (+1) 

𝑉𝐶 Rpm 180 450 720 

𝐹𝑟 mm/rev 0.2 0.3 0.4 

𝐷𝐶 Mm 0.2 0.4 0.6 
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Fig. 8. Experimental setup (CNC lathe) 
 
Fig. 9. Al. A6351 Eggshell machined sample 

 

3. RESULTS AND DISCUSSION 
 
This study explores the assessment of Aluminum 
Alloy 6351 eggshell reinforced composite as 
turning machining material using RSM. The 
impact of 𝑉𝐶 , 𝐷𝐶 , and 𝐹𝑟  on the response were 
conducted on the material utilizing machining 
turning process. The design of experiment 
utilizes 3 level and 3 factors of box-Behnken 
design (BBD).  
 
RSM combines statistical and mathematical 
techniques. Utilizing RSM to create continuous 
variable surfaces, assess response variables and 
interactions, and identify the optimal level range, 

this study examines the optimization of 
machining parameters of Aluminum Alloy 6351 
eggshell reinforced composite. 
 
A regression equation was fitted to describe the 
functional relationship between components and 
responses, and the optimal process parameters 
were ascertained by analyzing the regression 
equation, which was created using the DOE in a 
fair test by RSM. The second order of analytical 
process parameters was resolved by this 
method, which is the multivariate optimization.  
 
Table 4 show the final data for the actual design 
after experiment conducted. 

 
Table 4. Final data table of the actual design after experiment. 

 

Runs 𝑽𝑪 𝑭𝒓 𝑫𝑪 Ra 𝑭𝑪  MRR 

 (rpm) (mm/min) (mm) (µm) (N) (𝒎𝒎𝟑/𝒎𝒊𝒏) 

1 180 0.2 0.4 1.16 171.2 2493.09 

2 720 0.3 0.2 0.98 61.1 601.13 

3 450 0.2 0.6 2.88 137.2 2488.45 

4 720 0.2 0.4 2.12 95 1854.32 

5 720 0.3 0.6 3.33 85.9 835.42 

6 720 0.4 0.4 3.48 94.5 844.56 

7 450 0.3 0.4 1.74 124.3 1516.4 

8 450 0.4 0.2 1.14 119.7 735.8 

9 180 0.3 0.6 2.9 169.7 1531.31 

10 450 0.4 0.6 3.24 129.7 2352.69 

11 450 0.3 0.4 1.38 130.2 1588.37 

12 180 0.4 0.2 0.92 183.6 895.9 

13 450 0.3 0.2 0.74 140 860.58 

14 180 0.3 0.6 2.44 170.5 2237.11 

15 450 0.2 0.2 0.9 115.3 1708.75 
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3.1 Quantitative assessment of 𝐹𝐶  using 
ANOVA  

 
Table 5 shows the analysis of variance of the 𝐹𝐶 
response to the Aluminum Alloy 6351 eggshell 
reinforced composite turning process. The model 
is considered significant with a P-value less than 
0.00001 due to the study results demonstrating a 
non-significant lack of fit. The study indicates that 
𝑉𝐶  has a considerable impact on 𝐹𝐶  during 
turning operations, as evidenced by the 
significant P-value of 0.0001. It is evident from 
the analysis of variance that this model is the 
most appropriate for response prediction 
because all mathematical models of 𝐹𝐶 response 
have accuracy levels that surpass the 95% 

confidence threshold. Tables 5, 6, and 7, 
displays the 𝐹𝐶 response variance analysis table. 
R-square, R-square (adj), and predicted R-
square have respective values of 0.9529, 0.9176, 
and 0.8141. The precision of the accepted 
mathematical model is supported by the near 
proximity of all observed coefficients, R-sq, R-sq 
(adj), and predicted R-sq. The coefficient of 
determination, also known as the entity R-
squared quantity, is further utilized to assess the 
RSM model's level of competency [54]. The 
generated mathematical model's adequacy is 
demonstrated by its R-squared values, which 
indicate how well the model fits the gathered 
data and how closely it approaches 1                             
[54].

