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Abstract: In this review article, we focus on the relationship between permanent magnets and
the electric motor, as this relationship has not been covered in a review paper before. With the
increasing focus on battery research, other parts of the electric system have been neglected. To
make electrification a smooth transition, as has been promised by governing bodies, we need to
understand and improve the electric motor and its main component, the magnet. Today’s review
papers cover only the engineering perspective of the electric motor or the material-science perspective
of the magnetic material, but not both together, which is a crucial part of understanding the needs
of electric-motor design and the possibilities that a magnet can give them. We review the road
that leads to today’s state-of-the-art in electric motors and magnet design and give possible future
roads to tackle the obstacles ahead and reach the goals of a fully electric transportation system.
With new technologies now available, like additive manufacturing and artificial intelligence, electric
motor designers have not yet exploited the possibilities the new freedom of design brings. New
out-of-the-box designs will have to emerge to realize the full potential of the new technology. We also
focus on the rare-earth crisis and how future price fluctuations can be avoided. Recycling plays a
huge role in this, and developing a self-sustained circular economy will be critical, but the road to it
is still very steep, as ongoing projects show.

Keywords: permanent magnets; rare-earth elements; critical raw materials; electric motor; recycling;
additive manufacturing

1. Introduction

The world is shifting to combustion-free transport. New research shows that in 2021,
an estimated 6.5 million electric vehicles (EVs) will be sold worldwide. Half of this number
has been sold in China alone (an increase of 160% to the year 2021), which makes it the
world’s largest electric vehicle (EV) market in less than a decade. Europe is heading in the
same direction, selling over 2.3 million EVs in 2021, which represents 19% of total car sales
in 2021 [1]. To achieve its target of net-zero greenhouse-gas emissions by 2050, set in its
December 2019 “Green Deal” to transform its transport sector, a lot more EVs have to “hit
the roads”. This raises the question of the raw materials needed for such an attempt [2].

Most public and scientific interest has been focused on how we will store the energy
that is produced by renewable sources and how we will be able to harvest that stored
energy. Batteries will probably be the main energy-storage option, although hydrogen
could be a viable and possibly even better option. In either case, the efficiency of electric
motors that act as converters of energy into mechanical motion will be one of the most
important considerations.

All the early inventors used permanent magnets in their previously called electrical
rotating machines. However, the early motors were very different from the motors of today.
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The first electrical motor using permanent magnets was constructed by Michael Faraday in
1821 [3]. He adopted ideas that were previously presented by Hans Christian Oersted [4]
and William Wollaston [5]. Faraday’s device was very simplistic and did not look like an
electric motor, but with the use of permanent magnets, a bowl of mercury, and a battery, he
generated an electromagnetic field that produced mechanical motion. This triggered many
new modifications to the idea, changing it to the design we know today. However, the first
patent for the electric motor was not granted until 1837 to Thomas Davenport [6]. Because
he used low-quality permanent magnets in his design, which produced a power output of
4.5 W, they did not sell. This made many future inventors switch to electromagnets, which
were more suitable for the job at the time. Not until new types of magnetic materials, such
as carbon, cobalt, and tungsten steel, were invented almost 100 years later did inventors use
permanent magnets in their designs. But the real breakthrough came with the discovery of
Al-Ni-Co magnets [7], where permanent magnets were able to replace electromagnets in
electric motors and the development of permanent-magnet motors began.

The most efficient electric motor is a permanent-magnet synchronous motor [8]. Their
efficiency makes them popular for drive motors, power steering, stop-start motors, and
regenerative braking generators. These motors use permanent magnets based on rare-
earth elements (REEs), in particular neodymium-iron-boron (Nd-Fe-B) and samarium-
cobalt (Sm-Co), because of their high maximum energy product (BH)max (a measure of the
magnet’s performance), which is needed for the high efficiency and the high resistance to
demagnetization. But there are still some challenges and gaps in their performance and
application, like:

• Rare Earth Material Dependence:

Many high-performance permanent magnets, particularly those based on neodymium,
rely on rare earth elements. The mining and processing of these materials can be environ-
mentally damaging and subject to supply chain issues. As a result, REEs are considered by
the European Commission to be the most critical raw materials in terms of their economic
importance and supply risk [9]. Research is ongoing to develop alternative magnet materi-
als that reduce dependence on rare earth elements. Another aspect is recycling, where a lot
of research is conducted to improve the recyclability of permanent magnets.

• Temperature Sensitivity:

Permanent magnets can lose their magnetic properties at high temperatures. This
limits the operating temperature range of motors and can be a concern in applications
where motors are exposed to elevated temperatures or require high-temperature resistance.

• Demagnetization Risk:

Permanent magnets are susceptible to demagnetization under certain conditions,
such as high temperatures or excessive magnetic fields. This can result in a loss of motor
performance and reliability.

• Cost of Materials:

High-performance permanent magnets can be expensive due to the cost of rare earth
elements. Reducing the cost of materials while maintaining or improving performance
is a key challenge in making permanent-magnet-based motors more cost-effective. For
less-demanding electric motors, where size does not matter, ferrites can be used. These
magnets are abundant, cheap, and have the largest share of the market.

• Motor Efficiency at Partial Loads:

The efficiency of permanent-magnet motors can decrease at partial loads, which is
common in many real-world applications. Improving efficiency across a wide range of
operating conditions is crucial for maximizing energy savings.

• Size and Weight Constraints:
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In some applications, especially in industries where weight and size are critical factors
(e.g., aviation and automotive), finding the right balance between power density, weight,
and size remains a challenge.

• Manufacturing and Integration Complexity:

Fabricating and integrating permanent magnets into motor designs can be complex.
Ensuring consistent quality, especially for mass production, and addressing manufacturing
challenges are areas of focus.

• Durability and Long-Term Reliability:

Long-term reliability and durability are critical factors, especially in industrial and
automotive applications. Researchers and engineers are continually working on improving
the robustness of permanent-magnet-based motors to ensure a longer lifespan.

• Dynamic Performance:

Achieving optimal dynamic performance, such as high torque density and fast re-
sponse times, is an ongoing area of research to meet the demands of various applications.

• Cognitive Implications:

As electric motors become more integrated into autonomous systems and artificial
intelligence applications, there may be a need for motors that can adapt to changing
conditions in real time. This involves developing control algorithms that optimize motor
performance based on varying inputs.

In this paper, we will focus on what has been done up until now and which future
technologies will help make electrification more viable, like new production technologies,
recycling methods, and motor designs.

2. Permanent Magnets and How They Dictated History

The last 30-plus years have been dominated by Nd-Fe-B-type magnets. But for the
complete picture, we must look back nearly 50 years and visit the events that led to
the discovery of today’s modern metallic magnets. We will divide recent history into
decades and add milestones for the triggering events (TE) that could be responsible for the
subsequent discoveries (D), as shown in Figure 1.
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Figure 1. Time scale with triggering events and discoveries in the last 50-plus years.

We will look at the following:

• TE: “Pile of Samarium in the backyard“ at the beginning of the 1960s;
• D: Sm-Co (SmCo5, Sm2Co17) in the mid-1960s and early 1970s;
• TE: Cobalt crisis, which occurred at the end of the 1970s;
• D: Nd-Fe-B development activities at the beginning of the 1980s;
• TE: EC Research Crisis: We have to do something!, which happened in 1985 and

resulted in CEAM;
• D: Sm-Fe-N, which appeared at the very end of the 1980s and 1990s;
• TE: Rare Earth crisis, which we all still remember from 2011;
• D: Today’s new materials and technologies with their perspectives.
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To be fair to non-metallic, but still hard, magnetic materials, around 80% by weight of
today’s permanent magnets are still sintered hard ferrites, as shown in Figure 2 left, and
70% of this ends up in various motors. On the other hand, around 65% of the market value
is Nd-Fe-B (Figure 2 right), and again, about 70% of this ends up in motors of all kinds.
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Figure 2. (Left) Permanent-magnet consumption by weight (2011 compared to 2018) in thousands of
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millions of US dollars per year) [10].

We will concentrate more on RE-TM magnets, where RE stands for Nd and Sm and
TM for Fe and Co, and not so much on ferrites. Before the discovery of Nd-Fe-B magnets in
1984 [11,12], the major players were ferrites, Sm-Co (50 wt.% Co), and Alnico (15 wt.% Ni,
30–35 wt.% Co) magnets. For demanding, high-temperature applications, Sm-Co magnets
were dominant (high-performance, high-temperature, defense-related uses). They were
developed in Dayton, USA, by the group of K. Strnat [13], who was originally working
on the Y-Co system. As recalled by Alden Ray [14], the triggering event was “There was
quite some unused Sm pilling up in a backyard, so one day we thought, let us mix it
with Co and see what happens”. Eventually, a new compound was discovered—firstly
SmCo5; followed by Sm2Co17; both of which proved to be successful [15]. Raw-material
prices and availability were of no particular concern then, but at the end of the 1970s,
the so-called cobalt crisis occurred and then reappeared in 2008 and 2018 (as shown in
Figure 3—collected from references [16–18]).
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Supplies of Sm were of no concern, but magnet producers were closely monitoring
the Co and Ni markets. Some claim this was the trigger for the development activities on
non-cobalt magnets, which resulted in the pioneering work on Nd-Fe-B at the US Naval
Labs. At the beginning of the 1980s, N. Koon observed anisotropy in the Tb-La-Fe system
that was not as expected [19]. Shortly after, M. Sagawa discovered sintered, anisotropic
Nd-Fe-B while working at the Sumitomo Special Metals Company [11], and J.J. Croat and
his group [20] discovered isotropic melt-spun ribbons and polymer-bonded magnets at
General Motors. These latter materials and technologies still dominate REE-based bonded
magnets [12]. Nd-Fe-B magnets have the highest maximum energy product (BH)max at
room temperature of over 400 kJ/m3 (Figure 4) [11].
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The material itself is possible to describe as follows:

Nd-Fe-B = Nd2Fe14B + Nd-rich + NdFe4B4

where the Nd2Fe14B phase is the carrier of the magnetic properties, the Nd-rich compound
enables sintering, and the NdFe4B4 is difficult to get rid of for thermodynamic reasons.
The RE-Fe-B system has a useful property that leads to RE interchangeability and a whole
range of magnetic properties. Figure 5a shows the dependence of saturation magnetization
(the potential for high remanence in a magnet) for different REs used in RE2Fe14B [21]. We
can observe something similar for the magnetocrystalline anisotropy (the basis for high
coercivity in the magnet), as shown in Figure 5b. With this interchangeability, we can
modify the magnetic properties to fulfill the needs of the application.

The discovery of Nd-Fe-B in 1984 led to »shock and awe« when news of this new family
of magnetic materials was brought to the European magnetics research community, signaling
that researchers in the USA and Japan had effectively pulled ahead [22]. European researchers
reacted with a program called the Concerted European Action on Magnets (CEAM), which
some claim was the triggering event that led to the discovery of the Sm-Fe-N magnetic phase.
In the autumn of 1989, Iriyama and Kobayashi of Asahi Kasei patented a new magnetic
compound—Sm-Fe-N [23]; which forms when the Sm2Fe17 binary alloy turns its in-plane
anisotropy to uniaxial as nitrogen begins to occupy the interstitial sites in the crystal lattice.
Shortly after, H. Sun and M. Coey published a similar result, and this happened within the
CEAM program [24]. Sm-Fe-N has magnetic properties very similar to those of Nd-Fe-B at
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room temperature, with a 150 ◦C higher Curie temperature. Its major drawback is that it
decomposes at around 550 ◦C, making it suitable mostly for polymer-bonded magnets.

