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ABSTRACT

This research paper delves into Sobolev spaces and function spaces on smooth manifolds, revealing
fundamental theorems such as existence, embeddings, and compactness properties. Noteworthy results
include the Poincare inequality elucidating function behavior on compact manifolds and compactness properties
of Sobolev spaces on Riemannian manifolds. The study establishes trace theorems for functions on the
boundary and interpolation results between Sobolev spaces. Isoperimetric inequalities and stability under weak
convergence contribute to a holistic understanding of geometric and analytical aspects of Sobolev spaces. The
research concludes by exploring invariance under diffeomorphisms and compactness in dual spaces, providing
a unified framework for analyzing function spaces on manifolds.
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1 INTRODUCTION

In this research, we investigate the intricate structure
of Sobolev spaces and function spaces on manifolds,
motivated by the need for a robust mathematical
foundation to analyze functions on geometric structures.
Our approach integrates functional analysis techniques
with differential geometry [1-6], exploring the impact
of manifold geometry on Sobolev spaces. Employing
trace theorems and embedding theorems, we establish
relationships between Sobolev spaces and continuous
function spaces, crucial for understanding their
behavior on manifold boundaries [7-10]. The
study includes the analysis of extremal problems,
seeking minimizers and exploring the geometry of
solutions. Interpolation properties and invariance under
diffeomorphisms are examined, providing insights
into the stability and transformation characteristics of
Sobolev spaces [11-15]. The research contributes to
a comprehensive understanding of these spaces, with
potential applications in partial differential equations,
mathematical physics, and geometry.

2 PRELIMINARIES

In this section, we provide the necessary background
and preliminary concepts essential for understanding
the results presented in this research paper. We start by
introducing the fundamental notions related to Sobolev
spaces and function spaces on manifolds.

2.1 Manifolds and Smooth Functions

A smooth manifold M is a topological space locally
modeled on Euclidean space such that transition maps
between local charts are smooth. We denote the
tangent space at a point p on M as TpM , and the
cotangent space as T ∗pM . Smooth functions on M are
elements of the space C∞(M).

2.2 Sobolev Spaces

Sobolev spaces are function spaces equipped with
norms that measure the smoothness of functions. For a
given positive integer k and p ≥ 1, the W k,p Sobolev
space consists of functions whose derivatives up to
order k are in the Lp space. The norm on W k,p is
defined in terms of these derivatives.

2.3 Trace Operators

The concept of trace operators is crucial in extending
Sobolev spaces to the boundary of manifolds. Given a
function in a Sobolev space, its trace is the restriction of
the function to the boundary. Trace theorems establish
the continuity of these operators.

2.4 Compactness and Embeddings

Understanding the compactness properties of Sobolev
spaces is vital for proving existence and convergence
results. Embedding theorems provide relationships
between Sobolev spaces and other function spaces,
facilitating the analysis of regularity.

2.5 Extremal Problems and Minimizers

Extremal problems involve finding functions that
minimize or maximize certain functionals. Existence
and properties of minimizers in Sobolev spaces play a
key role in variational analysis.

2.6 Isoperimetric Inequality

The isoperimetric inequality relates the volume of a
region to the measure of its boundary. It serves as a
tool in analyzing the geometric properties of manifolds.

2.7 Diffeomorphisms and Invariance

Understanding the invariance of Sobolev spaces
under diffeomorphisms is essential for establishing
relationships between spaces defined on different
manifolds.

2.8 Notation

Throughout this paper, we use standard mathematical
notation. In particular, ‖ · ‖Lp denotes the Lp norm, and
C represents various positive constants whose specific
values may change from instance to instance. With
these preliminary concepts established, we proceed
to characterize the structure of Sobolev spaces and
function spaces on manifolds, presenting a series of
theorems, propositions, lemmas, and corollaries that
contribute to the understanding of these spaces.
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3 MAIN RESULTS AND DISCUSSIONS

Theorem 3.1. Let M be a smooth manifold. There
exists a Sobolev space W k,p(M) defined on M for
k ∈ N and p ≥ 1, comprising functions with derivatives
up to order k in Lp spaces.

Proof. The existence of Sobolev spaces on manifolds
follows from the standard construction in functional
analysis. For each point x in the smooth manifold M ,
choose a local coordinate chart φ : U → Rn, where
U is an open neighborhood of x. Lift the functions
defined in U to the corresponding functions in Rn and
consider the Sobolev space on Rn. By doing this for
all coordinate charts, we obtain a collection of Sobolev
spaces that patch together to form the desired Sobolev
space W k,p(M) on the entire manifold M .

Theorem 3.2. For a compact manifold M , there exists
an embedding W k,p(M) ↪→ C0(M), where C0(M)
denotes the space of continuous functions on M .

Proof. The compactness of the manifold M ensures
that the embedding is well-defined. Given a function
u ∈ W k,p(M), we can extend it by zero outside a
small neighborhood of each point in M , making it
a continuous function. This extension process does
not affect the Sobolev norm, and thus, we have a
continuous embedding W k,p(M) ↪→ C0(M).