 
Table 5. ANOVA table of 𝑭𝑪 

 

Source Sum of Squares df Mean Square F-value p-value 
 

Model 16617.38 6 2769.56 27.00 < 0.0001 significant 

𝑉𝐶 14891.61 1 14891.61 145.16 < 0.0001 
 

𝐹𝑟 0.2560 1 0.2560 0.0025 0.9614 
 

𝐷𝐶 160.28 1 160.28 1.56 0.2466 
 

𝑉𝐶 × 𝐹𝑟 6.98 1 6.98 0.0681 0.8008 
 

𝑉𝐶 × 𝐷𝐶 292.09 1 292.09 2.85 0.1300 
 

𝐹𝑟 × 𝐷𝐶  43.39 1 43.39 0.4229 0.5337 
 

Residual 820.71 8 102.59 
   

Lack of Fit 802.99 6 133.83 15.10 0.0634 not significant 
Pure Error 17.72 2 8.86 

   

Cor Total 17438.09 14 
    

 
Table 6. Fit statistics of 𝑭𝑪 

 

Std. Dev. 10.13 R² 0.9529 

Mean 128.53 Adjusted R² 0.9176 
C.V. % 7.88 Predicted R² 0.8141   

Adeq. Precision 16.0680 

 
Table 7. Coefficients in terms of coded factors of 𝑭𝑪 

 

Factor Coefficient 
Estimate 

df Standard 
Error 

95% CI Low 95% CI 
High 

VIF 

Intercept 128.86 1 2.66 122.72 135.01  
𝑉𝐶 -44.93 1 3.73 -53.53 -36.33 1.08 

𝐹𝑟 0.1838 1 3.68 -8.30 8.67 1.06 

𝐷𝐶 4.14 1 3.31 -3.50 11.78 1.07 

𝑉𝐶 × 𝐹𝑟 -1.39 1 5.34 -13.70 10.92 1.11 

𝑉𝐶 × 𝐷𝐶 8.27 1 4.90 -3.03 19.58 1.16 

𝐹𝑟 × 𝐷𝐶  -3.20 1 4.92 -14.55 8.15 1.16 

 
Coded equation 
 
𝑭𝑪 = +128.86 − 44.93 𝑉𝐶 + 0.1838 𝐹𝑟 + 4.14 𝐷𝐶 − 1.39 𝑉𝐶 × 𝐹𝑟 + 8.27 𝑉𝐶 × 𝐷𝐶 − 3.20 𝐹𝑟 × 𝐷𝐶 … … . . . (1)  
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𝐹𝐶  is predicted by entering the variables for 𝑉𝐶 , 

𝐷𝐶 , and 𝐹𝑟 into the equation that represents the 
coded equation of 𝐹𝐶 . The procedure of 
comparing the factor coefficients of the 
components to ascertain their relative 
significance is made easier and more 
straightforward by the coded equation.  
 
Actual equation 
 

𝑭𝑪 = +196.32061 − 0.212203 𝑉𝐶 +
89.04748 𝐹𝑟 − 0.221121 𝐷𝐶 − (0.051575 𝑉𝐶 ×
𝐹𝑟) + (0.153182 𝑉𝐶 × 𝐷𝐶) − (160.00341 𝐹𝑟 ×
𝐷𝐶) … … … … … … … … … … … … … … . … … . . (2)  

 
The real parameters measured during the turning 
operation are 𝑉𝐶 , 𝐷𝐶 , and 𝐹𝑟  for the actual 
equation. The coefficients show how the cutting 
force is impacted by each parameter and how 
those relationships work. When the real input 
values are available, the 𝐹𝐶  can be predicted 
using the actual equation. These equations help 
in optimizing turning machining processes of the 
composite by predicting the 𝐹𝐶 based on different 

parameter settings of 𝑉𝐶, 𝐷𝐶, and 𝐹𝑟. 
 
Fig. 10. shows the graph of 𝐹𝐶 of predicted value 
against actual value. The figure shows a 
scattered plot comparing the predicted values 
versus actual values for the 𝐹𝐶 . Each point 

represents a pair of actual and predicted values. 
The line, which displays the degree to which the 
expected and actual values agree, is indicated by 
the line connecting the points. The graph 
suggests that the model’s predictions are quite 
accurate, as the points closely follow the line of 
best fit. Diagonal line represents perfect 
prediction, where predicted values match actual 
values exactly. Scatter Points shows color-coded 
based on the 𝐹𝐶 , ranging from 61.1 (green) to 
183.6 (red). The points are closely aligned with 
the diagonal line, indicating that the predictive 
model is quite accurate in estimating the 𝐹𝐶. 
 