Materials 2024, 15, x FOR PEER REVIEW 6 of 46 
 

 

The material itself is possible to describe as follows: 
Nd-Fe-B = Nd2Fe14B + Nd-rich + NdFe4B4 

where the Nd2Fe14B phase is the carrier of the magnetic properties, the Nd-rich compound 
enables sintering, and the NdFe4B4 is difficult to get rid of for thermodynamic reasons. 
The RE-Fe-B system has a useful property that leads to RE interchangeability and a whole 
range of magnetic properties. Figure 5a shows the dependence of saturation magnetiza-
tion (the potential for high remanence in a magnet) for different REs used in RE2Fe14B [21]. 
We can observe something similar for the magnetocrystalline anisotropy (the basis for 
high coercivity in the magnet), as shown in Figure 5b. With this interchangeability, we can 
modify the magnetic properties to fulfill the needs of the application. 

 
(a) (b) 

Figure 5. (a) Saturation magnetization vs. RE used in RE2Fe14B; (b) Anisotropy field vs. RE used in 
RE2Fe14B, reported by various authors. The symbols represent results from different authors. A de-
tailed list can be found in Reference [21]. 

The discovery of Nd-Fe-B in 1984 led to »shock and awe« when news of this new 
family of magnetic materials was brought to the European magnetics research commu-
nity, signaling that researchers in the USA and Japan had effectively pulled ahead [22]. 
European researchers reacted with a program called the Concerted European Action on 
Magnets (CEAM), which some claim was the triggering event that led to the discovery of 
the Sm-Fe-N magnetic phase. In the autumn of 1989, Iriyama and Kobayashi of Asahi 
Kasei patented a new magnetic compound—Sm-Fe-N [23]; which forms when the Sm2Fe17 
binary alloy turns its in-plane anisotropy to uniaxial as nitrogen begins to occupy the in-
terstitial sites in the crystal lattice. Shortly after, H. Sun and M. Coey published a similar 
result, and this happened within the CEAM program [24]. Sm-Fe-N has magnetic proper-
ties very similar to those of Nd-Fe-B at room temperature, with a 150 °C higher Curie 
temperature. Its major drawback is that it decomposes at around 550 °C, making it suitable 
mostly for polymer-bonded magnets. 

What we today call the rare-earths crisis began at the end of 2010 and reached a peak 
in March 2011, lasting until August 2011 [25]. It resulted in sharp price rises, especially for 
the heavy rare earths (HREs) (as shown in Figure 6 for selected REs), and raised many 

Figure 5. (a) Saturation magnetization vs. RE used in RE2Fe14B; (b) Anisotropy field vs. RE used
in RE2Fe14B, reported by various authors. The symbols represent results from different authors. A
detailed list can be found in Reference [21].

What we today call the rare-earths crisis began at the end of 2010 and reached a peak in
March 2011, lasting until August 2011 [25]. It resulted in sharp price rises, especially for the
heavy rare earths (HREs) (as shown in Figure 6 for selected REs), and raised many questions
about affordability, availability, and the potential monopolization of resources by China.

Today we are at pre-crisis price levels, and post-festum, we can have a closer look at
those fears from 5 years ago:

• There will be a lack of REs: So far, it has not happened because demand has not followed
the predictions. The growth that was foreseen in 2009 has not materialized yet;

• Chinese mining, production, and export quotas: actually never influenced the shortage
of material;

• Shipments failed: the shipment period was longer (particularly between China and
Japan), but they never actually failed;

• China as the only source: If in 2011, 95–97% of Nd for magnets were coming out of
China, today (2024), the figure is only 80;

• Predictions in other fields (phosphor lighting tubes and LEDs—Rare Earth Conference;
Shenzhen; 2013)—due to the transition from phosphors to LED; phosphor applications
have seen a drop in the consumption of Res; which are then used elsewhere.

A positive outcome of the RE crisis is that it triggered the opening of new and aban-
doned mines to reduce the dependence on China. Even though the production of rare
earth metals will rise to 300.000 metric tons worldwide in 2022, that is up significantly
from 190,000 MT in 2018, just four years prior, with 70% still coming from China, but other
countries are ramping up their production (Figure 7).
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It also opened up new research fields as to how to reduce dependence on rare earths:

• Less critical REs and heavy REs, such as Dy and Tb;
• Recycle REs from end-of-life goods and magnets;
• New magnetic materials (possibly with no REs);
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• RE-free magnets.

which we will look at more closely in the following section.

2.1. Resource-Efficient Nd-Fe-B PMs with Fewer REEs and/or Fewer HREEs

The high operating temperatures of the traction motors for electric vehicles, i.e., ap-
proximately 200 ◦C, mean that Nd–Fe–B ternary magnets cannot be used due to their
relatively low Curie temperature (310 ◦C) and the negative temperature dependence of
coercivity. It was calculated that ~2400 kA/m of coercivity at room temperature would be
enough to have an appropriate coercivity left that could be used for motor applications [27].
Here heavy rare-earth elements come into play, as in theory, the (Dy/Tb,Nd)2Fe14B phase
could reach this value, where we substitute approximately one-third of the Nd atoms with
Dy or Tb. They help to reach a higher magneto-crystalline anisotropy in this phase [28].
Applications that contain Dy via traditional alloying are high-temperature motors and
generators, hybrid and electric traction drives (up to 11 wt%), commercial and industrial
generators up to 6.5 wt%, e-bikes, energy storage systems, magnetically driven transporta-
tion, motors, wind-power generators up to 4.2 wt% hard disk drives, and MRI devices,
which contain up to 1.4 wt% of Dy [29]. However, if we use conventional powder metal-
lurgy, Dy and Tb antiferromagnetic cations couple with Fe. This reduces the magnetization
and thus the energy product because it has the most dominant effect on it. This can be
overcome with the grain-boundary diffusion process (GBDP), where Dy and Tb are used
only locally [30,31].

The technology of grain surface HRE deployment in magnet microstructure has a
different name with different producers, for example:

• Binary Alloys Method (Grain Boundary Diffusion Process-GBDP-Shin Etsu);
• High Anisotropy Field Layer (HAL-TDK);
• DD Magic™ (Deposition and Diffusion-Hitachi).

To achieve those local dispersions of Dy and Tb, their ceramic precursors are used
on top of already sintered magnets. These small additions are very much in line with the
scarcity of HREEs like Dy and Tb. What is happening is that the heavy rare earths are then
diffused into the magnet and substitute Nd in the matrix phase, producing a so-called core-
shell structure, which prevents easy demagnetization when exposed to an external reverse
magnetic field. By adding less than 1 wt.% Dy, the coercivity can be increased by more than
25%, which is shown in Figure 8 [32]. This was an outcome of the FP7 European project
ROMEO (Replacement and Original Magnet Engineering Options), where an innovative
approach to minimizing the amount of HRE needed was developed.
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Wang et al. report the highest coercivity by separately diffusing Dy70Cu30 and then
Pr68Cu32 eutectic alloys through grain boundaries in fine-grained Dy-free sintered magnets.
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They used a two-step GBD process, which exhibited a coercivity of 2230 kA/m and an
excellent temperature coefficient of coercivity of β = −0.447%/◦C. During the second Grain
Boundary Diffusion (GBD) process, the infiltration of Pr–Cu eutectic markedly enhanced
the distribution, thickness, and chemical composition of the essential Dy-rich shell [33].

Because Praseodymium is chemically very similar to Nd, it is used to substitute it
in Nd-Fe-B alloys to reduce costs. As it also does not lead to the formation of additional
phases, in contrast to other light RE elements such as La [34–36], Ce [37–39], and Y, it can
fully substitute Nd. The problem with a lower Curie temperature is counterbalanced with
the addition of Co. A systematic investigation of the Pr-rich Pr-(Fe,Co)-B material system
was carried out by Wu et al. [40]. Pr doping is known to increase the coercivity of Nd-Fe-B
permanent magnets, but no in-depth study has been conducted on the impact of Pr on
phase formation and microstructure. They investigate the phase formation, microstructure,
magnetic properties, and coercivity mechanisms in Pr-rich Pr15(Fe1−xCox)78B7 (x = 0 − 1)
alloys, where x = 0 and 0.2 produce a Pr-rich phase that hinders reversal magnetization,
resulting in a high coercivity of 1400~1600 kA/m with good thermal stability. Micromag-
netic modeling reveals that the change in the direction of magnetization at the interfaces
of exchange-coupled grains often has a very complex topology, and the transition regions
between two interaction domains are “pinned” at the structural inhomogeneities.

Ce and La are also interesting in substituting Nd in the main alloy, as they represent
about 70% of the total amount of rare earths in minerals that are excavated and are largely
unused and stored. Substitution of Nd by them reduces the performance of the Nd-Fe-B
hard magnetic compound, mainly due to the lower intrinsic properties. Delette presented a
good overview of substituting with non-critical light rare earth elements [41]. Regarding
the Ce and La, it has been demonstrated that an excess in rare earth content and the Co
addition limit the formation of some detrimental secondary phases. Coercivity values
higher than 1430 kA/m have been achieved for a cerium substitution rate of 20%. These
performances correspond to RE contents close to 31% wt. [42]. Co improves the Curie
temperature of Ce-substituted magnets and the energy product of melt-spun ribbons from
85 kJ/m3 to 128 kJ/m3 in (Nd1−x Cex)2+yFe14-zCozB with z = 2 [43]. The effectiveness
of coercivity in magnets substituted with Ce and La has seen significant improvements
through grain boundary engineering techniques. These methods primarily involve creating
intergranular secondary phases that are non-ferromagnetic and dispersed around the
hard phase. This strategy aids in facilitating magnetic exchange and decoupling among
neighboring grains. Techniques such as Infiltration, Grain Boundary Restructuring (GBR),
and Grain Boundary Diffusion Process are key examples of this approach. With GBR, an
additional powder with a high RE content and/or a low melting temperature is mixed
with the RE-Fe-B powder before sintering. The gain in performance with the GBR method
is generally lower than the one provided by the Grain Boundary Diffusion Process [44].
These types of magnets are already on the market, as the Inspires project [45] has shown
when examining EOL magnets. They are used as lower-quality magnets containing up
to 8% cerium in electric scooters. This raises the question of whether this can be as easily
recycled as “pure” Nd-Fe-B magnets.

2.2. Recourse-Efficient Nd-Fe-B PMs via Recycling

The recycling of Nd–Fe–B permanent magnets (mainly sintered) from EOL products
is nowadays categorized as a “key enabling technology” for positioning REs within the
circular economy. Sintered Nd–Fe–B PMs are really multi-phase materials. The hard magnetic
phase represents only 85–87% of the whole magnet; the rest are Nd-rich grain-boundary
phases (GBPs) that also contain Nd-oxide phases [46]. Today, there are different techniques
available to recycle Nd-Fe-B magnets. They can be divided into reusing, reprocessing, and
remelting. The most economically viable route is the reuse of EOL magnets without changing
the chemical structure of the magnet. This is only used for generators and motors in wind
turbines and EV/HEVs. A mechanical dismantling and separation technique was developed
by the Hitachi Group (Japan). They used a rotational drum to separate Nd-Fe-B magnets from
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hard disk drives (HDDs). Another technique they developed is recycling magnets from air
conditioner compressors, which are cut off directly and further demagnetized thermally at
400–500 ◦C or by resonance damping demagnetization (Figure 9) [47,48].
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However, this process is very limited as the magnets, after salvaging them, already
have a defined shape and properties that are useful only in the same applications. The
more common route today is direct re-use via remelting the magnets without generating
any waste. This is mostly used by magnet producers to put internal scrap back into the
production line. However, this becomes more complicated for EOL magnets in waste
electronic equipment (WEE), for example. The recycling rate of permanent magnets is very
low because they are too small to be removed from WEE and are just remelted with ferrous
or nonferrous [49]. The issue is also that Nd–Fe–B magnet scrap has a higher oxygen content
(typically 2000–5000 ppm) compared to virgin magnets (typically 300–400 ppm) [50]. This
additional oxygen is mainly trapped in the REE-rich materials; e.g., this is a huge problem
as they do not sinter at the low temperatures of regular magnet sintering. This produces
low-density parts with low hard magnetic values [51,52]. Additions of either several wt.%
NdH2 [53] to the recycled powder or extra Dy [54] are thus needed to induce an increase
in the coercivity to the original values. However, if the oxide phase could somehow be
removed prior to or during recycling, the addition of extra REEs could be avoided. One
way of tackling this problem was suggested by Xu et al. [55]. Using a novel selective
electrochemical recycling concept, they could recover pure matrix Nd2Fe14B grains. This
presented a very environment-friendly way to remove the unwanted oxide phases directly
with a low-energy input. There are other methods of REE recycling. To obtain master alloys,
one would use the high-energy-demanding pyrometallurgical route, which is useful only
for highly concentrated magnet scrap [56–58]. Leaching is also a successful way to recycle
these materials using H2SO4 [59] or HCl [60]. Solvent extraction [61–63], ion exchange,
or ionic-liquid techniques [64–67] are used to get REE species from it. The final product
is achieved by selective precipitation and conversion to REE fluorides or oxides. But this
technique is very environmentally problematic because of the large amounts of chemicals
used, not to mention the large amount of wastewater that is generated.

