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Abstract
The accuracy of surface measurement determines the manufacturing quality of membrane mirrors. 
Thus, an efficient and accurate measuring method is critical in membrane mirror fabrication. 
This paper formulates this measurement issue as a surface reconstruction problem and employs 
two-stage trained Zernike polynomials as an inline measuring tool to solve the optical surface 
measurement problem in the membrane mirror manufacturing process. First, all terms of the 
Zernike polynomial are generated and projected to a non-circular region as the candidate model 
pool. The training data are calculated according to the measured values of distance sensors and 
the geometrical relationship between the ideal surface and the installed sensors. Then the terms 
are selected by minimizing the cost function each time successively. To avoid the problem of 
ill-conditioned matrix inversion by the least squares method, the coefficient of each model term is 
achieved by modified elitist teaching–learning-based optimization. Subsequently, the measurement 
precision is further improved by a second stage of model refinement. Finally, every point on the 
membrane surface can be measured according to this model, providing more the subtle feedback 
information needed for the precise control of membrane mirror fabrication. Experimental results 
confirm that the proposed method is effective in a membrane mirror manufacturing system driven 
by negative pressure, and the measurement accuracy can achieve 15 µm.

Keywords: inline measurement, forward model selection, model refinement, 
heuristic optimization, Zernike polynomials, non-circular region, elitist TLBO
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1. Introduction

In recent years, the space reflector has been used in various 
fields such as remote sensing, solar energy concentrators 
and astronomical applications [1–3]. The requirements for 
space optics are continuously growing to satisfy increasing 
demand in different applications. For purposes of obtaining 
information about Earth such as geophysical parameters, 
meteorological data and reconnaissance, all the currently used 
remote sensing optical instruments are operated in low Earth 
orbits (LEOs) to reduce the negative imaging effect caused by 
cloud. There are microwave sensors with the ability to pen-
etrate through clouds, providing detailed ground information. 
However, these sensors need to work in high Earth orbits. With 
the increasing observing distance, the quality of the measure-
ment information would deteriorate if the same optical struc-
ture was employed. To acquire the same data quality for the 
sensors in LEOs, a significantly large antenna with an accu-
rate surface is desirable due to the fact that sensitivity and 
spatial resolution are determined by the optical surface preci-
sion, and the signal-to-noise ratio and signal resolution are 
positive related to the aperture of the mirror [4]. Similarly, in 
astronomical fields, a space-borne mirror with a large aperture 
must get rid of atmospheric turbulence to improve the space 
telescope’s performance. Referring to the size of the James 
Webb Space Telescope, the future requirement for the diam-
eter of primary mirrors is no less than 10 m [5]. The traditional 
optical reflector cannot meet this new requirement due to the 
fact that the solid monolithic lens is too large and heavy for 
the launch mass and storage size of current launch vehicles. 
Moreover, it is impossible to fabricate the desired mirror by 
traditional optical manufacturing methods. To meet this chal-
lenge, the membrane optic is rapidly developing. As a new 
optical element, the membrane mirror has the merits of low 
aerial density, easy deployability and low cost. These char-
acteristics enable the membrane mirror to break through the 
constraints of traditional optical manufacturing, providing a 
suitable and alternative choice for the large-aperture and ultra-
light mirrors required in space telescopes, and other space-
based optical applications.

At present, electrostatic stretch and pneumatic pres-
sure (inflated or vacuum suction) shaping are the two major 
approaches for fabricating membrane mirrors, both of which 
require precise measurements of the membrane surface [6–9]. 
In addition, the optical surface measurement accuracy deter-
mines the final quality of the membrane mirror, which is the 
critical performance of the whole optical system. Thus, the 
surface measurement method plays the most important role 
in the membrane mirror fabrication process. Different from 
the traditional mirror, the membrane mirror needs to maintain 
sufficiently tight surface accuracy during the applied process 
[10]. Considering that the optical surface varies due to environ-
mental factors, such as temperature, pressure and other distur-
bances, active adjustment is always required to compensate 
for surface errors. Due to the vulnerability of membrane mat-
erials, the contacting measuring method could not be applied 
to test the surface of the membrane mirror. In ground-based 
tests, some metrologies have already been developed. One 

