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Abstract: Taxis and Transportation Network Companies (TNCs) are important components of the
urban transportation system. An accurate short-term forecast of passenger demand can help operators
better allocate taxi or TNC services to achieve supply–demand balance in real time. As a result, drivers
can improve the efficiency of passenger pick-ups, thereby reducing traffic congestion and contributing
to the overall sustainability of the program. Previous research has proposed sophisticated machine
learning and neural-network-based models to predict the short-term demand for taxi or TNC services.
However, few of them jointly consider both modes, even though the short-term demand for taxis
and TNCs is closely related. By enabling information sharing between the two modes, it is possible
to reduce the prediction errors for both. To improve the prediction accuracy for both modes, this
study proposes a multi-task learning (MTL) model that jointly predicts the short-term demand for
taxis and TNCs. The model adopts a gating mechanism that selectively shares information between
the two modes to avoid negative transfer. Additionally, the model captures the second-order spatial
dependency of demand by applying a graph convolutional network. To test the effectiveness of
the technique, this study uses taxi and TNC demand data from Manhattan, New York, as a case
study. The prediction accuracy of single-task learning and multi-task learning models are compared,
and the results show that the multi-task learning approach outperforms single-task learning and
benchmark models.
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1. Introduction

Taxi and Transportation Network Company (TNC) services play essential roles in the
urban transportation system. Taxis offer traditional ride-hailing services, while TNCs such
as Uber connect drivers and riders using Internet-based mobile technology. The ridership
of TNCs has grown rapidly. For example, Uber’s ridership increased from 3.79 billion in
2017 to 6.3 billion in 2021 [1]. Thank to efficient driver–passenger matching technology
and a more flexible pricing model, the capacity utilization rate of TNCs (the fraction of
the time/mile in which a driver takes fare-paying passengers) is much higher than that of
taxis [2]. Due to the popularity and innovative business model of TNCs, the ridership of
taxis has lost ground in many cities. For example, in 2016, the number of TNC trips made
was 12 times that of taxi trips in San Francisco [3].

Improving short-term demand forecasting for both TNCs and taxis has positive im-
pacts on sustainability. With accurate prediction, operators can assign the right number of
vehicles at the right time to reduce the idle time of drivers and waiting time for passengers,
leading to an improved capacity utilization ratio. The capacity utilization ratio is seldom
revealed by TNCs or taxi companies, but a study has shown its value ranged between 43.5%
and 51.7% for selected cities in the United States between 2013 and 2015 [2]. Improving the
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utilization ratio could potentially help address traffic congestion problems, improve traffic
speeds, and reduce traffic emissions.

Various studies have developed short-term demand forecasting models for trans-
portation modes. Some studies have used traditional time-series forecasting models such
as autoregressive integrated moving average (ARIMA) and its variants to predict traffic
demand [4–6] by capturing the temporal correlation of data. Recently, with the advent of a
higher computing power and the popularization of AI technologies, many studies have
applied neural network models to demand forecasting [7–9].

The majority of studies mentioned earlier are based on single-task learning, where
the model predicts for one transportation mode only. Recently, multi-task learning (MTL)
has garnered significant attention in the AI domain, as it enables different tasks to share
information, thereby enhancing the prediction accuracy. Some transportation demand
forecasting research has also adopted this technique [10–14]. However, the majority of
these studies allow information sharing between tasks without controlling for “negative
transfer”, which is common and could reduce the effectiveness of multi-task learning.

The demand patterns for TNCs and taxis are closely correlated. For example, in
New York City, TNCs and taxis show similar spatial–temporal patterns [15,16], and their
demand is correlated with the same set of land use and sociodemographic factors [17].
Given such correlated patterns, leveraging information sharing between the two modes
could potentially improve the demand forecasting accuracy. The idea of incorporating
TNC information into a taxi demand forecasting model has been experimented with, which
showed an improvement in the model prediction accuracy [15]. However, this study did
not embed taxi information into a TNC model, and there have been no studies developing
a multi-task learning model to simultaneously predict the demand for these two modes.
In New York City, Yellow Cabs can be hailed on the Uber app [18], a partnership that
provides an opportunity for data sharing and modeling, which could potentially improve
the demand forecasting accuracy for both the taxi and TNC modes.