Another technique to separate the magnet from its environment was developed by the
University of Birmingham. The HPMS (Hydrogen Processing of Magnet Scrap) was devel-
oped to retrieve environmentally friendly Nd-Fe-B powder environmentally friendly from
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end-of-life magnets [68,69]. As Nd-Fe-B magnets break down into a friable, demagnetized,
hydrogenated powder that can be separated mechanically from the remaining impurities,
like the nickel coating, by, e.g., tumbling electronics in a rotating hydrogen reactor and
collecting the powder, the magnet-free component can now be recycled much more easily.
This procedure is used by the company Hypromag Ltd., Birmingham, UK to develop a full
recycling supply chain for rare-earth magnets. Figure 10 illustrates how the HPMS process
pulverizes the Nd-Fe-B magnet of a hard disk drive.
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Because of the difference in composition [71], it is not so easy to use the recycled powders
directly in the normal production line by just mixing them with a fresh powder. Sometimes
additional REEs have to be added to compensate for the loss during their lifetime. This can
also alter the end properties of the magnet. To avoid these problems, a more standardized
production method should be implemented, as suggested by Ueberschaar et al. [72]. These
problems are also tackled in the ongoing ERA-Min 2 project MaXycle, which will classify EOL
magnets for recyclability in a standardized grading system and develop a labeling system
for newly produced magnets for easy recyclability at their end of life [73]. By investigating
the EOL magnets from different fields, it will also give recommendations for a more recycle-
friendly design for dismantling and suggest new coatings for easy removal. To make these
recycling routes viable, large-scale production has to lower the prices for these kinds of
recycled magnets. Currently, four pilot plants are being constructed in Europe in the scope of
the Susmagpro project to increase the output of recycled magnets via the HPMS route [74].
They are developing automated sensing and robotic sorting lines to identify, sort, and extract
Nd-Fe-B magnets more efficiently. They will use the HPMS method to harvest the magnetic
powder, which will be used in four different reprocessing routes and will be installed by
partners in electric motors, water pumps, loudspeakers, and headphones. Although the core
technology for creating powder from recycled magnets is mature and ready for deployment,
certain segments of the value chain still require refinement to fully realize a genuinely cost-
effective circular economy approach [75].

2.3. Non-REE-Based PMs

High-energy magnets without REEs have not been produced. To use PMs without
REEs, we can choose among ferrites, alnico, and Fe-Co-Cr, but they do not match the
properties that REE-based magnets can achieve. Because of the REE crisis, research in the
EU was focused on finding alternatives to low-performance REE PMs in the intermediate
energy-product range between 50 and 200 kJ/m3 [76–79]. Novel, low-cost hybrid magnets
based on ferrites/alnicos, or any of their combinations represent an interesting and viable
solution to close the above-mentioned gap in magnetic performance between ferrites and RE
magnets. A promising development for low-temperature applications was doping ferrites
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with B2O3, affecting the temperature coefficient of coercivity, which, unexpectedly, switched
sign, enhancing the effect of the temperature on the magnetic properties (Figure 11) [80].
Guzmán-Mínguez et al. improved the magnetic performance of strontium ferrite sintered
magnets using silica by tuning sintering parameters [81].
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Exchange coupling between the hard and soft magnetic phases is one of the magnetic
interactions that could lead to an increase in (BH)max [82,83]. The latter tends to increase
with an increase in the coercivity, HcJ (the contribution of the hard phase), and/or the
saturation magnetization, MS (the contribution of the soft phase) [84,85]. Therefore, by
choosing wisely the constituent phases of the hybrid magnet, the energy product can be
increased beyond the energy product of the hard phase alone [83]. Although this seems
like an elegant solution, several requirements and restrictions have to be considered for
an effective exchange. First, the constituent phases have to be in close contact, e.g., in
the form of a core-shell structure [86–88], a layered structure [89–91], or as particulate
composites [92–95]. Second, the particle size of the soft phase is limited by the selected
hard phase. So, to effectively exchange the hard and soft magnetic phases, the particle size
of the soft phase should not exceed twice that of the domain-wall width of the hard-phase
material [83,88]. Some recent studies even indicated that for an efficient exchange coupling,
the phases also need to have some degree of structural matching [96,97]. Furthermore, to
increase the (BH)max of the composite as much as possible, the particle size of the hard phase
should be at the limit of the single-domain particle size (to obtain the maximum coercivity).
This means that for Sr-ferrite (or Ba-ferrite), if used in hard-soft magnetic composites,
the preferred particle size would be around 1 µm, and the particle size of the soft-phase
material should not exceed 28 nm [98]. The majority of the published research in the field
of exchange-coupled composites is on powders only [95,99–101], and papers reporting
increased (BH)max values based on exchange-coupled hard-soft bulk magnetic materials are
scarce. Nevertheless, a (BH)max of 14.3 kJ/m3 for a hard-soft magnetic ceramic composite
was reported by Debangsu Roy and P. S. Anil Kumar [102], in which they presented a
hard-soft magnetic composite consisting of BaCa2Fe16O27 as the hard phase and Fe3O4
as the soft phase. Torkian and Ghasemi [103] presented SrFe10Al2O19/(x)Co0.8Ni0.2Fe2O4
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composites with a (BH)max of 29.5 kJ/m3. During two European projects (the FP7 project
Nanopyme [104] (GA 310516) and the H2020 project AMPHIBIAN [105] (GA 720853)), some
encouraging results on sintered hybrid composites were obtained. Sr-ferrite/Co-ferrite
bulk composites with a (BH)max of 26.1 kJ/m3 (a schematic and the actual prepared sample
are presented in Figure 12) and hard-soft Sr-ferrite/(Mn, Zn)-ferrite hybrid magnets with a
(BH)max of 23.7 kJ/m3 were prepared. A lot of efforts have been devoted to the research
of modified or new magnetic materials that would fill the gap between REEs-based PMs
and ferrites, but the vast combination of possible candidate materials, the preparation and
consolidation conditions, and the fact that some options are viable only in theory make
this task a highly demanding one, and so the quest to find a new magnet with improved
properties continues.
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2.4. New Permanent Magnetic Materials

In the past 10 years, a lot of scientific effort has been applied to develop a new magnetic
material that would overcome the problems associated with REEs and have sufficient magnetic
properties. Developing a new material to challenge anisotropic Nd–Fe–B magnets is very
demanding. To replace Nd2Fe14B with a new hard magnetic compound, we need a material
with a higher Ms (µ0Ms > 1.6 T) and a sufficient magnetic hardness of Ha > 1.35 Ms. Some
of the promising results are summarized in Figure 13, where alternatives to REE-containing
compounds are presented. To have superior magnetic properties, we want to be in the upper
right-hand corner of the graph. If we take Nd2Fe14B as a reference point, we can see that
REEFe12 compounds with the ThMn12 structure are very interesting and have been extensively
studied as a potential high-performance permanent-magnet material. Since the molar fraction
of Fe in the REE-Fe12 compounds is the highest among various REE(m−n)Fe(5m+2n) compounds,
a high spontaneous magnetization µ0MS is expected for REE-Fe12. However, most of the
REE-Fe12 binary compounds are not thermodynamically stable. To obtain the REE-Fe12 phase
in bulk form, the Fe must be substituted with a stabilizing element M, such as Al, Cr, V, Ti, Mo,
W, Si, and Nb, which reduces the µ0MS [107]. If the REEFe12(N) phase could be synthesized
without M, it is clear that NdFe12N is a very promising magnetic material—it has a higher
anisotropy field and a higher magnetization (see Figure 14a) than Nd2Fe14B. Unfortunately, it
decomposes at elevated temperatures (see Figure 14b, just as Sm-Fe-N does), which makes it
suitable only for bonded applications [108]. Unlike NdFe12, SmFe12 shows a large uniaxial
anisotropy without nitrogenation. Hirayama et al. [108] found that Sm(Fe0.8Co0.2)12 has
excellent intrinsic hard-magnetic properties as a thin film by doping it with 3.7 at.% of B,
which achieved a spontaneous magnetization of 1.78 T and a Curie temperature of 859 K. H.
Sepehri-Amin et al. [109] achieved a high remanent magnetization of 1.50 T simultaneously
with a high coercivity of 950 kA/m. Mn-based compounds have also been intensively studied,
but compounds such as MnBi [110] and MnAl(C) [111] have only a small µ0MS of ∼0.7 T.
Recent studies by Jia et al. [112] showed that a twin-free microstructure that negatively
affects the magnetic properties of conventionally fabricated L10-type and RETM12 can be
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suppressed by particle sizes below a critical size of Dt~300 nm. The problem with all these
mentioned materials—Fe16N2 particles [113]; tetragonal-FeCo thin films epitaxially grown on
substrates [114,115]; and L10-FeNi thin films [116]—is the production in bulk form. Production
methods using these types of nano-sized materials, either by bonding or sintering techniques,
have to be developed [112].
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The current status of developments can be summarized as follows:

• With new materials, we are achieving a (BH)max of around 100 kJ/m3);
• This is better than ferrite (40 kJ/m3) and isotropically bonded Nd-Fe-B (40–80 kJ/m3);
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• It is on par with anisotropically bonded Nd-Fe-B and Sm-Fe-N.

Unfortunately, it is still far from sintered Nd-Fe-B or Sm-Co.

3. Permanent-Magnet-Based Electric Motors

The electric motor has evolved over the years to become irreplaceable in many areas
of industry. Electromagnetic induction is the basic principle on which an electric motor
operates. Magnetic and electrical energies create an electromotive force in a closed circuit
that conducts a current. Electric motors are classified into three major categories: direct
current (DC) motors, alternating current (AC) motors, and special purpose motors [117].
While both AC and DC motors serve the same function of converting electrical energy into
mechanical energy, they are powered, constructed, and controlled differently [118]. The
fundamental difference is the power source. AC motors are powered by alternating current
(AC), while DC motors are powered by direct current (DC), such as batteries, DC power
supplies, or an AC-to-DC power converter. DC wound field motors are constructed with
brushes and a commutator, which add to the maintenance, limit the speed, and usually
reduce the life expectancy of the motors. AC induction motors do not use brushes; they
are very rugged and have long life expectancies. The final basic difference is speed control.
The speed of a DC motor is controlled by varying the armature winding’s current, while
the speed of an AC motor is controlled by varying the frequency, which is commonly
conducted with an adjustable-frequency drive control. The decision about an AC or DC
motor system is dependent on the application and the costs. Even though AC motors have
low maintenance costs and a low power demand on start-up, they do have quite some
drawbacks compared to DC motors. They are harder to control than DC motors, have
lower starting torque, slow starting and stopping, and no reversing, and DC motors can
vary speeds by changing the voltage. While the market for AC motors is larger than that for
DC, DC technology is more cost-effective than AC for lower-horsepower applications. Both
have numerous different design options. They all work on roughly the same principle. The
rotor and stator are located inside the cylindrical groove. The rotation of the rotor is excited
by a magnetic field that repels its poles from the stator (fixed winding). This magnetic field
can be maintained by reconnecting the rotor windings or by forming a rotating magnetic
field directly in the stator. The first method is inherent in collector electric motors, and the
second is asynchronous three-phase [119]. An overview of AC and DC motors can be seen
in Figure 15. It should provide a concise and precise description of the experimental results,
their interpretation, and the experimental conclusions that can be drawn.