way is to take a photograph of the concerned mirror surface, 
and then calculate the related coefficients using special soft-
ware. NASA and SRS utilize this method to evaluate surface 
accuracy [11, 12]. Moreover, researchers from the University 
of Arizona and the University of New Mexico adopted inter-
ferometer and moiré fringes to measure the mirror surface 
[13, 14]. By setting up an imaging system, the image quality 
assessment of standard pictures is used to describe the surface 
error by the Air Force Research Laboratory [15]. Similarly, 
photogrammetry is adopted to measure the surface of inflat-
able membrane structures [16]. However, the aforemen-
tioned methods all require additional expensive equipment, 
and are not feasible for surfaces with ultra-large apertures. 
Comparatively speaking, measuring the mirror surface by 
setting appropriate sensors in the shaping frame is econom-
ical and easily implemented. Similarly, the quantity of sen-
sors in the modeling frame is finite due to budget limitations. 
Considering that the mirror surface is always changing in the 
forming process, it is impossible to express the whole surface 
by only using limited information from a few fixed sensors. In 
addition, sometimes the expected mirror surface is so compli-
cated that it is hard to represent the surface only using partial 
information.

To overcome this difficulty, approximation methods are 
adopted in surface measurement systems. Haber et  al used 
a subspace identification technique to obtain a dynamic 
description of a thermally actuated deformable mirror [17]. 
Song et  al employed a neural network to solve the aberra-
tion correction problem in an optic system [18]. However, the 
adopted methods are all off-line and not suitable for real-time 
membrane mirror fabrication. Among various surface fitting 
algorithms, the polynomial approximation is the most pop-
ular one. The desirable properties of Zernike polynomials, 
such as orthogonality, rotational symmetry, relation to clas-
sical Seidel aberrations, and simple representation, have made 
it the most popular basis function for analyzing optical sur-
faces [19–21]. Ares and Royo studied the fitting performance 
of Zernike polynomials, and found that low-degree Zernike 
polynomials are suitable for fitting simple wavefronts [22]. 
MacMartin et al analyzed the structural interaction of the seg-
mented mirror of a telescope using the Zernike basis, offering 
guidance for structural optimization of mirrors [23]. It is also 
effective for optical surface measurement. Liu et al employed 
Zernike poly nomials to fit the deformed surface of a telescope 
mirror, as a reference for mirror configuration design [24]. In 
addition, it is worth noting that since the traditional Zernike 
polynomials are defined within the unit circle, it would lose 
the original favorable properties in a non-circular region. 
Fortunately, He et  al proposed an effective method to con-
struct novel Zernike polynomials in non-circular regions, 
which extends their application [25]. However, none of the 
aforementioned studies have considered the performance of 
high-order Zernikes. Alkhaldi et  al found that interpolation 
with higher-degree Zernike polynomials brings better perfor-
mance [26]. However, Runge’s phenomenon will appear in 
polynomial interpolation while the Zernike order is increasing, 
resulting in a poor approximating performance. The existing 
studies show that Zernike polynomials are an effective tool to 
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measure the surface of optical elements, but an appropriate 
strategy is still called for to select the Zernike terms.

Theoretically, surface measurement or reconstruction by 
Zernike polynomials is a specific expression of the linear-
in-the-parameters model, which is widely used in nonlinear 
system identification. However, the most popular orthogonal 
least squares (OLS) method would cause significantly large 
computational complexity in dealing with big data [27]. 
Further, the model performance would drastically deteriorate 
if OLS was used to solve an ill-conditioned problem, which 
is very common in mirror surface reconstruction. As a result, 
a fast model constructing strategy that is non-sensitive to the 
ill-conditioned matrix is desired. In this paper, a two-stage 
subset selection scheme, avoiding matrix inverse operation, 
is employed to realize the surface reconstruction. To maintain 
the desired properties of the Zernike terms, Gram–Schmidt 
orthogonalization is employed to construct novel Zernike 
terms in non-circular regions, which are used as candidate 
bases. In order to further improve the model accuracy, coef-
ficients are further optimized by a modified elitist teaching–
learning-based optimization (ETLBO) algorithm coming after 
the model structure is determined. Satisfying surface measure-
ment accuracy and speed would be achieved by this method, 
providing a feasible means to maximize the performance of 
Zernike polynomials.