3.2 Quantitative assessment of MRR 
using ANOVA  

 
Table 8 and Table 9 shows the analysis of 
variance and fit statistics table respectively. 
Table 8 demonstrates that the model is highly 
significant with a p-value of 0.0222, suggesting 
that the MRR is considerably influenced by the 
input variables ( 𝑉𝐶 , 𝐷𝐶 , and 𝐹𝑟 ) taken into 

consideration. 𝑉𝐶, 𝐹𝑟 and 𝐷𝐶 are significant with a 
p-value of 0.0281, 0.0365 and 0.0070 
respectively. The interactions of the input 
parameters like 𝐹𝑟 × 𝐷𝐶 , 𝑉𝐶 × 𝐹𝑟  and 𝑉𝐶 × 𝐷𝐶  are 
not significant. However, the quadratic terms 

( 𝑉𝐶
2 , 𝐹𝑟

2 , and 𝐷𝐶
2 ) are not significant.

 

 
 

Fig. 10. Graph of predicted values and actual values of 𝑭𝑪. 
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The lack of fit is not significant, suggesting that 
the model fits the data adequately. Table 9 
displays the model's fit to the data as a result of 
R2 obtaining a value of 0.9271.  The coefficient of 
determination, also known as the entity R-
squared quantity, is further utilized to assess the 
RSM model's competency. The difference 
between the R2 of 0.9271 and the Adjusted R2 of 
0.7958 is less than 0.2, indicating a reasonable 
level of agreement. The match between the 
created model and the collected data is better 
when the R-square is nearer 1 [54]. The R-

squared numbers demonstrate how well-
developed the mathematical model is. There is 
an exceptional correlation between the 
independent variables, which is supported by the 
high values for all of the determination 
coefficients, which show that the modeling is 
highly significant. Table 10 shows that the MRR 
response mathematical models have accuracy 
levels in the analysis of variance that are greater 
than the 95% confidence level, suggesting that 
this model is the most suitable for response 
prediction. 

 
Table 8. ANOVA table of MRR 

 

Source Sum of Squares df Mean Square F-value p-value 
 

Model 5.978E+06 9 6.643E+05 7.06 0.0222 significant 
𝑉𝐶 8.812E+05 1 8.812E+05 9.37 0.0281 

 

𝐹𝑟 7.561E+05 1 7.561E+05 8.04 0.0365 
 

𝐷𝐶 1.828E+06 1 1.828E+06 19.44 0.0070 
 

𝑉𝐶 × 𝐹𝑟 54072.24 1 54072.24 0.5748 0.4825 
 

𝑉𝐶 × 𝐷𝐶 1.436E+05 1 1.436E+05 1.53 0.2715 
 

𝐹𝑟 × 𝐷𝐶  1.561E+05 1 1.561E+05 1.66 0.2540 
 

𝑉𝐶
2 3.141E+05 1 3.141E+05 3.34 0.1272 

 

𝐹𝑟
2 9.284E+05 1 9.284E+05 9.87 0.0256 

 

𝐷𝐶
2 1.795E+05 1 1.795E+05 1.91 0.2257 

 

Residual 4.703E+05 5 94063.88 
   

Lack of Fit 2.187E+05 3 72884.24 0.5792 0.6830 not significant 
Pure Error 2.517E+05 2 1.258E+05 

   

Cor Total 6.449E+06 14 
    

 
Table 9. Fit statistics of MRR 

 

Std. Dev. 306.70 R² 0.9271 

Mean 1502.93 Adjusted R² 0.7958 
C.V. % 20.41 

  

 
Table 10. Coefficients in terms of coded factors of MRR 

 

Factor Coefficient 
Estimate 

df Standard 
Error 

95% CI Low 95% CI 
High 

VIF 

Intercept 1544.73 1 205.28 1017.04 2072.42  
𝑉𝐶 -352.42 1 115.15 -648.41 -56.43 1.13 