The two most common motors that use PMs are the BLDC motor, also called the
brushless motor, and the permanent-magnet synchronous motor (PMSM) (Figure 16).
The brushless DC and PMSMs consist of a permanent magnet, which rotates (the rotor),
surrounded by three equally spaced windings, which are fixed (the stator). The current flow
in each winding produces a magnetic field vector, which sums with the fields from the other
windings. By controlling the currents in the three windings, a magnetic field of arbitrary
direction and magnitude can be produced by the stator. Torque is then produced by the
attraction or repulsion between this net stator field and the magnetic field of the rotor [120].
The difference between them is the winding of the coils, which gives different drive signals.
A PMSM is driven sinusoidally, while a BLDC is driven trapezoidally, making the PMSM
much quieter, both electrically and mechanically. Plus, it has virtually no torque ripple.
A brushless DC motor is an upgraded version of the brushed DC motor. The absence of
brushes gives BLDC motors the ability to rotate at high speed and with increased efficiency
compared to brushed DC motors, as they are easier to maintain. By varying the current
flowing through the stator, the speed of the motor can be varied.
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Advantages of BLDC Motors [121]:

• Durability;
• Efficiency of almost 85–90%;
• Ability to respond to the control mechanisms at high speeds;
• No sparks and less noise, as the brushes are absent;
• Ease of motor control (using BLDC motor-controller solutions);
• Ability to self-start;
• Cooled by conduction and requires no additional cooling mechanism.

Advantages of PMSMs:

• Higher efficiency than brushless DC motors;
• No torque ripple when the motor is commutated;
• Higher torque and better performance;
• More reliable and less noisy than other asynchronous motors;
• High performance at both high and low speeds of operation;
• Low rotor inertia makes it easy to control;
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• Efficient dissipation of heat;
• Reduced size of the motor.

Both have the same disadvantage, which is the scarcity and the relatively high prices
of the REEs used in them. Because of that, they tend to be more expensive than other
solutions, their operating temperature is limited, and the demagnetization possibility limits
the input current.

Another aspect is the positioning of the magnets. The magnets can be arranged either
on the surface of the rotor (surface permanent-magnet (SPM) motors) or embedded in the
rotor (interior permanent-magnet (IPM) motors) (Figure 17). SPM motors are relatively
simple to understand; however, IPMs can be a little more complex. The rotor will be made
of a ferrous material and used to concentrate the magnetic flux by cutting slots in it to
create a flux path. The magnets are typically arranged in a V configuration, which allows
the field to be concentrated, making for a stronger, more concentrated magnetic field than
would be possible with a surface magnet machine [122]. Because of this, it consumes up
to 30% less power, can respond to high-speed motor rotation by controlling the two types
of torque using vector control, and since the permanent magnet is embedded, mechanical
safety is improved as the magnet will not detach due to centrifugal force [123]. But because
of their complex design, they are also more expensive.
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The magnets can also be attached to the rotor, as shown in Figure 18. These motors
have an external rotor radial-flux construction, compared to the conventional internal rotor
radial-flux construction, and the magnets are mounted on the interior surface of the motor,
typically bonded in place. The rotor spins outside the stator, which is fixed inside the rotor.
They provide more torque at lower RPM due to the improved mechanical advantage offered
by the rotor/stator configuration of the active magnetic configuration when compared to
the internal rotor design. The weakness of this configuration is the difficulty of cooling the
stator and rotor because the stator is inside the machine with no thermal pathway. They
are also more difficult to seal from external conditions because of the rotor configuration,
and they have relatively high inertia [124].

As an alternative to conventional radial flux motors (RFMs), axial flux motors (AFMs)
have been the subject of numerous research studies. The RF structure is the common one,
with an external cylindrical stator and an internal cylindrical rotor. This RFM is widely used
in industrial applications; thus, it is considered the reference solution. Images of the radial
flux permanent magnet synchronous machine (RF-PMSM) and the axial flux permanent
magnet synchronous machine (AF-PMSM) are presented in Figure 19. Because of the
discovery of new materials, improvements in manufacturing technology, and innovation,
AF-PMSMs are increasingly recognized as having better power density than RF-PMSMs
and being more compact [126,127]. In addition, they have better ventilation and cooling
arrangements. Moreover, AF-PMSMs offer a higher torque-to-weight ratio due to the
application of less core material, a smaller size, a planar and easily adjustable air gap, lower
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noise, and lower vibration, which make them superior to radial flux machines [128–130].
The problem with the AFM is the strong axial magnetic attraction between the stator and
the rotor, which causes the deflection of rotor discs and fabrication difficulties such as
laminations in the slotted stator, high cost, and assembly [131].
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flux permanent-magnet synchronous machine (AF-PMSM).

An important part of the PM motors are the soft magnetic materials that work as the
motor iron cores. Soft iron cores play a crucial role in electric motors due to their magnetic
properties. They are used in the windings of electric motors to amplify the magnetic field
produced by the current. Soft magnets have high magnetic permeability, meaning they
easily become magnetized and enhance the strength of the magnetic field. This is crucial
for the motor’s efficiency and performance. They also help in reducing energy losses
due to their low coercivity. Since soft magnets have low coercivity, they can quickly gain
and lose magnetization with minimal hysteresis loss (energy loss due to the lag between
magnetization and the magnetic field). This property makes it ideal for the alternating
magnetic fields in motor applications. By increasing the magnetic field strength, soft magnet
cores contribute to a more powerful interaction between the stator (the stationary part of
the motor) and the rotor (the rotating part of the motor). This interaction results in higher
torque and improves the efficiency of the motor. In electric motors, eddy currents (circular
electric currents induced within conductors by a changing magnetic field) can cause energy
loss and heating. Soft magnet cores are often laminated (composed of thin layers insulated
from each other) to minimize eddy currents. The lamination breaks up the path of these
currents, reducing their intensity and the associated energy loss. Most of all, they provide a
path with low reluctance (opposition to magnetic field flow) for the magnetic flux. This
helps in concentrating the magnetic flux in the desired area of the motor, which is essential
for effective motor operation (Figure 20).
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The most commonly used materials for soft iron cores in permanent magnet electric
motors include:

• Electrical Steel (Silicon Steel): Preferred for its high magnetic permeability and low core loss,
ideal for reducing eddy current losses. Commonly used in stator and rotor cores [133,134].

• Soft Ferrites: Used in smaller, high-frequency motors like brushless DC and stepper
motors, offering high magnetic permeability and minimal eddy current losses [135].

• Iron-Cobalt Alloys (e.g., Hiperco): Suitable for high-performance motors requiring
high magnetic saturation and flux density [136].

• Amorphous and Nanocrystalline Metals: Chosen for high-efficiency motors due to their
extremely low hysteresis and eddy current losses and high magnetic permeability [137,138].

• Soft magnetic composite (SMC): SMC is a type of material that is made by mixing fine
particles of iron with a polymer binder. SMC is often used in motors that require a
lightweight and compact core [139].

The choice depends on the motor’s size, frequency, efficiency, and cost consider-
ations, with electrical steel being the most common for its balance of properties and
cost-effectiveness. In today’s motors, Silicon steel is the most commonly used material
in laminated form. Lab studies show that adding up to 6.7% silicon to iron-silicon (Fe-Si)
alloys enhances their soft magnetic properties and reduces power losses during magne-
tization [134]. However, silicon content above 3.5% reduces the ductility of these alloys,
and above 5.0%, it causes embrittlement, hindering hot and cold workability. As a result,
most industrial-scale Fe-Si alloys contain less than 3.5% silicon, as higher silicon levels
complicate the conventional production of electrical steel sheets [140]. A lot of research
has been going on to solve this problem with additive manufacturing techniques like
laser-based AM techniques, including selective laser melting, powder bed fusion of metal
with a laser beam, binder jet printing, and direct energy deposition [141–147]. Research is
also ongoing in multi-material AM. Different multi-material powder bed fusion techniques
are being developed for different applications [148]. The idea is the development of a
delivery system where accurate depositions of small amounts of powders achieve the
formation of multi-material intra-layers, making it possible to print soft magnetic housings
and rotors of electric motors and introduce insulation materials inside the Fe-Si alloys. It
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can potentially improve the power-to-weight ratio of electric motors by using different
materials and simplifying production without using embedding devices [149].

3.1. Alternatives
3.1.1. Three-Phase AC Induction Motors

In the majority of cases, an induction motor is the most modest electrical machine from
the construction point of view. The motor works on the principle of induction, where an
electromagnetic field is induced in the rotor when the rotating magnetic field of the stator
cuts the stationary rotor. Induction machines are by far the most common type of motor used
in industrial, commercial, or residential settings. Its characteristic features are [150,151]:

• Simple and rugged construction
• Low cost and minimum maintenance
• High dependability and sufficiently high proficiency
• Needs no additional starter motor
• They are naturally de-excited in the case of an inverter fault, and this is very welcome

among car manufacturers.

The induction machines, however, are less efficient, larger, and heavier than BLDC motors,
produce a lot of heat, require a complex inverter circuit, and are difficult to control [152,153].

3.1.2. Switched Reluctance Motor (SRM)

More concern was recently directed to the SRM, due to the unequivocal points of inter-
est of its straightforward and tough configuration, fault-tolerant operation, straightforward
control, and exceptional torque-speed characteristics. An SRM can run with a consistent
power range [154,155]. An SRM has several inconveniences, such as acoustic commotion
descent, torque ripple, unique converter topology, above-the-top transport current ripple,
and electromagnetic interference (EMI) [156,157].

3.1.3. Synchronous Reluctance Motor (SynRM)

Synchronous reluctance motors emerge as one of the most promising solutions capable
of meeting various requirements while ensuring high efficiency and cost-effectiveness.
The key to their advantages and limitations lies in their rotor structure, which consists
of a meticulously cut stack of laminations—distinct from wound rotor machines with
excitation coils, squirrel cage induction machines (SCIMs) with short-circuited conductors,
or permanent magnet machines with magnets. This results in a cost-effective design that
leverages the reluctance principle to generate torque.