To capture the spatial dependency of demand, previous studies utilized first-order
relationships to construct spatial graphs, such as considering the distance between two
zones [19,20] or determining whether two zones are neighbors [21]. These researchers com-
monly assume that zones closer to each other or in proximity have a stronger relationship.
This research explores a higher order of spatial dependency, which could capture more
comprehensively the interaction of spatial relationships, which has not been explored in
the literature yet.

To fill in the research gaps, this study proposes a multi-task learning approach to
forecast the demand for taxis and TNCs simultaneously. The model adopts a gating
mechanism that selectively shares information between the two modes to avoid the negative
transfer that commonly occurs in MTL. In addition, the model also captures the second-
order spatial dependency of the demand by applying a graph convolutional network. The
contribution of this study is threefold:

• The evolving shared mobility sector longs for better demand prediction for different
formats of sharing services. This study proposes a multi-task learning model to predict
the demand for the TNC and taxi modes simultaneously to meet these needs.

• This study explores methodological improvements to increase the prediction accuracy.
The techniques considered include a gating mechanism to mitigate the negative trans-
fer between the two modes and spatial embedding, capturing the interaction of spatial
dependency.

• Extensive experiments are conducted using actual taxi and TNC trip data from Man-
hattan, NYC. The experimental results show that the proposed modeling approach
outperforms the single-task learning model and other benchmark learning models.

2. Literature Review

This section reviews the research-related methods for capturing spatiotemporal de-
pendency and multi-task learning.
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2.1. Modeling Spatial–Temporal Dependency of Transportation Demand

Utilizing telematics technology, taxi companies can collect detailed data for each trip,
including pick-up/drop-off zones, start/end time, and trip trajectories. This produces
a vast amount of data, which has attracted significant research interest. Researchers
have explored the data in various ways, including analyzing spatial–temporal demand
patterns [22–24], exploring the impact of urban structures (e.g., land use patterns, access to
different transportation modes, etc.) on taxi demand [25,26], building short-term demand
forecasting models [27,28], and developing models for the visual querying of taxi trip
data [29]. These efforts help us understand travel behaviors and support evidence-based
policymaking.

To conduct short-term demand forecasting, capturing the spatial–temporal correlation
is essential. For a neural-network-based forecasting model, a common approach is to stack
spatial layers and temporal layers in the models, and this approach has been adopted
in [7,30].

Modeling spatial dependency can improve the prediction accuracy [21,31,32]. There
are generally two techniques used to capture the spatial dependency of zones: convolutional
neural networks (CNNs) and graph neural networks (GNNs). The first approach requires
the study area to be partitioned into regular grids, such as image pixels, and the demand of
a zone is analogous to the value of a pixel in an image [7]. The second approach can handle
non-Euclidean structural data such as friendship networks, transportation networks, etc.
Due to their flexibility and potentially better performance, graph neural networks [33,34]
have become more popular in recent years. To construct a graph of a transportation network,
nodes are defined as zonal areas, and edges are defined in various ways depending on the
specific definition. Edges can be defined based on whether two zones have traffic flow [31],
whether two zones are spatial neighbors, whether zones are connected by major roads or
have similar POIs [21], the distance between nodes [19,35], etc. However, in the existing
literature, the aforementioned definitions are limited to first-order spatial dependency.

To capture the temporal dependency of transportation demand, popular techniques
include Long Short-Term Memory (LSTM) [36] and Gated Recurrent Units (GRUs) [9].
Compared to LSTM, GRUs have a lighter computing burden and still achieve comparable
performance. Historical time steps might contribute differently to the forecasting of the next
time stamp. Hence, the attention method could be applied to extract historical time steps
that are important to demand. The attention mechanism has been shown to be effective in
improving the demand forecasting accuracy [9,21,37,38].