𝐹𝑟 -326.05 1 115.00 -621.66 -30.43 1.12 

𝐷𝐶 454.72 1 103.14 189.59 719.85 1.13 

𝑉𝐶 × 𝐹𝑟 -129.97 1 171.42 -570.61 310.68 1.25 

𝑉𝐶 × 𝐷𝐶 -200.24 1 162.05 -616.80 216.33 1.38 

𝐹𝑟 × 𝐷𝐶  194.55 1 151.01 -193.64 582.75 1.20 

𝑉𝐶
2 -302.26 1 165.41 -727.47 122.95 1.09 

𝐹𝑟
2 545.40 1 173.60 99.14 991.66 1.20 

𝐷𝐶
2 -257.79 1 186.62 -737.52 221.94 1.23 

 
Coded equation 
 
𝑀𝑅𝑅 = +1544.73 − 352.42 𝑉𝐶 − 326.05 𝐹𝑟 + 454.72 𝐷𝐶 − 129.97 𝑉𝐶 × 𝐹𝑟 − 200.24 𝑉𝐶 × 𝐷𝐶 +

194.55 𝐹𝑟 × 𝐷𝐶 − 302.26 𝑉𝐶
2 + 545.40 𝐹𝑟

2 − 257.79 𝐷𝐶
2 … … … … … … … … … … … . . (3)  
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The coding equation of MRR can be anticipated 
by plugging in the values for 𝑉𝐶, 𝐹𝑟 and 𝐷𝐶 . The 
coded equation facilitates and simplifies the 
process of comparing the component factor 
coefficients to determine their respective 
importance. Regression models with coded 
coefficients show how each element affects the 
response. Coded equations show which way the 
response optimum is sharpest in the case of first-
order models. It is less difficult to deal with varied 
scales and units for each element when coded 
factors are used. We are able to compare factors 
on a common scale by using the coded equation 
as a standardizing technique. 
 
Actual equation 
 

𝑀𝑅𝑅 = +5088.66895 + 5.35360 𝑉𝐶 −
37709.43741 𝐹𝑟 + 6179.75057 𝐷𝐶 −
4.81359 𝑉𝐶 × 𝐹𝑟 − 3.70806 𝑉𝐶 × 𝐷𝐶 +

9727.61882 𝐹𝑟 × 𝐷𝐶 − 0.004146 𝑉𝐶
2 +

54540.08488 𝐹𝑟
2 −

6444.76595 𝐷𝐶
2 … … … … … … … … … … . (4)  

 
The real parameters that are measured during 
the turning operation are 𝑉𝐶 , 𝐹𝑟  and 𝐷𝐶 . The 
coefficients show how the various parameters 
and the MRR are correlated. When the actual 
input values are known, one can forecast the 
MRR using the actual equation. These formulas, 
which take into account different 𝑉𝐶 , 𝐹𝑟  and 𝐷𝐶 

parameter values, can be used to anticipate the 
MRR for turning machining processes. 
 
Simulation on how the response variable (output) 
and the actual factor levels relate to each other 
can be carried out using the actual equations. 
The response can be predicted for any given 
collection of factor values by fitting the model to 
the experimental data. When it comes to process 
optimization, this forecast aids in decision-
making. The reaction can be maximized or 
minimized by using the actual formulae to 
determine the ideal factor choices. Techniques 
for optimization find the optimal factor levels by 
utilizing the equations. Strict formulas are 
necessary to attain the intended results. The 
impact of each factor is revealed by the 
coefficients in the real equations.  
While negative coefficients point to factors that 
may be reducing the response, positive 
coefficients show those that are increasing it.  
 
The real equations aid in modifying factor 
concentrations to preserve intended response 
values.  
The formulas can be used to calculate what 
needs to be adjusted if the answer diverges from 
the intended outcome. We are able to measure 
how sensitive the response is to each element 
thanks to the real formulae. Robust process 
design is guided by sensitive information.  

 

 
 

Fig. 11. Graph of predicted values and actual values of MRR 
 



 
 
 
 

Nwoziri et al.; J. Basic Appl. Res. Int., vol. 30, no. 4, pp. 43-60, 2024; Article no.JOBARI.12375 
 
 

 
53 

 

Fig. 11. shows the graph of MRR of predicted 
value against actual value. The MRR, which 
ranges from 601.13 (blue) to 2493.09 (red), is 
shown by a color gradient in the predicted vs. 
actual graph, which contrasts the predicted and 
actual values of a response variable. The 
diagonal line, which runs from lower left to upper 
right, shows the points in the data set where the 
anticipated and actual values exactly match. The 
accuracy of the predictions is indicated by the 
data points being dispersed about the diagonal 
line and better forecasts are shown by the points 
being closer to the line. 
 