Compared to switched reluctance motors, synchronous reluctance motors exhibit sig-
nificantly smaller torque ripples, and their efficiency surpasses that of SRMs. Additionally,
owing to the lower phase current in synchronous reluctance motors, their inverters or
power electronics come at a reduced cost. However, a notable drawback is the inability to
control speed due to its constant speed application. Efforts are underway to devise new
concepts addressing this limitation. A comparison is presented in Figure 21 [158].
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3.2. New Concepts

Nowadays, electric vehicles use single-speed reduction boxes designed to let the
electric motors rotate at a high, efficient RPM while the wheels spin more slowly. Such
a system is heavy, complex, and expensive. Linear Labs is developing the Hunstable
Electric Turbine (HET) [160]. The HET is a three-dimensional, circumferential flux, exterior
permanent-magnet electric motor that runs four rotors, whereas other motors typically
run one or two (Figure 22). The stator is fully encapsulated in a four-sided “magnetic
torque tunnel”, with each side having the same polarity, ensuring that all the magnetic
fields are in the direction of motion and that there are no unused ends on the copper coils,
wasting energy. All the magnetism the system creates is thus used to create motion, and all
four sides of the stator contribute torque to the output. This allows smooth torque at slow
speeds and then changes its operating patterns by grouping poles together as the motor
speeds increase. This produces two to five times the torque density, at least three times the
power density, and at least twice the total output of any permanent magnet motor of the
same size. It also eliminates the need for DC/DC converters and gearboxes, reducing the
total cost and weight of the vehicle significantly.
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To improve the performance of electric motors, we need to effectively remove the heat
from them. Equipmake’s solution is to rearrange the motor’s magnets so that they are
positioned like the spokes of a wheel (Spoke motor). This not only increases the torque
but also makes the magnets more accessible so that cooling water can be run directly over
them. Recently, they have stated that with the addition of additive manufacturing, they
intend to produce the world’s most power-dense permanent-magnet electric motor [161].

Yamaha Motor Co., Ltd., Shingai, Japan announced in February 2020 that it has
begun the production of a high-performance electric-motor prototype that is capable of
producing an industry-leading high-power density for automobiles and other types of
vehicles. The compact unit generates up to 200 kW in output thanks to a high-efficiency
segment conductor and advanced casting and processing technologies. It uses an interior
permanent-magnet synchronous motor (IPMSM) with water or oil cooling [162].

The automotive supplier MAHLE has developed the most durable electric motor
available. The traction motor, which is unique on the market, can run indefinitely with
high performance. A new cooling concept makes this technological leap possible, as shown
in Figure 23. The new electric motor is exceedingly clean, light, and efficient and can be
assembled without the use of rare earths by customer request [163].

The new electric motor technology from Infinitum Electric is 50% lighter and smaller
than traditional motors. It uses a so-called Air-Core PCB Stator, which replaces the heavy
iron and copper components of conventional motors with a PCB stator to dramatically
reduce size and weight (Figure 24). Here the copper coils are etched directly onto the
PCB stator, allowing for a motor with a size and weight that is 50% less than traditional
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designs. Along with size and weight, other benefits of removing iron include reduced
stator hysteresis and eddy current losses [164].
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Koenigsegg’s new electric motor, named Quark (Figure 25) combines both radial- and
axial-flux constructions to offer a good balance between power and torque. There is no
need for a step-down transmission; instead, direct drive can be achieved, as the RPM of the
motor is right from the start. Direct cooling was chosen for its higher cooling efficiency and
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compact design, while the rotor uses Koenigsegg Aircore™ hollow carbon fiber technology
to make it lighter and smaller [165].
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Israel-based EVR Motors Ltd., Petah Tikva, Israel created an entirely new topology,
resulting in a completely new type of motor for the EV industry called the Trapezoidal Stator
Radial Flux Permanent Magnet Motor, or TS-RFPM topology. The result is a smaller and
lighter motor than the industry standard, which incorporates three-dimensional trapezoidal
teeth and windings. Even more impressive, in some configurations, the TS-RFPM is rare-earth
metal-free as they use ferrite magnets. They are also using soft magnetic composites (SMC)
to improve performance as opposed to standard steel laminations. In addition to their high
availability, high saturation and permeability levels, and lower eddy current losses, SMCs
exhibit the necessary flexibility to tailor material performance to specific requirements [166].

BMW is going the other way. Its fifth-generation electric motor has no magnets. It
operates as a three-phase AC synchronous motor using brushes and a commutator to provide
power to the rotor windings. They even solved the problem of dust that comes with brushes
rubbing the commutator by sealing them, making them more resistant to failure [167].

Another aim is to recycle electric motors, which for now are just being shredded and
remelted. The problem is that, for now, there is no real interest in keeping the currently
used electric motors as long as possible in operation. A study from 2021 [168] revealed that
nearly half of the companies do not undertake any repair strategies for electrical machine
components. Reusing EOL motors is, for now, not feasible because of a lack of information
concerning the condition and availability of returned motors. Recycling focuses mostly on
those metals that constitute a significant proportion of mass (for example, steel, aluminum,
and copper), creating a risk that scarce metals are not being functionally recycled. There
are EU projects that tackle this problem by repairing, remanufacturing, and reusing EOL
electric motors, as well as developing new designs for the circular economy. The European
project SUSMAGPRO has already presented some ideas for new designs [74]. Another
European project, REASSERT [169], led by the Fraunhofer Institute for Manufacturing
Engineering, will use AI tools developed as part of the project to help select the best value
retention strategy for a given application. One of the goals is to develop a prototype motor
for the circular economy that can be easily disassembled.
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4. Future Perspectives

There is no future without electric motors. Whether there can be a future without
using permanent magnets is questionable, but there will definitely be slower progress
without them. Driven by the increased adoption of electric vehicles and green technologies,
the global demand for Nd-Fe-B magnets (125,000 tones/year in 2019) is predicted to double
to 250,000 t in 2030, as can be seen in Figure 26, with substantial growth in the automotive
sector for the EV drivetrain. Figure 27 shows the shares of the different applications
in the global Nd-Fe-B market. The analysis of applications shows that nearly 70% of
magnets are used in applications based on either the rotational or linear principle of energy
transformation from electric to mechanical—either as motors or as actuators. In addition,
this percentage will grow in the coming years. With all the crises that the market for
magnetic materials has already seen, it is not a question of if, but rather when the next
crisis will occur. That is why research must go in new directions to increase the efficiency
of electric motors with new designs, new magnet shapes and positions in the motor for
higher fields, and a working circular economy to achieve values like alumina (more than
30%). In the following segment, we will analyze where the future of magnets and electric
motors should be heading to achieve the goals needed for a successful transformation to a
green economy and not letting monopolies control the market.
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4.1. Designing the Future PM Electric Motor

The process of designing electric motors starts with defining the requirements pre-
sented in Figure 28. It is very important to compare the advantages and disadvantages of
different types of electric motors.

To improve the overall mechanical efficiency of traction motors for the implementation
of EVs, several issues need to be addressed. A study from 2024 [172] showed that, based on
the design requirements identified for traction motors, Axial flux, in-wheel, and SRM have
significant potential. Analyzing losses in traction motors reveals that speed and temperature
are crucial parameters. The use of transmission technologies broadens motor efficiency and
improves driving performance, with multi-stage Continuously Variable Transmission (CVT)
and novel transmission systems expected to play a role. Efficient transmission system selec-
tion is not enough; layout optimization enhances traction motor and transmission efficiency.
Independent wheel operation improves driving performance and overall efficiency, but cost
and complexity must be managed. The choice of thermal management systems depends
on the maximum operating requirements. Liquid cooling, especially for high-performance
motors with stator cooling, is effective, while air cooling is preferable for rotor cooling to
avoid cavitation. Heat enhancement technology can further reduce temperatures. Materials
are crucial for mechanical and thermal performance, with novel materials being introduced to
replace rare-earth metals and enhance traction motor performance. Advanced manufacturing
(AM) technologies are evolving, impacting traction motor performance part-wise, but techno-
logical advancements are still needed on the topology front to match conventional production
processes in density and price per unit volume [172].

To make the most efficient BLDC motor, there are various design options, as shown
by the evolution of the rotor topologies with regards to the permanent magnets’ shape,
mostly focusing on enabling radial orientation as opposed to diametral. Similar tenden-
cies with shaped poles designed to gain the most gap flux and reduce spots with high
demagnetization fields are common in wind generators. But if we take a close look at the
schematic figures presenting the different types of electric motors in Figures 15–25, we see
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that the magnets have uniform shapes, either rectangular or cylindrical. More complicated
geometries, defined by the housing of the device, are usually realized by assembling smaller
pieces together. For example, a circular rim is made of flat segments instead of a single
curved piece, which results in reductions in the strength of the surrounding magnetic field.
The loss must be compensated by using bigger segments, which limits the miniaturization
and increases the price of the device. To a certain extent, the constructors of products
must consider the standard shapes of the magnets. It is possible to apply post-processing
machining to magnets, particularly to meet the additional requirements, for example, for
heat-dissipation management. However, such operations, in terms of grinding or drilling,
are undesirable because of the resulting waste and the possible negative impact on the
performance of the magnet. It is obvious that the magnets of customized shapes, and
consequently the magnetization, would contribute to the smaller size and improved perfor-
mance of related devices. The recent emergence of additive manufacturing technologies
could lead to devices like electric motors or electric generators being composed of magnets
with a certain shape and distribution of the magnetic flux. It is assumed that the optimum
performance of a device like an electric motor is only possible in the presence of a specially
defined, tailored magnetic flux field (Figure 29) [173]. The goal is to associate the required
magnetic flux field with its source in terms of the most suitable shape of the magnets.
The latter is, together with the material properties, closely related to the magnetization
distribution within the magnet.
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The relationship between the magnetic flux field and magnetization is well defined by
Maxwell’s equations [174]. The standard problem is to calculate the magnetic flux field,
which is produced by the given magnetization as the source. Although the calculation
might be demanding, the solution is uniquely defined, and the corresponding methodology
is well established [175]. Magnet design requires the opposite approach, expressed in terms
of the Inverse Magnetostatic Problem [176], to reconstruct the magnetization state of the
magnet for a given magnetic field, which can be understood as an example of the reverse
engineering of magnetic components. The main difficulties are related to the fact that the
solution is not unique, i.e., there might be several magnetization distributions leading to
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the same field, of which the most appropriate should be found, or the solution might not
even exist if the magnetic-flux field (requested, for example, by the electric-motor designer)
is not valid according to the corresponding Maxwell’s equations. The modeling of magnets
based on desired performance is tricky, and there is still a lot of room for improvement
in the required algorithms and computer codes. An appropriate test of the method is a
reconstruction of the magnetization in a Halbach cylinder that generates a homogenous
field (Figure 30) [176]. Similar setups are directly applicable, for example, in the so-called
Halbach motors.
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4.2. Designing the Future Permanent Magnet

A more efficient electric motor requires higher magnetic fields. There are two ways
to reach this goal. One is to increase the magnetic properties of the magnet by pushing
them closer to the theoretical limit through chemical and microstructural engineering. The
other is to construct the magnetic field by designing and positioning the magnets in a
way that the electric motor makes the most of the field with new techniques, like additive
manufacturing. This new design freedom will have a huge effect on how we see the electric
motor, with possibilities we are not yet aware of.

Net-Shape Manufacturing

For new, complex designs, sintered magnets have to be cut, ground, and polished,
which sometimes produces as much as 50% of waste. Net-shape production could eliminate
this waste. One of the alternative approaches to manufacturing anisotropic, binder-less Nd-
Fe-B magnets is spark-plasma sintering (SPS), which is a pulsed-current-activated, pressure-
assisted technique. SPS can realize complex-shaped samples for materials such as ceramics,
polymers, and alloys [177–180]. A quick survey of the existing literature shows that SPS has
already been successfully adapted for the manufacture of binder-free magnets from different
types of Nd-Fe-B powders (nanostructured melt-spun [181,182], gas-atomized [183], HDDR-
type [184,185], and jet-milled [186,187], exploiting the rapid sintering kinetics and relatively
low temperatures provided by this technique). The technique also offers flexibility in
manufacturing multicomponent PMs, where the final magnetic properties of the magnet
have different coercivities and remnant magnetization depending on the position in the
magnet. This is created by the initial magnetic properties of the used constituents [188].
Such multicomponent magnets can be realized by using low- and high-HREE Nd-Fe-B
powders. This is very practical in magnetic machines like wind turbines, for example,
where it was predicted that a PM does not need to be equally resistant to demagnetization
throughout the whole magnet volume. It was demonstrated that high coercivity is required
mainly at the sides of a magnet, while the inner part can have a lower coercivity but a
higher remnant magnetization [188]. Micro-magnetic modeling showed that magnetization
reversal at elevated temperatures occurs on the surface, particularly at the corners and
edges of the magnets/motors. Motor designers agree they mostly need high coercivity at
these points (see Figure 31) [189].
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It was found that the magnetic field around the Dy-free part is higher than in the Dy-
rich part of the multicomponent magnets (see Figure 32) and that it is possible to arrange
several magnetic entities in one magnetic body to profit from each region without suffering
from unwanted effects. The possibilities for more complex designs of permanent magnets
are thus open. On top of the best possible trade-offs in engineering, the magnetic properties
of such manufactured multicomponent magnets exhibit an advantage as they reduce the
price of the electrical machines in two ways: firstly, they require much less expensive and
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critical HREEs, and secondly, they lower the amount of other materials used to construct
the machines that can now be more compact thanks to the higher remnant magnetization
in the multicomponent magnet [188].
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Figure 32. Absolute B-field measured 1 mm above the magnet’s surface with a Hall probe produced
by SPS. The dashed line indicates the interface between the Dy-free (upper part) and the Dy-rich
(lower part) materials [188].