2.2. Multi-Task Learning

MTL involves learning multiple related tasks simultaneously to improve the general-
ization performance of the forecasting model. In the transportation demand forecasting
domain, the application of MTL is thriving. Some studies have applied MTL to predicting
different tasks for one transportation mode. A task includes predicting the demand in
a zone [27,39] or predicting pick-up/drop-off [28], etc. Though these studies show the
benefits of MTL in improving the prediction accuracy, they simply share information be-
tween tasks without differentiating between positive and negative information. There
were also a few studies we found that applied MTL to predicting the demand for multiple
transportation modes. For example, one study developed a knowledge adaptation module
that boosted the prediction of transportation modes with fewer stations (e.g., ferries) by
adapting the demand pattern from station-intensive modes (e.g., buses). The model results
show that MTL improves the demand forecasting performance for modes with fewer sta-
tions [10]. Another study we found looked into demand prediction for the subway and
TNCs [40].

In an MTL model, sharing parameters between tasks is not always successful; if
shared tasks are not closely related or information is shared too extensively, this can affect
the model performance. This phenomenon is called “negative transfer” and is common
in applications such as natural language processing [41] and computer vision [42]. To
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reduce the negative influence of task sharing, some MTL studies have attempted to answer
questions on which layers to share, what parameters to share, how to address implicit or
explicit task relationships, and how to define the importance of tasks [41–43]. These MTL
approaches share full or partial features between tasks without discerning their helpfulness,
while gated MTL [44] adopts a gating mechanism called a Gated Sharing Unit that can filter
the feature flows between tasks and greatly reduce task inference.

3. Methodology

This section defines the problem of demand forecasting for taxis and TNCs, introduces
a single-task learning model that can be used for predicting taxi or TNC demand, and also
describes the gating mechanism that is used to build the multi-task learning model.

3.1. Preliminary: Problem Definition

The demand forecasting problem aims to predict the demand for multiple transporta-
tion modes M for the study areas A at the time interval t + 1 given historical demands until
time interval t, where A = {a1, a2, . . ., an} is denoted as the set of areas; M = {m1, m2, . . . mj}
is the set of transportation modes; the set of time sequences is denoted as I = {1, 2 . . ., t, . . .,
T}; and the historical time sequence can be defined as lt = {t − k, t − k + 1, . . . , t}, where
k is a recall factor. Mathematically, the problem can be defined as

yA,M
t+1 = F

(
yA,M

t−k , . . . yA,M
t

)
(1)

where yA,M
t+1 is the transportation demand for areas A and modes M at t + 1, and F(·) is the

forecasting function with inputs on historical passenger demand for the transportation
modes. The following section firstly describes the single-task learning model, and then
introduces the MTL model that is built based on the single-task learning model.

3.2. Single-Task Learning Model

A single-task learning model stacks GCN and LSTM layers and incorporates an
attention layer to enhance the forecasting accuracy. The model is designed to capture the
spatial–temporal dependency of transportation demand and is composed of six layers, as
shown in Figure 1.

The first layer is an input layer, with the input being the historical demand for taxis or
TNCs. The input is then passed to the GCN layer to capture the spatial dependency, and its
output is then passed to LSTM to capture the temporal dependency. The fourth layer is an
attention layer, which assigns different weights to the output from LSTM. Higher weights
are assigned to the outputs that are more correlated with our prediction. The fifth layer is a
fully connected layer, and the last layer is an output layer. Next, we will explain each layer
in more detail.

Input Layer: The input layer is the input for the model. It is the historical demand for
taxis or TNCs for different zones.