3.3 Quantitative assessment of Ra using 

ANOVA  
 
Tables 11 and 12, respectively, present the fit 
statistics table and the analysis of variance table. 
The results presented indicate that the model 
has a p-value of less than 0.0001, indicating that 

𝑉𝐶 , 𝐹𝑟  and 𝐷𝐶  have a substantial impact on the 

Ra rate. 𝑉𝐶 , 𝐹𝑟  and 𝐷𝐶 , all have significant p-
values of 0.0001, 0.0188, and 0.0049, 
respectively. The model appears to have an 
appropriate fit to the data, since the lack of fit is 
not statistically significant. The fits statistic 
reveals an R2 value of 0.9001, indicating a very 
good fit between the model and the data. There 
is a fair agreement as the gap between the 
predicted R2 of 0.8152 and the adjusted R2 of 
0.8729 is less than 0.2. 
 

The adequate precision of 16.095, which is 
greater than 4, indicates that the signal intensity 
is adequate. A statistically significant lack of fit is 
indicated by a 1.62 F-value. Table 13 
demonstrates that the model is the most suitable 
for Ra prediction, with all mathematical models 
for Ra responses exhibiting accuracy levels in 
the analysis of variance exceeding the 95% 
confidence level. 

 
Table 11. ANOVA table of Ra 

 

Source Sum of 
Squares 

df Mean Square F-value p-value 
 

Model 12.75 3 4.25 33.04 < 0.0001 significant 
𝑉𝐶 1.58 1 1.58 12.30 0.0049 

 

𝐹𝑟 0.9751 1 0.9751 7.58 0.0188 
 

𝐷𝐶 11.60 1 11.60 90.21 < 0.0001 
 

Residual 1.41 11 0.1286 
   

Lack of Fit 1.24 9 0.1383 1.62 0.4391 not significant 
Pure Error 0.1706 2 0.0853 

   

Cor Total 14.16 14 
    

 
Table 12. Fit statistics of Ra 

 

Std. Dev. 0.3586 R² 0.9001 

Mean 1.96 Adjusted R² 0.8729 
C.V. % 18.33 Predicted R² 0.8152   

Adeq. Precision 16.0947 

 
Table 13. Coefficients in terms of coded factors of Ra 

 

Factor Coefficient 
Estimate 

df Standard 
Error 

95% CI 
Low 

95% CI 
High 

VIF 

Intercept 1.96 1 0.0926 1.75 2.16 
 

𝑽𝑪 0.4476 1 0.1276 0.1667 0.7285 1.01 

𝑭𝒓 0.3514 1 0.1276 0.0705 0.6322 1.01 

𝑫𝑪 1.09 1 0.1149 0.8381 1.34 1.03 

 
Coded equation 
 
𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 (𝑅𝑎) = +1.96 + 0.4476 𝑉𝐶 + 0.3514 𝐹𝑟 + 1.09 𝐷𝐶 … … … … … … … … (5) 
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The coding equation of Ra can be anticipated by 
plugging in the values for 𝑉𝐶 , 𝐹𝑟  and 𝐷𝐶 . The 
coded equation facilitates and simplifies the 
process of comparing the component factor 
coefficients to determine their respective 
importance. Regression models with coded 
coefficients show how each element affects the 
response. Coded equations show which way the 
response optimum is sharpest in the case of first-
order models. It is less difficult to deal with varied 
scales and units for each element when coded 
factors are used. We are able to compare factors 
on a common scale by using the coded equation 
as a standardizing technique. 
 
Actual equation 
 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 (𝑅𝑎) = −2.02524 +
0.001658 𝑉𝐶 + 3.51362 𝐹𝑟 + 5.45449 𝐷𝐶 . . (6)  

 
The actual parameters that are measured in a 
turning process are the 𝑉𝐶 , 𝐹𝑟  and 𝐷𝐶 . The 
correlation between the Ra and the different 
parameters is displayed by the coefficients. One 
can use the actual equation to forecast the Ra 
when the actual input values are known. The Ra 
for turning composite machining operations can 
be predicted using these formulas, which 
account for various 𝑉𝐶 , 𝐹𝑟  and 𝐷𝐶  parameter 
values. 
 
The actual equations can be used to simulate the 
relationship between the response variable 
(output) and the actual factor values. The model 
can be fitted to the experimental data to predict 
the response for any given set of factor values. 

This forecast helps with decision-making when it 
comes to process optimization. By figuring out 
the best factor selections using the actual 
equations, the response can be maximized or 
minimized. Equations are used by optimization 
techniques to determine the ideal factor levels. 
Tight formulations are required in order to 
achieve the desired outcomes. The coefficients 
in the actual equations show the effect of each 
element. 
 