The second promising manufacturing route for net-shape PM production is additive manu-
facturing (AM). In the last decade, it has changed the industry as the next step in manufacturing.
But for PM production, it becomes a very complex topic with many microstructural design con-
straints, but it can realize new design ideas with a net-shape production that could revolutionize
the market (e.g., complex rotor core design, as schematically illustrated in Figure 33) [190]. With
all the benefits that AM could bring, there are also enormous technical obstacles that still have to
be resolved. There are many AM methods on the market to produce complex-shaped products.
Concerning permanent magnetic materials, however, the currently available shaping methods
are far from maturity. There were a few attempts to use AM for complex geometries using
big-area additive manufacturing (BAAM) [191] or material extrusion (MEX) [192], which were
demonstrated in a real-world use case, but because of the polymer dilution, only low rema-
nences were achieved. A problem with MEX printing is also the lower dimensional accuracy
and surface finish of the finished magnets compared to injection-molded magnets. SLA printers,
which use stereolithography, exhibit a very high printing resolution (5 µm) compared to the
other techniques but are limited to working well only with translucent materials because of the
use of light for the polymerization. Injection-molding processes are one solution but require the
creation of a mold, which is time-consuming and expensive, rendering this method impractical
for producing small quantities. Binder jetting may be an alternative, where the green part is
formed by compacting the powder with a binder that is sprayed onto the powder bed with
ink-jet technology. Polymer-based metal 3D printing (Indirect AM) offers substantial design
freedom: polymer filaments are filled with metal powder and printed on commercially available
3D printers. The polymer is removed via debinding, and the brown metal part is sintered to
full density. This technique is already used to print stainless steel, copper, and other metal
alloys. It can offer better control of the microstructure by employing existing sintering routines
compared to laser- or electric-beam-assisted printing. However, polymer-based metal 3D print-
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ing processes face major challenges when printing Nd-Fe-B magnets. As shown in previous
studies [193], polymer selection is crucial. Because of the high reactivity of the Nd-Fe-B powder,
it can react with the carbon inside the polymer when de-binding, destroying any magnetic
properties. Also, oxygen contamination plays a vital role in magnetic properties, which is why
most of the production must be in a protective atmosphere. The same problem appears in
NdFeB permanent magnets manufactured by Metal Injection Molding (MIM). While the green
part has a better filling factor compared to 3D printed material extrusion parts, it suffers the
same fate of high reactivity of the magnetic powder with organic elements. One is left with sub-
stantial residual carbon and oxygen contents, undermining their magnetic properties. To reduce
the oxygen content, coating of the powder can be applied or the use of low-molecular-weight
non-aqueous binder systems. Also, RE-rich alloys will better tolerate organic contamination.
Metal Injection Molding of NdFeB magnets still presents numerous technical challenges but
already produces magnetic parts with useful properties, which gives it a realistic processing
route for permanent magnets [194].
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In the field of powder bed fusion using a laser beam (PBF-LB), there have been im-
provements to produce fully dense metallic parts. The first tests showed initially promising
results but were particularly challenging due to the pronounced peritectic in the Nd-Fe-B
phase diagram [195,196]. This problem has been tackled by several other groups. Fine-
tuning the laser melting parameters has a huge effect on the properties of the alloy [197,198].
Others showed that one can use grain boundary infiltration with low-melting-point eu-
tectic alloys to further boost the coercivity of PBF-LB processed when infiltrated with
Nd50Tb20Cu30, but with an additional processing step that impacts remanence [199]. Vole-
gov et al. [200], using (NdPr)3Cu0.25Co0.75, achieved a higher room-temperature coercivity
of approximately 1250 kA/m1. High coercivity can also be achieved by adding excess RE to
synthesize over-stoichiometric powder compositions and a 2-step post-process annealing.
Goll et al. [201] reached properties of HCJ = 925 kA/m, Br = 0.58 T, and (BH)max = 62.3 kJ/m3

with this technique. Tosoni et al. [202] used a copper-rich Nd-Fe-B composition synthesized
close to industrial standards to reach even higher coercivities up to HCJ = 1790 kA/m. This
was achieved using a relatively low energy input during PBF-LB processing, which leads
to extremely rapid cooling and hence a fine, equiaxed microstructure without dendrite
growth or excessive α-Fe. Wu et al. showed that remelting Nd-Fe-B during PBF-LB led
to the transformation of the coarse grains of the previously solidified layer to fine ones,
favorable for the permanent magnetic properties [203]. Alignment of the magnetic particles
in this type of AM is still a problematic task.

One of the main issues is the orientation of the printed magnetic particles. Most of
the prints were isotropically oriented, which achieves only half of the potential remanence
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and only a quarter of the maximum energy product of such a magnet [204–206]. Producing
anisotropic magnets is one of the major drawbacks of additive production. There have been
some trial [207–209] printings of a permanent magnet or electromagnet, but as the print
progresses, the magnetic field decreases, decreasing the orientation of the final printed
product. Podmiljšak et al. showed that anisotropy is not a problem to achieve with a
permanent magnet as a magnetic field source, but it has limitations in the dimensions it
can provide [210]. Using an electromagnet for the field source improves the field strength,
but this makes 3D printing less flexible [211]. Using post-aligning by heat-treating the
sample in a magnetic field is another method that was used by Gandha et al. [209]. Sarkar
et al. used a multiphysics model to simulate the alignment of magnetic particles in the
presence of an externally applied field for an additively manufactured magnetic sample
to help predict the magnetic properties of a 3D-printed part [212]. It is also possible to
achieve alignment in PBF-LB samples. Goll et al. [213] produced a textured microstructure
in Fe73.8-Pr20.5-Cu2.0-B3.7 alloy magnets through a non-rotating laser scanning strategy. This
resulted in notable grain alignment along the laser scanning direction and an increase from
0.5 T (isotropic structure) to 0.67 T in remanence.

Another problem with different techniques of 3D printing is that the composition
cannot be varied throughout the magnet. This is problematic with PBF-LB/SLM, binder
jetting, and SLA printing techniques for printing magnets composed of distinct regions that
are characterized by either a high intrinsic coercivity or a high remanent magnetization,
i.e., multicomponent magnets, as presented in Figure 31. By placing an HRE-containing
Nd-Fe-B powder only at those parts of the magnet that are at risk of being demagnetized
during operation, such magnets can be designed for a particular motor application to
reduce the consumption of HREs and boost performance. Novel dual- or multi-head FDM
printers might be suitable for printing these kinds of magnets (Figure 34); however, the
print-head change during the printing procedure is challenging for homogeneous printing
results when a magnetic field is needed for anisotropic alignment. The final problem is that
different thermal treatments are needed for multi-component materials. Accordingly, there
is a need to develop advanced 3D printing technologies to preserve the PMs quality during
the complete process, from the synthesis of the magnetic powder over filament fabrication
to printing, de-binding, and sintering of the magnetic components.

Materials 2024, 15, x FOR PEER REVIEW 34 of 46 
 

 

 
Figure 34. Schematic representation of a dual-head FDM printer with multi-material filaments. 

5. Conclusions 
The global economy is undergoing a transformative shift towards green electrifica-

tion, a change driven by the urgent need to combat global warming. Numerous countries 
are rapidly moving away from internal combustion engines, setting ambitious targets for 
the adoption of electric and hybrid vehicles. For instance, Europe aims to achieve zero 
CO2 emissions from new cars and vans by 2035, aligning with its “Fit for 55” initiative 
[214]. In the United States, the goal is for half of all vehicles sold by 2030 to be electric or 
hybrid, sparking nearly $85 billion in investment into the electric vehicle (EV) industry 
over 2021 and 2022 [215]. China, leading the charge, mandates full electrification of new 
buses and urban logistics vehicles by 2025 and aims for all new passenger cars to be elec-
tric by 2035 [216]. This has propelled China to become a global leader in EV production 
and sales, with 6.8 million EVs sold in 2022 alone, dwarfing the U.S. sales of 800,000 EVs 
in the same period [217]. 

This electrification surge is not just a trend but a revolution, with carmakers releasing 
new electric models monthly and some planning a complete transition to electric 
drivetrains within a few years. This boom in production heightens the demand for raw 
materials, batteries, and electric motors, particularly magnets. Research is predominantly 
focused on developing more efficient batteries, improving by 10% annually, to address 
consumers’ range anxiety. However, this emphasis on batteries has led to a relative ne-
glect of electric motor innovation. The design of permanent magnet (PM) electric motors, 
for instance, has seen modest changes over the past 50 years. 

Figure 34. Schematic representation of a dual-head FDM printer with multi-material filaments.



Materials 2024, 17, 848 32 of 42

5. Conclusions

The global economy is undergoing a transformative shift towards green electrification, a
change driven by the urgent need to combat global warming. Numerous countries are rapidly
moving away from internal combustion engines, setting ambitious targets for the adoption
of electric and hybrid vehicles. For instance, Europe aims to achieve zero CO2 emissions
from new cars and vans by 2035, aligning with its “Fit for 55” initiative [214]. In the United
States, the goal is for half of all vehicles sold by 2030 to be electric or hybrid, sparking nearly
$85 billion in investment into the electric vehicle (EV) industry over 2021 and 2022 [215].
China, leading the charge, mandates full electrification of new buses and urban logistics
vehicles by 2025 and aims for all new passenger cars to be electric by 2035 [216]. This has
propelled China to become a global leader in EV production and sales, with 6.8 million EVs
sold in 2022 alone, dwarfing the U.S. sales of 800,000 EVs in the same period [217].

This electrification surge is not just a trend but a revolution, with carmakers releasing
new electric models monthly and some planning a complete transition to electric drivetrains
within a few years. This boom in production heightens the demand for raw materials,
batteries, and electric motors, particularly magnets. Research is predominantly focused
on developing more efficient batteries, improving by 10% annually, to address consumers’
range anxiety. However, this emphasis on batteries has led to a relative neglect of electric
motor innovation. The design of permanent magnet (PM) electric motors, for instance, has
seen modest changes over the past 50 years.

The rare earth element (REE) crisis has highlighted the vulnerabilities in the sup-
ply chain for permanent magnets, essential components in electric motors. These crises
have spurred research and development in both permanent magnet materials and motor
designs. Globally, efforts to diversify the supply of REEs are gaining momentum, with
146 advanced-stage REE projects, including new mines and existing operations, underway
worldwide [218]. The opening of a new REE mine in Wyoming, the first in the U.S. in
70 years, is a significant development, signaling efforts to reduce reliance on foreign REE
sources, predominantly from China [219].