Graph Convolutional Layer: In the context of transportation, a network can be depicted
as a graph, with nodes representing various entities like taxi zones, communities, neighbor-
hoods, traffic analysis zones, or census tracts and edges indicating relationships between
nodes (e.g., neighboring taxi zones). The signal of a node refers to the historical demand
from its corresponding zone. A graph convolutional network (GCN) [34] works by smooth-
ing a node’s signal through the transformation and aggregation of the demand data from
its neighboring nodes (e.g., nearby taxi zones). The graph convolutional layer is defined as

Z =
∼
AXW (2)

where Z ∈ RN×D is the output from the GCN,
∼
A ∈ RN×N is the normalized adjacency

matrix with self-loops, X ∈ RN×K is the input for the GCN, and W ∈ RK×D is the learned
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weight. A GCN structure is adopted in this study to capture the spatial dependency
between zones.

Long Short-Term Memory Layer: LSTM is adopted in this study to capture temporal
dependency. LSTM has been popularly used in demand forecasting research, such as the
studies [27,32]. An LSTM cell has the structure shown in Figure 2. Each cell has inputs of xt,
a hidden state ht−1, and a cell state ct−1 and outputs the hidden state ht as the final output
or as the input to the next cell and ct to the next cell state. The structure within the cell has
the ability to decide what information to store or throw away for cell state c; it continues to
update based on different time steps and finally decides the output. A detailed explanation
of LSTM is provided in [45]. The formulation for the computation in an LSTM cell is shown
in Figure 2 and explained thereafter.

f = σ
(

w f ·[ht−1, xt] + b f

)
(3)

i = σ(wi·[ht−1, xt] + bi) (4)

g = tanh
(
wg·[ht−1, xt] + bg

)
(5)

o = σ(wo·[ht−1, xt] + bo) (6)

ct = f
⊙

ct−1 + i
⊙

g (7)

ht = o
⊙

tanh(ct) (8)

where σ is a sigmoid function that is given by σ(x) = 1
1+ex . It outputs values between 0

and 1, which controls the flow of information. The cross symbol in the figure refers to mul-
tiplication, and the plus symbol is a merge function that outputs the sum of the inputs.

⊙
is elementwise multiplication. w f , wg, wi, wo, b f , bg, bi, and bo are trainable parameters.
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Attention Layer: The attention mechanism applied in this study is from Yang et al. [46],
which had success in dealing with sequence learning tasks. Mathematically, the attention
method is defined as:

ui = tanh(Wwhi + bw) (9)

αi =
exp

(
ui

Tuw
)

∑
i∈lt

exp(ui
Tuw)

(10)

∼
ht = ∑

i∈lt

αihi (11)

where the hidden output hi = {ht−k, . . . ht} is fed into Equation (9) to obtain ui as the
hidden representation of hi. Then, the importance of the time step (t − k) is measured as the
similarity between ui and uw, which is normalized to αi using a softmax function. Finally,

the output
∼
ht is the weighted sum of the hidden representation of hi. uw in Equation (10)

functions as the high-level representation of the “important time step”. During training,
uw, Ww, and bw are randomly initialized and jointly learned in the model.

Fully Connected Layer: FC refers to the fully connected layer or dense layer in a neural
network. This layer has the number of neurons that is equal to the number of zones for
forecasting. The neurons are connected to every neuron in the preceding layer.

Output Layer: The output layer generates the future demand (e.g., next hour) of
different zones.

3.3. Multi-Task Learning Model

To build a multi-task learning model, this study adopts a “gating” mechanism called a
Gated Sharing Unit (GSU) [44] as shown in Figure 3b. A GSU allows the model to filter
features from other tasks and select those that are useful to the task; it avoids harmful
feature inference if two feature maps are concatenated directly. The overall architecture of
the model is depicted in Figure 3a.