2. Two-stage model selection scheme

The linear-in-the-parameters model has a proven ability to 
approximate arbitrary nonlinear functions with arbitrary pre-
cision, and the general form of this model is

y t p t tx v,
i

M

i i i
1

( ) ( ( ) ) ( )∑ θ ξ= +
=

 (1)

where t N1, 2, ...,= ; N is the number of training data; y t( ) 
denotes the model output and tx( ) denotes the model input 
vector at time constant t; p i M, 1, 2...,i =  represents all the 
candidate nonlinear bases with certain number parameters vi; 

iθ  denotes the linear coefficients of different nonlinear bases; 
and t( )ξ  is the model residual with zero mean. To facilitate 
computation, the matrix form of (1) could be written as

y P= Θ+ Ξ (2)

where p p pP , , ... M1 2[ ]=  is a N-by-M matrix,  =pi  
p x v p x N v i M1 , , ..., , , 1, 2, ...,i i i i

T =[ ( ( ) ) ( ( ) )]  , ... M
T

1[ ]θ θΘ =  is 
an M-dimension column vector; and y y Ny 1 , ... T[ ( ) ( )]=  and 

N1 , ..., T[ ( ) ( )]ξ ξΞ =  are all N-dimension column vectors. If 
the structure of the model is fixed, the corresponding linear 
coefficients could be obtained by minimizing the following 
cost function

∑ ∑ θ= −
= =

( ) ( ( ) )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟E y t p t vx ,

i

N

j

M

j j j
1 1

2

 (3)

where the least squares method is adopted, and the optimal 
coefficients could be given as

P P P y.T T1( )Θ = −� (4)

The approximating capability of this model is rooted in 
the characteristics of basis functions. As long as the func-
tion used is a complete basis, the expected identification 
performance could be achieved by a finite linear combina-
tion of basis functions. The only problem is how to find a 
compact model with the desired index in a certain period of 
time. However, in many applications, the training data set for 
identification is very large, generating a large candidate basis 
pool. Therefore, if all candidate bases are used like extreme 
learning machines, the computational complexity of (4) 
may become extremely high and it may become impossible 
to solve due to the ill-conditioned matrix. To deal with this 
problem, a forward recursive algorithm (FRA) is used to gen-
erate a parsimonious model, and the coefficients are obtained 
by heuristic optimizing algorithms avoiding the operation of 
matrix inversion.

2.1. Forward model construction method

The FRA method is a forward construction for the model 
which adds candidate basis functions one by one. In each for-
ward step, the chosen basis is the one contributing the most 
to the cost function among all the candidate bases. Suppose 
K basis functions were selected in the kth step, the corre-
sponding regression matrix is expressed as

p p p k nP , , ..., , 1, 2, ..., .k k1 2[ ]= = (5)

Then according to (3) and (4), the cost function in the kth 
step could be calculated by

J P y y y P P P P y.k
T T

k k
T

k k
T1( ) ( )= − − (6)

If the cost function does not reach the expected value by 
the combination of existing chosen bases, a new basis function 
should be added in the next step. Suppose the new selected basis 
is pk 1+ , the new regression matrix becomes pP P ,k k k1 1[ ]=+ + . 
This new selected basis should make the cost function reach 
the minimum value among all the remaining candidates. In 
other words, the reduction of the cost function formulated as 
(7) should be maximized by pk 1+ :

J p J P J P p, .k k k k k1 1 1( ) ( ) ( [ ] )∆ = −+ + + (7)

The new basis pk 1+  satisfies

J JP P
P

max ,
,

.k k k k

k

1 1 1( ) { ([ ]}⎧
⎨
⎩

φ
φ φΦ
∆ = ∆
∈ ∉
+ + +

 (8)