Positive coefficients indicate factors that are 
raising the reaction, while negative coefficients 
suggest those that might be decreasing it. To 
maintain the desired response values, factor 
concentrations can be changed with the use of 
the real equations. If the results deviate from 
what was planned, the formulas can be used to 
determine what has to be changed. The true 
equations allow us to quantify the response's 
sensitivity to each ingredient. Sensitive data 
serves as a roadmap for robust process design.  
 
Fig. 12 shows the graph of Ra of predicted value 
against actual value. The Ra, which ranges from 
0.74 (blue) to 3.48 (red), is shown by a color 
gradient in the predicted vs. actual graph, which 
contrasts the predicted and actual values of a 
response variable. The diagonal line, which runs 
from lower left to upper right, shows the points in 
the data set where the anticipated and actual 
values exactly match. The accuracy of the 
predictions is indicated by the data points being 
dispersed about the diagonal line and better 
forecasts are shown by the points being closer to 
the line. 

 

 
 

Fig. 12. Graph of predicted values and actual values of Ra. 
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Fig. 13. Numerical optimization Aluminum Alloy 6351 Eggshell Reinforced Composite 

 
3.4 Optimization using Numerical Method 
 
Fig. 13. shows the numerical optimization of 
Aluminum Alloy 6351 Eggshell Reinforced 
Composite. Desirability function optimization is 
the process of finding an arrangement of input 
variables that are then utilized to collectively 
optimize a set of answers by meeting the needs 
of each response in the set. Response 
optimization is the function's main objective. 
Optimizing sets typically involves two goals: 
reducing the response or increasing it. 
Additionally, each response's single expected 
value is represented by a weighted geometric 
mean. The optimization of desirability functions 
involves forecasting and refining the response to 
achieve the best possible combination of desired 
parameters. This function accepts the predicted 
values for every reaction meter on a preferred, or 
least ideal to most ideal, scale that runs from 0 to 
1. The desired values for the expected composite 
are obtained by combining a single expected 
value. The best input variable setting is found by 
maximizing the integrated expectation value. The 
study utilizes the numerical optimization 
technique which provides clear explanation to 
generate the optimal input combination that will 
give the best response. The optimization carried 
out utilizes the desirability function of 1 which is 
the first out of 100 solutions. 
 
The optimization result caried out shows that 
when the input variables of 𝑉𝐶 , 𝐹𝑟  and 𝐷𝐶  of 
589.479rpm, 0.205976mm/min, and 
0.315524mm respectively are utilized in 
performing turning operation on Aluminum Alloy 
6351 Eggshell Reinforced Composite, the 
optimal response is obtained with the values of 

Ra, 𝐹𝐶  and MRR being 1.39676µm, 101.333N, 
and 2016.77mm3/min, respectively.  
 

4. CONCLUSIONS 
 
This paper examines the assessment of 
Aluminum Alloy 6351 eggshell reinforced 
composite as turning machining material using 
response surface methodology. The samples 
were investigated for Ra, MRR and 𝐹𝐶 . The 
conclusion drawn from the evaluated results 
were as follows:  
 

1. Aluminum Alloy 6351 eggshell reinforced 
composite was successfully utilized for this 
investigation. 

2. Numerical optimization was used to 
identify combinations of process 
parameters that will give the best response 
of 𝐹𝐶, Ra, and MRR. 

3. The 𝐹𝐶, Ra, and MRR can all be predicted 
using the regression equation model that 
was created. 

4. 𝑉𝐶 is the only factor that has a significant 

effect on the 𝐹𝐶 . The three-input variable 
studied has a significant effect on Ra and 
MRR. 

5. The optimization result obtained indicates 
that the optimal response for turning an 
Aluminum Alloy 6351 eggshell reinforced 
composite is 1.39676µm, 101.333N, and 
2016.77mm3/min for Ra, 𝐹𝐶 , and MRR, 
respectively. This is achieved when the 
input variables of 𝑉𝐶, 𝐹𝑟 and 𝐷𝐶 , which are 
589.479 rpm, 0.205976 mm/min, and 
0.315524 mm, respectively, are used.  

6. The significance of this research is in its 
ability to furnish information regarding the 
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appropriate input parameters that must be 
employed to get the desired output 
parameters. By adjusting these settings, 
you may reduce material waste, increase 
energy efficiency, and get the optimum 
surface finishing. 
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