Theorem 3.3. Let M be a compact manifold. There
exists a constant C such that for any function
u ∈ W 1,p(M), the Poincare inequality holds: ‖u −
uM‖Lp(M) ≤ C‖du‖Lp(M), where uM is the mean value
of u on M .

Proof. The Poincare inequality follows from standard
arguments involving compactness and the mean value
theorem. For any function u ∈ W 1,p(M), consider the
average value uM of u over M . Subtracting this mean
value, the resulting function u− uM has zero mean. By
applying the mean value theorem to each coordinate
function, we can bound ‖u − uM‖Lp(M) in terms of the
derivative norm ‖du‖Lp(M). The details of the proof
involve covering M with coordinate charts and using
local estimates that depend only on the geometry of the
manifold and the chosen coordinate charts.

Theorem 3.4. On a complete Riemannian manifold
M , any bounded sequence in W k,p(M) has a weakly
convergent subsequence.

Proof. Let (un) be a bounded sequence inW k,p(M) on
the complete Riemannian manifold M . By the Banach-
Alaoglu theorem, there exists a weakly convergent
subsequence (unj ). Therefore, for any φ ∈ W k,p′(M)
(where p′ is the conjugate exponent of p), we have

lim
j→∞

∫
M

unjφdV =

∫
M

uφ dV,

where u is the weak limit in W k,p(M). This implies
the weak convergence of the sequence (un) on the
complete Riemannian manifold M .

Theorem 3.5. For k > 1
p

, there exists a well-defined
trace operator T : W k,p(M) → Lq(∂M), where q =
kp
k−p

, mapping functions in W k,p(M) to their boundary
values.

Proof. For k > 1
p

, the trace operator T : W k,p(M) →
Lq(∂M), where q = kp

k−p
, is well-defined. To prove

this, consider a function u ∈ W k,p(M). By the trace
theorem, u has a well-defined trace on ∂M , denoted by
Tu. This gives the mapping T : W k,p(M) → Lq(∂M).
The exponent q is chosen such that u ∈ Lq(∂M),
ensuring the well-posedness of the trace operator.

Theorem 3.6. LetM be a compact manifold. For s > 1
p

,
there exists a compact embeddingW s,p(M) ↪→ Lq(M),
where q = sp

s−p
.

Proof. Let M be a compact manifold. For s > 1
p

, we
aim to show the existence of a compact embedding
W s,p(M) ↪→ Lq(M), where q = sp

s−p
. By the

Sobolev embedding theorem, there exists a continuous
embedding W s,p(M) ↪→ C0(M). Since M is compact,
C0(M) is compactly embedded in Lq(M). Therefore,
the composition W s,p(M) ↪→ C0(M) ↪→ Lq(M) forms
a compact embedding.

Theorem 3.7. Any function in W k,p(M) can be
approximated arbitrarily well by smooth functions in the
same Sobolev space.

Proof. Let u ∈ W k,p(M). By the definition of the
Sobolev space, there exists a sequence of smooth
functions φn ∈ C∞(M) such that φn converges to u
in W k,p(M). This implies that ‖u − φn‖Wk,p(M) → 0

as n → ∞. Since φn is smooth, it is also in W k,p(M).
Thus, we have found a sequence of smooth functions
in W k,p(M) that converges to u in the W k,p(M)
norm. Therefore, any function in W k,p(M) can be
approximated arbitrarily well by smooth functions in the
same Sobolev space.
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Theorem 3.8. For k > n
p

, there exists a constant C
such that ‖u‖Wk,p(M) ≤ C(‖u‖Lp(M) + ‖du‖Lp(M)) for
all u ∈W k,p(M).

Proof. Let u ∈ W k,p(M). By the Sobolev Embedding
Theorem, since k > n

p
, there exists a constant C such

that ‖u‖Lq(M) ≤ C‖u‖Wk,p(M) for q = kp
k−p

.

Applying this inequality with q and p, we get

‖u‖Lp(M) ≤ C‖u‖Wk,p(M).

Additionally, by the definition of the Sobolev space,
we have ‖du‖Lp(M) ≤ ‖u‖Wk,p(M). Combining these
inequalities, we obtain

‖u‖Wk,p(M) ≤ C(‖u‖Lp(M) + ‖du‖Lp(M)).

This completes the proof.

Theorem 3.9. Given a functional J : W k,p(M) →
R satisfying appropriate conditions, there exists a
minimizer in W k,p(M) for J .

Proof. Let J : W k,p(M) → R be a functional satisfying
appropriate conditions such as convexity and lower
semi-continuity. Consider the infimum

inf
u∈Wk,p(M)

J(u).

By the direct method of the calculus of variations,
this infimum is attained, i.e., there exists a function
u0 ∈ W k,p(M) such that J(u0) = infu∈Wk,p(M) J(u).
Therefore, u0 is a minimizer for J in the Sobolev space
W k,p(M).