However, achieving independence in the REE sector requires more than just raw
material extraction. The construction of production facilities outside China, such as the
$10 billion investment at the Mountain Pass mine, aims to establish a complete supply
chain for magnet production [220]. Similar initiatives are underway in Europe, although
they face ecological and economic challenges, including resistance from local communities.

Recycling is emerging as a crucial component of a sustainable REE supply chain.
Projects like Europe’s Susmagpro have demonstrated the viability of large-scale recycling
of permanent magnets. Yet the challenge of sourcing end-of-life magnets persists. To create
a true circular economy for permanent magnets, there is a need for increased awareness
among users and manufacturers, accompanied by legal requirements for recycling, labeling
obligations, and recycling quotas.

In terms of material innovation, efforts to reduce the heavy and light REE content
in PM magnets have been successful, but there is still no viable alternative to Nd-Fe-B
magnets for high-power applications. Additive manufacturing offers new possibilities
in magnet and motor design, but its current limitations in magnetic properties and mass
production present obstacles to widespread adoption.

The future of green electrification is not limited to electricity alone. Innovations in
alternative sustainable energy solutions, like Audi’s e-fuel [221], which produces e-diesel
from wind energy, offer promising avenues. However, the success of such alternatives
depends on the development of highly efficient PM generators for wind farms.

The shift toward green electrification is an unparalleled revolution, reshaping our
world’s economic landscape and addressing the critical challenge of climate change. At
the heart of this transformation is the need to optimize the performance and sustainability
of permanent magnets, which are critical components in electric motors and generators.
The pursuit of this goal involves a deep dive into the nanoscale intricacies of magnet
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materials, particularly the exploration of the microstructure-coercivity relationship in Nd-
Fe-B magnets, which remains the gold standard for high-power applications.

Advanced research in material science is crucial for enhancing the energy efficiency
and durability of these magnets. This includes investigating new alloy compositions,
refining grain boundary engineering techniques, and exploring novel sintering processes
to improve the thermal stability and corrosion resistance of magnets. Additionally, the
development of alternative magnet materials that reduce or eliminate the reliance on
rare earth elements is a key area of focus. Such materials need to match or surpass the
performance characteristics of current REE-based magnets, particularly in terms of magnetic
strength and temperature resilience.

Artificial intelligence (AI) and machine learning are emerging as pivotal tools in this
domain [222]. By analyzing vast datasets encompassing material properties, manufacturing
processes, and performance metrics, AI algorithms can uncover patterns and insights that
elude traditional research methods. This approach can significantly accelerate the discovery
of new magnet materials and the optimization of magnet designs, paving the way for more
efficient and environmentally friendly electric motors and generators.

Furthermore, additive manufacturing (AM) technologies, such as Powder Bed Fusion-
Laser Beam (PBF-LB), offer exciting opportunities for creating magnets with complex
geometries and integrated cooling systems. These innovations could revolutionize motor
designs, enabling more compact, efficient, and thermally stable electric motors. However,
challenges in achieving the desired magnetic properties and scalability of AM-produced
magnets must be addressed to realize their full potential in large-scale applications.

The journey towards green electrification is not just a matter of replacing fossil fuels
with electric power. It is a scientific quest to push the boundaries of material science,
physics, and engineering to develop sustainable, high-performance technologies that will
drive the future of transportation, energy generation, and beyond. As we advance in this
endeavor, the role of magnets becomes increasingly central, underscoring the need for
continuous innovation and collaboration across disciplines to achieve a truly electrified
and sustainable future.
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Nomenclature

AC alternating current
AF-PMSM axial flux permanent magnet synchronous machine
AFM axial flux motor
AI artificial intelligence
AM additive manufacturing
BAAM big-area additive manufacturing
BLDC brushless direct current
CEAM Concerted European Action on Magnets
CVT Continuously variable transmission
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DC direct current
D discoveries
EMI electromagnetic interference
EOL end-of-life
EV electric vehicle
GBP grain boundary phase
GBDP grain-boundary diffusion process
GBR Grain boundary restructuring
Ha Anisotropy field
HDD hard disk drive
HDDR hydrogenation disproportionation desorption recombination
HEV hybrid electric vehicle
HET hunstable electric turbine
HRE heavy rare earth
HREE heavy rare earth element
HPMS Hydrogen processing of magnet scrap
Hci/HcJ intrinsic coercivity
IPM interior permanent magnet
IPMSM interior permanent-magnet synchronous motor
K Kelvin
L-PBF Laser powder bed fusion
MEX material extrusion
MIM Metal injection molding
MRI magnetic resonance imaging
µ0MS saturation magnetization
PMSM permanent-magnet synchronous motor
PCB printed circuit board
PM permanent magnets
RE rare earth
RE-TM rare earth-transition metals
REE rare earth elements
RFM radial flux motor
RF-PMSM radial flux permanent magnet synchronous machine
RPM revolutions per minute
SCIM squirrel cage induction machine
SLM selective laser melting
SMC soft magnetic composite
SPM surface permanent magnet
SPMS spark-plasma sintering
SRM switched reluctance motor
SynRM Synchronous Reluctance Motor
T Tesla
TE triggering events
TEM transmission electron microscopy
TS-RFPM Trapezoidal stator radial flux permanent magnet
WEEE waste from electrical and electronic equipment
WEE waste electronic equipment
(BH)max maximum energy product
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129. Yeşilbağ, E.; Ertuğrul, Y.; Ergene, L. Axial Flux PM BLDC Motor Design Methodology and Comparison with a Radial Flux PM
BLDC Motor. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 3455–3467. [CrossRef]

130. Mahmoudi, A.; Kahourzade, S.; Rahim, N.A.; Ping, H.W.; Uddin, M.N. Design and Prototyping of an Optimised Axial-Flux
Permanent-Magnet Synchronous Machine. IET Electr. Power Appl. 2013, 7, 338–349. [CrossRef]

131. Cao, Y.J.; Huang, Y.K.; Jin, L. Research on Axial Magnetic Force and Rotor Mechanical Stress of an Air-Cored Axial-Flux Permanent
Magnet Machine Based on 3D FEM. Appl. Mech. Mater. 2012, 105–107, 160–163. [CrossRef]

132. Yamazaki, K.; Ohki, S.; Nezu, A.; Ikemi, T. Development of Interior Permanent Magnet Motors Reduction of Harmonic Iron
Losses by Optimizing Rotor Structures. In Proceedings of the 2007 IEEE International Electric Machines & Drives Conference,
Antalya, Turkey, 3–5 May 2007; Volume 1, pp. 489–494.

133. Fish, G.E. Soft Magnetic Materials. Proc. IEEE 1990, 78, 947–972. [CrossRef]
134. Ouyang, G.; Chen, X.; Liang, Y.; Macziewski, C.; Cui, J. Review of Fe-6.5 wt%Si High Silicon Steel—A Promising Soft Magnetic

Material for Sub-kHz Application. J. Magn. Magn. Mater. 2019, 481, 234–250. [CrossRef]
135. Wang, X.; Fang, X.; Guo, Y.; Wang, X. Analysis of a Novel Flux-Weakening Structure of High-Speed Permanent-Magnet Motors

Based on Soft-Magnetic Ferrite. J. Iron Steel Res. Int. 2006, 13, 456–461. [CrossRef]
136. Ed Fagan Hiperco®50, Hiperco®50A, Hiperco®50 HS. Available online: https://www.edfagan.com/soft-magnetic-alloys/

hiperco-50/ (accessed on 14 January 2024).
137. Shi, L.; Yao, K. Composition Design for Fe-Based Soft Magnetic Amorphous and Nanocrystalline Alloys with High Fe Content.

Mater. Des. 2020, 189, 108511. [CrossRef]
138. Suzuki, K.; Kataoka, N.; Inoue, A.; Masumoto, T.; Makino, A. High Saturation Magnetization and Soft Magnetic Properties of Bcc

Fe-Zr-B and Fe-Zr-B-M (M = Transition Metal) Alloys with Nanoscale Grain Size. Mater. Trans. JIM 1991, 32, 93–102. [CrossRef]
139. GTB Components Ltd. Soft Magnetic Composites. Available online: https://gtbcomponents.co.uk/soft-magnetic-composites-

smc-products/ (accessed on 26 January 2024).
140. González, F.; Houbaert, Y. A Review of Ordering Phenomena in Iron-Silicon Alloys. Rev. Metal. 2013, 49, 178–199. [CrossRef]
141. Gao, S.; Yan, X.; Chang, C.; Aubry, E.; He, P.; Liu, M.; Liao, H.; Fenineche, N. Microstructure and Magnetic Properties of FeSiBCrC

Soft Magnetic Alloy Manufactured by Selective Laser Melting. Mater. Lett. 2021, 290, 129469. [CrossRef]
142. Gao, S.; Liao, H.; Yan, X.; Xie, Q.; Chang, C.; Lu, B.; Zhang, X.; Fenineche, N.; Liu, M. Magnetic and Mechanical Properties of

Additive Manufactured Fe-3wt.%Si Material. J. Magn. Magn. Mater. 2023, 580, 170907. [CrossRef]
143. Andreiev, A.; Hoyer, K.-P.; Hengsbach, F.; Haase, M.; Tasche, L.; Duschik, K.; Schaper, M. Powder Bed Fusion of Soft-Magnetic

Iron-Based Alloys with High Silicon Content. J. Mater. Process. Technol. 2023, 317, 117991. [CrossRef]
144. Gruber, S.; Grunert, C.; Riede, M.; López, E.; Marquardt, A.; Brueckner, F.; Leyens, C. Comparison of Dimensional Accuracy and

Tolerances of Powder Bed Based and Nozzle Based Additive Manufacturing Processes. J. Laser Appl. 2020, 32, 032016. [CrossRef]
145. Pham, T.Q.; Suen, H.; Kwon, P.; Foster, S.N. Reduction in Hysteresis Loss of Binder Jet Printed Iron Silicon With Boron. IEEE

Trans. Ind. Appl. 2021, 57, 4864–4873. [CrossRef]
146. Kumari, G.; Pham, T.Q.; Suen, H.; Rahman, T.; Kwon, P.; Foster, S.N.; Boehlert, C.J. Improving the Soft Magnetic Properties of

Binder Jet Printed Iron-Silicon Alloy through Boron Addition. Mater. Chem. Phys. 2023, 296, 127181. [CrossRef]
147. Sun, K.; Li, F.; Rong, C.; Zuo, L. Direct Energy Deposition Applied to Soft Magnetic Material Additive Manufacturing. J. Manuf.