There are two steps involving a GSU. Assume that there are two modes, j and k.
The first step computes how much information will be merged from mode k to mode j.
For this purpose, a gate is inserted to select the useful features from mode k, which is
calculated using

gl
jk = σ

(
Wl

jk·F
l
k + bl

jk

)
(12)

where l is the level of the layers, and σ is a sigmoid function that guarantees the values of
g are bounded between 0 and 1. Wl

jk is the weight that will be trained, Fl
k are the output

parameters of mode k in layer l, and bl
jk is the bias term. gl

jk is a vector. The gate controls
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how much information from mode k at layer l will be passed to mode j. As shown in
Figure 3b, the check mark indicates that more information from the preceding neuro will
contribute to task j, while the cross mark indicates less information contribution.
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The second step computes the merge of features between mode j and mode k. It can
be calculated using the following equation:

Fl+1
j = ∑

k ̸=j
gl

jk ⊙ Fl
k + Fl

j (13)

where ⊙ denotes elementwise multiplication. This formula outputs the fused parameters
Fl+1

j . From this equation, the features from mode j are directly passed to the next layer, and

the features from mode k are merged into mode j after filtering using the gate gl
jk.

4. Experiments and Model Performance Evaluation

This section describes the experiment settings and presents a performance evaluation
of the proposed models.

4.1. Study Area
4.1.1. Study Site Selection and Data Preprocessing

This study selected Manhattan, New York, as the case study area, as both Yellow
Cabs and TNCs service that area, and trip data are publicly accessible from the NYC Taxi
& Limousine Commission [47]. One-year trip data for 2018 are retrieved for the study,
including Yellow Cab and For-Hire Vehicle (FHV) trip data. The FHV data includes Uber,
Lyft, and other platforms that allow passengers to use apps to request trip services.

For both transportation modes, information such as trip pick-up zone, drop-off zone,
pick-up time, and drop-off time is selected from the dataset. To remove erroneous trip
records, trips are filtered according to travel time and travel distance. The minimum travel
time duration is set to 1 min, with the maximum set to 2 h and the minimum travel distance
set to be greater than 0.2 miles. This results in a dataset containing 87.1 million records
of taxi trips and 99.3 million records of TNC trips within Manhattan. The trip data are
aggregated at the hourly level, with each zone representing the hourly demand for taxi
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and TNC services. In total, the processed dataset comprises 59 taxi zones (features) and
8760 time steps (365 days × 24 h per day).

4.1.2. Data Analysis

Figure 4 illustrates the aggregated monthly, daily, and hourly trips for taxi and TNC
services, while Figure 5 shows the total trip counts for both transportation modes. The
correlation coefficient in Figure 4 is calculated using Pearson’s correlation method. As
depicted in Figure 4a, there is an inverse relationship between taxi and TNC demand
on a monthly basis—TNC demand displays a rising trend while taxi demand declines.
This suggests a competitive dynamic between TNC and taxi services in the Manhattan
area. At the aggregate trip level (Figure 5a), a seasonal pattern emerges, with both taxi
and TNC trips peaking in popularity during October and March and decreasing during
the summer and winter months. The daily (Figure 4b) and hourly (Figure 4c,d) patterns
reveal a similar temporal demand pattern for both TNC and taxi services, as indicated by
the positive correlation coefficient. The similarity in demand patterns is also evident in
the total demand analysis (Figure 5b–d). The strong correlation between the two modes
suggests MTL is a suitable approach to jointly modeling taxi and TNC demand. Examining
Figure 4c,d, it is observed that the TNC demand generally tends to be slightly higher, with
both modes following a comparable hourly trend. However, there are instances where
the taxi demand equals or exceeds the TNC demand at certain hours, indicating temporal
volatility at a finer granularity. This volatility may introduce noise into the MTL approach
if information sharing between the modes is simply uniform. Therefore, it is crucial for the
MTL model to selectively filter unnecessary information for effective information exchange.
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The above analysis is conducted for all study areas. A similar hourly pattern is also
identified at the local level, as shown in Figure 6. The correlation coefficient is computed for
each taxi zone at the hourly level and is positive for all zones, as shown in Figure 5, which
suggests the close short-term demand correlation between taxis and TNCs. Thus, sharing
the information between the two modes could potentially be beneficial to the model.
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4.2. Model Training

The 2018 one-year dataset included 8760 time steps, with the data arranged sequen-
tially by time. The first 85% (approximately 310 days) is used for training, and the remaining
15% is used for testing. The “looking back” time step is set as 12, which means 12 h historical
demand is used to forecast the demand for the next time step (next hour).