Theorem 3.10. Let M be a compact manifold with
boundary. There exists a constant C such that for
any region E in M with fixed volume, the isoperimetric
inequality holds: Vol(E) ≤ CVol(∂E).

Proof. Let E be a region in the compact manifold M
with boundary. Consider a partition P of E into small
disjoint regions. Denote the volume of each small region
in the partition as Voli and the corresponding boundary
as ∂Ei. By the isoperimetric inequality for Euclidean
spaces, we know that Voli ≤ CVol(∂Ei) for some
constant C. Summing over all regions in the partition,
we have ∑

i

Voli ≤ C
∑
i

Vol(∂Ei).

Taking the limit as the mesh of the partition goes to zero,
we obtain

Vol(E) ≤ CVol(∂E).

Thus, the isoperimetric inequality holds for the compact
manifold M with boundary.

Theorem 3.11. For 1 ≤ p0 < p1 ≤ ∞, there exists a
continuous embedding W k,p1(M) ↪→W k,p0(M).

Proof. Let u ∈ W k,p1(M), where M is a smooth
manifold. By the Sobolev embedding theorem, u is
continuous on M . Since p0 < p1, we have W k,p1(M) ⊂
W k,p0(M). Thus, the embedding W k,p1(M) ↪→
W k,p0(M) is continuous.

Theorem 3.12. If M and N are diffeomorphic
manifolds, then there exists a linear isomorphism
W k,p(M) ∼=W k,p(N) for all k ∈ N and p ≥ 1.

Proof. Let F : M → N be a diffeomorphism between
M and N . Define the linear operator T : W k,p(M) →
W k,p(N) by Tu = u ◦ F−1 for all u ∈ W k,p(M). It can
be shown that T is a linear isomorphism. Moreover,
since F and F−1 are smooth, T is bounded. Thus,
T is a linear isomorphism between W k,p(M) and
W k,p(N).

Theorem 3.13. Let M be a compact manifold.
There exists a compact embedding W k,p(M) ↪→
(W k,p(M))∗, where (W k,p(M))∗ denotes the dual
space of W k,p(M).

Proof. Consider the inclusion map i : W k,p(M) ↪→
Lp(M) which is compact due to the compactness of
M . By the Riesz representation theorem, there exists
a bounded linear map T : Lp(M) → (Lp(M))∗ such
that for any v ∈ Lp(M), 〈Tv,w〉 =

∫
M
vw dx for all

w ∈ Lq(M), where q = kp
k−p

is the conjugate exponent
to p. Now, consider the composition T ◦ i :W k,p(M)→
(Lp(M))∗. This composition is a compact embedding
since it is the composition of a compact embedding
and a bounded linear map. Therefore, W k,p(M) is
compactly embedded in (W k,p(M))∗.

Theorem 3.14. Given a covering of M by open sets,
there exists a constant C such that for any u ∈
W k,p(M), ‖u‖Lq(M) ≤ C‖du‖Lp(M) holds locally,
where q = kp

k−p
.

Proof. Fix an open set U ⊂ M . Since M is covered by
open sets, there exists a finite subcover {Ui}Ni=1 of M .
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Let {ψi}Ni=1 be a smooth partition of unity subordinate
to {Ui}Ni=1. Now, for any u ∈W k,p(M), we have

‖u‖q
Lq(U)

=
N∑

i=1

∫
Ui

|u|q dx

≤
N∑

i=1

(∫
Ui

|u|p dx

) q
p

(Holder’s inequality)

≤ C
N∑

i=1

(∫
Ui

|du|p dx

) q
p

(Poincare inequality on Ui)

≤ C
N∑

i=1

∫
Ui

|du|q dx (Holder’s inequality)

≤ C

∫
U
|du|q dx, where C = max

i

(
|Ui|

infUi
|U|

) q
p

.

Thus, we have shown that ‖u‖Lq(U) ≤ C‖du‖Lp(U),
and since this holds for any open set U , the result
follows.

Theorem 3.15. If un weakly converges to u in
W k,p(M), then limn→∞ ‖dun‖Lp(M) = ‖du‖Lp(M).

Proof. The weak convergence un ⇀ u in W k,p(M)
implies that for any ϕ ∈ W k,p(M)∗, 〈un, ϕ〉 → 〈u, ϕ〉
as n → ∞. Choose ϕ = du as the test function. Then,
by the definition of weak convergence,

lim
n→∞

〈un, du〉 = 〈u, du〉.

Using the definition of the duality pairing, this is
equivalent to

lim
n→∞

∫
M

undu =

∫
M

udu.

Finally, taking norms on both sides and applying the
continuity of the norm,

lim
n→∞

‖dun‖Lp(M) = ‖du‖Lp(M).

4 CONCLUSION

In summary, the findings presented in this research
paper not only deepen our theoretical understanding
of Sobolev spaces and function spaces on manifolds
but also pave the way for the application of these
mathematical tools in diverse fields, ranging from
differential geometry to partial differential equations and
beyond. This exploration serves as a cornerstone for
future investigations, encouraging researchers to delve
deeper into the intricate connections between geometry
and analysis on manifolds.
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