Process. 2022, 84, 162–173. [CrossRef]
148. Mehrpouya, M.; Tuma, D.; Vaneker, T. Multimaterial Powder Bed Fusion Techniques. Rapid Prototyp. J. 2022, 28, 1–19. [CrossRef]
149. Szabó, L.; Fodor, D. The Key Role of 3D Printing Technologies in the Further Development of Electrical Machines. Machines 2022,

10, 330. [CrossRef]

https://www.embitel.com/blog/embedded-blog/brushless-dc-motor-vs-pmsm-how-these-motors-and-motor-control-solutions-work
https://www.embitel.com/blog/embedded-blog/brushless-dc-motor-vs-pmsm-how-these-motors-and-motor-control-solutions-work
https://avidtp.com/electric-motors-101
http://www.hamaco.jp/english/motor_technology/index.html
https://avidtp.com/product-category/electric-motors/
https://www.motioncontroltips.com/external-rotor-motor-basics-design-applications/
https://www.motioncontroltips.com/external-rotor-motor-basics-design-applications/
https://doi.org/10.4283/JMAG.2016.21.4.554
https://doi.org/10.1109/TIE.2015.2511086
https://doi.org/10.3906/elk-1611-23
https://doi.org/10.1049/iet-epa.2012.0377
https://doi.org/10.4028/www.scientific.net/AMM.105-107.160
https://doi.org/10.1109/5.56909
https://doi.org/10.1016/j.jmmm.2019.02.089
https://doi.org/10.1016/S1006-706X(08)60228-9
https://www.edfagan.com/soft-magnetic-alloys/hiperco-50/
https://www.edfagan.com/soft-magnetic-alloys/hiperco-50/
https://doi.org/10.1016/j.matdes.2020.108511
https://doi.org/10.2320/matertrans1989.32.93
https://gtbcomponents.co.uk/soft-magnetic-composites-smc-products/
https://gtbcomponents.co.uk/soft-magnetic-composites-smc-products/
https://doi.org/10.3989/revmetalm.1223
https://doi.org/10.1016/j.matlet.2021.129469
https://doi.org/10.1016/j.jmmm.2023.170907
https://doi.org/10.1016/j.jmatprotec.2023.117991
https://doi.org/10.2351/7.0000115
https://doi.org/10.1109/TIA.2021.3099463
https://doi.org/10.1016/j.matchemphys.2022.127181
https://doi.org/10.1016/j.jmapro.2022.10.004
https://doi.org/10.1108/RPJ-01-2022-0014
https://doi.org/10.3390/machines10050330


Materials 2024, 17, 848 40 of 42

150. Chang, L. Comparison of AC Drives for Electric Vehicles-a Report on Experts’ Opinion Survey. IEEE Aerosp. Electron. Syst. Mag.
1994, 9, 7–11. [CrossRef]

151. Zeraoulia, M.; Benbouzid, M.; Diallo, D. Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study.
IEEE Trans. Veh. Technol. 2005, 55, 1756–1764. [CrossRef]

152. Diallo, D.; Benbouzid ME, H.; Makouf, A. A Fault-Tolerant Control Architecture for Induction Motor Drives in Automotive
Applications. IEEE Trans. Veh. Technol. 2004, 53, 1847–1855. [CrossRef]

153. Hsu, J.S.; Kueck, J.D.; Olszewski, M.; Casada, D.A.; Otaduy, P.J.; Tolbert, L.M. Comparison of Induction Motor Field Efficiency
Evaluation Methods. In Proceedings of the IAS ’96. Conference Record of the 1996 IEEE Industry Applications Conference
Thirty-First IAS Annual Meeting, San Diego, CA, USA, 6–10 October 1996; Volume 1, pp. 703–712.

154. Risse, S.; Henneberger, G. Design and Optimization of a Reluctance Motor for Electric Vehicle Propulsion. In Proceedings of the
International Conference on Electrical Machines ICEM 2000 Proceedings, Helsinki, Finland, 28–30 August 2000; pp. 1526–1530.

155. Yabumoto, M.; Kaido, C.; Wakisaka, T.; Kubota, T.; Suzuki, N. Electrical Steel Sheet for Traction Motors of Hybrid/Electric Vehicles;
Shinnittetsu Giho: Oita, Janpan, 2003.

156. Jack, A.G.; Mecrow, B.C.; Haylock, J.A. A Comparative Study of Permanent Magnet and Switched Reluctance Motors for High
Performance Fault Tolerant Applications. In Proceedings of the Conference: IEEE/Industrial Application Society Conference,
Orlando, FL, USA, 8–12 October 1995; Volume 32.

157. Ruba, M.; Szabo, L.; Strete, L.; Viorel, I.-A. Study on Fault Tolerant Switched Reluctance Machines. In Proceedings of the 2008
18th International Conference on Electrical Machines, Vilamoura, Portugal, 6–9 September 2008; pp. 1–6.

158. Heidari, H.; Rassõlkin, A.; Kallaste, A.; Vaimann, T.; Andriushchenko, E.; Belahcen, A.; Lukichev, D.V. A Review of Synchronous
Reluctance Motor-Drive Advancements. Sustainability 2021, 13, 729. [CrossRef]

159. Reluctance Motor Types Overview and Detailed Function. Available online: https://oswos.com/reluctance-motor/
(accessed on 12 January 2024).

160. High Torque Fully Modular Smart Motors & Generators|Linear Lab. Available online: https://linearlabsinc.com/
(accessed on 14 January 2024).

161. Equipmake Engineering an Electric Future. Available online: https://equipmake.co.uk/ (accessed on 14 January 2024).
162. Yamaha Motor Begins Accepting Orders for High-Performance Electric Motor Prototype—Customized Units to Be Produced

Rapidly for Cars and Other Vehicles—News Releases|Yamaha Motor Co., Ltd. Available online: https://global.yamaha-motor.
com/news/2020/0204/ev.html (accessed on 14 January 2024).

163. MAHLE Develops the Most Durable Electric Motor—MAHLE Group. Available online: https://www.mahle.com/en/news-and-
press/press-releases/mahle-develops-the-most-durable-electric-motor-91264 (accessed on 14 January 2024).

164. Infinitum Company. Available online: https://goinfinitum.com/ (accessed on 14 January 2024).
165. Quark Emotor. Available online: http://koenigseggci-prod.northeurope.azurecontainer.io/quark-emotor (accessed on 14 January 2024).
166. Reimagining Electric Motors. Available online: https://evr-motors.com/ (accessed on 12 January 2024).
167. Banner, J. No Magnets, Big Power: BMW’s Fifth-Generation Electric Motor. Available online: https://www.motortrend.com/

news/bmw-ix-m60-brushed-electric-motor-tech-deep-dive/#:~:text=But%20the%20rare-earth%20materials,motors%E2%80%
94to%20make%20this%20possible (accessed on 12 January 2024).

168. Tiwari, D.; Miscandlon, J.; Tiwari, A.; Jewell, G.W. A Review of Circular Economy Research for Electric Motors and the Role of
Industry 4.0 Technologies. Sustainability 2021, 13, 9668. [CrossRef]

169. Walz, J.-D. Electromobility: Second Life for Electric Motors. Available online: https://www.fraunhofer.de/en/press/research-
news/2024/january-2024/electromobility-second-life-for-electric-motors.html (accessed on 14 January 2024).

170. Arafura—Supply and Demand. Available online: https://www.arultd.com/products/supply-and-demand.html
(accessed on 14 January 2024).

171. Ormerod, J. Rare Earth Magnets: Yesterday, Today and Tomorrow. Available online: https://www.linkedin.com/pulse/rare-
earth-magnets-yesterday-today-tomorrow-john-ormerod/ (accessed on 26 January 2024).

172. Gobbi, M.; Sattar, A.; Palazzetti, R.; Mastinu, G. Traction Motors for Electric Vehicles: Maximization of Mechanical Efficiency—A
Review. Appl. Energy 2024, 357, 122496. [CrossRef]

173. Hiron, N.; Andang, A.; Busaeri, N. Investigation of NdFeB N52 Magnet Field as Advanced Material at Air Gap of Axial Electrical
Generator. IOP Conf. Ser. Mater. Sci. Eng. 2019, 550, 012034. [CrossRef]

174. Jackson, J.D. 1925–2016 Classical Electrodynamics, 3rd ed.; Wiley: New York, NY, USA, 1999.
175. Abert, C.; Exl, L.; Selke, G.; Drews, A.; Schrefl, T. Numerical Methods for the Stray-Field Calculation: A Comparison of Recently

Developed Algorithms. J. Magn. Magn. Mater. 2013, 326, 176–185. [CrossRef]
176. Bruckner, F.; Abert, C.; Wautischer, G.; Huber, C.; Vogler, C.; Hinze, M.; Suess, D. Solving Large-Scale Inverse Magnetostatic

Problems Using the Adjoint Method. Sci. Rep. 2017, 7, 40816. [CrossRef] [PubMed]
177. Voisin, T.; Durand, L.; Karnatak, N.; Le Gallet, S.; Thomas, M.; Le Berre, Y.; Castagné, J.-F.; Couret, A. Temperature Control

during Spark Plasma Sintering and Application to Up-Scaling and Complex Shaping. J. Mater. Process. Technol. 2013, 213, 269–278.
[CrossRef]

178. Manière, C.; Durand, L.; Weibel, A.; Chevallier, G.; Estournès, C. A Sacrificial Material Approach for Spark Plasma Sintering of
Complex Shapes. Scr. Mater. 2016, 124, 126–128. [CrossRef]

https://doi.org/10.1109/62.311235
https://doi.org/10.1109/TVT.2006.878719
https://doi.org/10.1109/TVT.2004.833610
https://doi.org/10.3390/su13020729
https://oswos.com/reluctance-motor/
https://linearlabsinc.com/
https://equipmake.co.uk/
https://global.yamaha-motor.com/news/2020/0204/ev.html
https://global.yamaha-motor.com/news/2020/0204/ev.html
https://www.mahle.com/en/news-and-press/press-releases/mahle-develops-the-most-durable-electric-motor-91264
https://www.mahle.com/en/news-and-press/press-releases/mahle-develops-the-most-durable-electric-motor-91264
https://goinfinitum.com/
http://koenigseggci-prod.northeurope.azurecontainer.io/quark-emotor
https://evr-motors.com/
https://www.motortrend.com/news/bmw-ix-m60-brushed-electric-motor-tech-deep-dive/#:~:text=But%20the%20rare-earth%20materials,motors%E2%80%94to%20make%20this%20possible
https://www.motortrend.com/news/bmw-ix-m60-brushed-electric-motor-tech-deep-dive/#:~:text=But%20the%20rare-earth%20materials,motors%E2%80%94to%20make%20this%20possible
https://www.motortrend.com/news/bmw-ix-m60-brushed-electric-motor-tech-deep-dive/#:~:text=But%20the%20rare-earth%20materials,motors%E2%80%94to%20make%20this%20possible
https://doi.org/10.3390/su13179668
https://www.fraunhofer.de/en/press/research-news/2024/january-2024/electromobility-second-life-for-electric-motors.html
https://www.fraunhofer.de/en/press/research-news/2024/january-2024/electromobility-second-life-for-electric-motors.html
https://www.arultd.com/products/supply-and-demand.html
https://www.linkedin.com/pulse/rare-earth-magnets-yesterday-today-tomorrow-john-ormerod/
https://www.linkedin.com/pulse/rare-earth-magnets-yesterday-today-tomorrow-john-ormerod/
https://doi.org/10.1016/j.apenergy.2023.122496
https://doi.org/10.1088/1757-899X/550/1/012034
https://doi.org/10.1016/j.jmmm.2012.08.041
https://doi.org/10.1038/srep40816
https://www.ncbi.nlm.nih.gov/pubmed/28098851
https://doi.org/10.1016/j.jmatprotec.2012.09.023
https://doi.org/10.1016/j.scriptamat.2016.07.006


Materials 2024, 17, 848 41 of 42

179. Manière, C.; Durand, L.; Weibel, A.; Estournès, C. Spark-Plasma-Sintering and Finite Element Method: From the Identification of
the Sintering Parameters of a Submicronic α-Alumina Powder to the Development of Complex Shapes. Acta Mater. 2016, 102,
169–175. [CrossRef]

180. Manière, C.; Nigito, E.; Durand, L.; Weibel, A.; Beynet, Y.; Estournès, C. Spark Plasma Sintering and Complex Shapes: The
Deformed Interfaces Approach. Powder Technol. 2017, 320, 340–345. [CrossRef]

181. Saito, T.; Takeuchi, T.; Kageyama, H. Magnetic Properties of Nd–Fe–Co–Ga–B Magnets Produced by Spark Plasma Sintering
Method. J. Appl. Phys. 2005, 97, 10H103. [CrossRef]

182. Ma, Y.; Liu, Y.; Li, J.; Du, H.; Gao, J. Microstructure and Magnetic Properties of Bulk Magnets Nd14–xFe76+xCo3Zr1B6 (X = 0,
0.5, 1) Prepared by Spark Plasma Sintering. J. Rare Earths 2009, 27, 1023–1026. [CrossRef]
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