The constructed model has four layers: the GCN, LSTM, attention, and dense layers
(as illustrated in Figures 1 and 3). TensorFlow 2.1 [48], an open-source library renowned
for training neural network models, is utilized for training the model. Training stops after
the training loss is higher than the minimum training loss for five consecutive epochs. The
model is implemented using the Python programming language, and the hardware used
for model training includes an Intel(R) Core(TM) i7-9750H CPU with 16 GB of RAM.

4.3. Model Evaluation
4.3.1. Description of the Baseline Models and the Proposed Models in the Experiment

To demonstrate the performance of the proposed MTL model, besides the single-task
learning model, several popular time-series models are also selected for comparison. The
baseline models include the following:

• ARIMA: An autoregressive integrated moving average model, a statistical model
widely used for time-series forecasting.

• MLP: A multi-layer perception, the most basic neural network. In this study, a three-
layer neural network is used, which includes an input layer, a dense layer, and an
output layer.

• XGBoost: eXtreme Gradient Boosting, which applies boosting to a tree-based machine
learning model—widely known as an efficient model that solves data science problems
accurately [49].

To test the effectiveness of MTL and the interaction of spatial dependency, we also
compare models that do not consider spatial dependency, considering first-order spatial
dependency, and considering the interaction of spatial dependency. Each variation of
single-task learning and MTL is built. Specifically, we have the models listed as below:

• Single-task learning (without a GCN): Single-task learning model shown in Figure 1
without a GCN layer.

• Multi-task learning (without a GCN): MTL model shown in Figure 3 without a GCN
layer. The Gated Sharing Unit is applied after the LSTM layer.

• Single-task learning (GCN-Distance): Single-task learning model shown in Figure 1,
with graph edge defined as the inverse distance between zones.

• Multi-task learning (GCN-Distance): MTL model shown in Figure 3, with graph edge
defined as the inverse distance between zones.

• Single task learning (GCN-Neighbor): Single-task learning model shown in Figure 1,
with graph edge defined as 1 if two zones share boundaries and 0 otherwise.

• Multi-task learning (GCN-Neighbor): MTL model shown in Figure 3, with graph edge
defined as 1 if two zones share boundaries and 0 otherwise.

• Single task learning (GCN-Interaction): Single-task learning model shown in Figure 1,
with graph edge defined as the product of inverse distance dependency and neighbor
dependency.

• Multi-task learning (GCN-Interaction): MTL model shown in Figure 3, with graph
edge defined as the product of inverse distance dependency and neighbor dependency.

4.3.2. Evaluation Metrics

To compare the performance of these models, this study adopted two metrics which
are popularly used for regression tasks—the Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE)—given by

MAE =
1
n∑n

i=1|yi − ŷi| (14)
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RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (15)

where yi is the ground truth value and ŷi is the predicted value.

4.4. Results and Discussions

This section compares the performance of the baseline models and the proposed mod-
els. Table 1 shows the results of the evaluation metrics for the different models. Overall,
the proposed models have a better performance compared to the baseline models, the MTL
models beat the single-task learning models, and considering spatial interactions brings
additional benefits. Looking into the details of the model evaluation, it is interesting to
see that the XGBoost model has an RMSE of 36.9 and an MAE of 21.8 for the taxi mode,
which is slightly better than the single-task learning model without a GCN, suggesting
that the XGBoost model, in this case, performs very well for time-series forecasting. When
a gating unit is applied (MTL), the multi-task learning model without a GCN performs
better than the single-task learning model without a GCN and XGBoost, suggesting the
effectiveness of parameter sharing in MTL. Table 1 also shows the model performance
when the distance dependency or neighbor dependency is considered, and their prediction
accuracy outperforms the models that do not consider a GCN. When the distance depen-
dency is captured, the taxi prediction errors are lower than those for the model capturing
neighbor dependency, but the model’s TNC prediction errors are a bit higher. Finally,
we also test the model that considers the interaction between distance dependency and
neighbor dependency. As Table 1 shows, the model performance further improves, and,
again, the MTL model outperforms the single-task learning model, which makes MTL
(GCN-Interaction) the best model.

Table 1. Model performance comparison among different methods.

Taxi TNC

RMSE MAE RMSE MAE

ARIMA 54.1 32.6 56.3 37.1

MLP 47.9 30.0 49.5 34.4

XGBoost 36.9 21.8 41.0 26.1

Single-task learning (without a GCN) 37.7 22.6 41.0 27.2

Multi-task learning (without a GCN) 36.1 21.8 39.5 26.1

Single-task learning (GCN-Distance) 36.7 21.8 40.2 26.2

Multi-task learning (GCN-Distance) 35.8 21.5 40.5 25.9

Single-task learning (GCN-Neighbor) 37.4 22.2 39.8 26.1

Multi-task learning (GCN-Neighbor) 36.5 21.9 39.4 25.5

Single-task learning (GCN-Interaction) 35.8 21.1 38.2 25.0

Multi-task learning (GCN-Interaction) 34.7 20.9 37.2 24.2

To visualize the model’s performance, a random sample of the predicted and actual
demand for one day (24 time stamps) from the test data was taken. Figure 7a shows the
forecasted demand and real demand for taxis averaged across all zones, with a similar
representation for TNCs shown in Figure 7b. Both figures reveal a close match between the
forecasted and observed demand, indicating the good performance of the model.
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5. Conclusions

This study develops a multi-task learning model for predicting the short-term demand
of taxis and TNCs. The study selects Manhattan as the case study area and explores
the short-term and long-term demand correlation for taxis and TNCs. At the short-term
(hourly) level, the demand for taxis and TNCs presents similar patterns, which indicates it
could be beneficial to share information between the two modes in a model. The developed
multi-task learning model employs a gating mechanism that selectively shares information
across the two modes. The experimental results and a model performance comparison
show that MTL outperforms single-task learning and other baseline models. This study also
investigates the spatial dependency of the demand model, and considering the interaction
of spatial dependency outperforms the first-order dependency that is commonly used in
the literature.

Given the effectiveness of the methodology, TNC companies can leverage this tech-
nique to enhance their forecasting accuracy, leading to various improvements in resource
allocation efficiency. For example, by accurately predicting spikes in demand within spe-
cific areas, TNC companies can strategically deploy TNC or taxi drivers to minimize the
wait time for passengers. Additionally, short-term demand forecasting also facilitates the
anticipation of traffic congestion in particular areas, enabling TNCs to optimize their routes.
From a traffic management standpoint, integrating predictions of demand for taxi and
TNC services into existing intelligence transportation systems can effectively contribute to
reducing traffic congestion and enhancing the reliability of transportation options.

Several potential research directions could be extended from this study. First, while
this study applies effective MTL techniques, it would be worthwhile to explore other
advanced MTL techniques, such as gradient surgery [50], to test whether the prediction
errors can be further reduced. A summary of the MTL literature is available in [51]. Second,
some transportation modes may exhibit weaker correlations but still have significant
implications, such as shared e-scooters and TNCs, which have a competing relationship [52].
Investigating whether MTL can effectively model these modes would be an interesting
avenue of research. Third, the GSU technique could be tested with data from different
cities or for different tasks (e.g., traffic flow, TNC/taxi forecasting) to demonstrate its
generalizability. Fourth, while improved demand forecasting can benefit route planning,
the impact of this forecasting on traffic congestion remains a question worth exploring.
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