It is easy to find that if the basis selection principle is real-
ized by (7) and (8), a number of matrix inversions would be 
involved in the model constructing process. Thus the compu-
tation complexity is very high, and it also leads to numerical 
stability problems. To overcome the above deficiencies, a 
matrix series is defined as

= − <
=

−
( ) ⩽⎧

⎨
⎩

k n

k
R I P P P P

I
, 0

0
.k

k k
T

k k
T1

 (9)

The computation of the net reduction of the cost function is 
substantially simplified using the following properties:
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+ +
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R R R R;k k k k
T2( ) = = (11)

i j i j nR R R R R , , , 0, 1...,i j j i i ⩾= = = (12)

⎧
⎨
⎩

p
p k

p p k
R

P
R P
0, rank ,

0, rank , 1
.k

k

k k
=

=
≠ = +

([ ])
([ ]) (13)

Substituting (9)–(6), the cost function becomes

J P y R y.K
T

k( ) = (14)

By applying the properties shown in (10)–(13), the net 
reduction of cost function in the kth step could be calculated by

J p y R R y.k k
T

k k1 1 1( ) ( )∆ = −+ + + (15)

To be specific, the forward model construction procedure is 
described as follows. Say at step k, a new base from the candi-
date pool is checked. The matrix Rk 1+  should be calculated by 
(10), and then the net contribution to the model performance 
by this new base is given by (15). The base that contributes 
most to the reduction of the cost function in the candidate pool 
will be added to the model. This process will not be termi-
nated until the reduction by the best new base is insignificant 
or the desired performance is reached.

2.2. Backward basis reselection

Although the forward model construction method provides an 
efficient way to generate a compact model, the optimality of 
the obtained model cannot be guaranteed. For the non-inde-
pendency of candidate bases, the optimal combination of can-
didates is hard to acquire by the step-wise method. However, 
the performance of the model could be improved by a refine-
ment operation. The refinement is to re-evaluate the signifi-
cance (contribution to the cost function) of all selected bases 
and the remaining bases in the candidate pool one by one. If 
an unselected base contributes more to the cost function than a 
previously selected one in the forward stage, replacement will 
take place. The terminated condition of the refining procedure 
is that there is no further reduction of the cost function.

It is supposed that p p, , n1[ ]�  are selected bases in the first 
stage, and p p, ,n M[ ]�  are the remaining ones. To review a pre-
viously selected base in the generated regressor, say pq in Pn, it 
is moved to the last position of Pn at first, as if it were the last 
selected base. This process could be implemented by inter-
changing two adjacent terms pk and pk 1+  until the concerned 
basis is moved to the nth position. To facilitate further com-
putation, another important property of Rk should be noted, 
which is

p q kR R , , .p q k q p k1,... ,... ,... 1,... ,... ,...= ⩽ (16)

According to (16), any change of base position does not 
influence the residual matrix Rk. So after a series of inter-
change operations, the only changed residual matrix is Rq, 
which could be recalculated by

= −−
− −

−

� �

� �
�

p p

p p
R R

R R

R
q q

q q q
T

q
T

q
T

q q
1

1 1

1
 (17)

where

p p p p q k n, , , ..., 1.q q q q1 1= = = −+ +� � (18)

Subsequently, the reviewed base is moved to the last posi-
tion of the selected basis vector, and is denoted pn� . And then its 
contribution to the cost function is compared to the remaining 
bases in the candidate pool. The contribution of pn�  can be 
calculated by (15), and the corresponding change in residual 
matrix should be noted. The contribution of the unselected 
base in the forward stage, say iφ , can be recalculated by

⎡⎣ ⎤⎦
J i n M

y R

R
, 1, ...,n i

T
n

k
i

i
T

n
k

i

1
2

1

φ
φ

φ φ
∆ = = +

−
−

−
−( )

( )

( ) (19)

where

R R p p p p, , , , , .n
k

k k n1 1 1 1( )( ) =−
−

− +� � (20)

If there is a remaining base contribution that is more sig-
nificant than that of the reviewed base, the reviewed base is 
replaced by the most significant one left in the candidate pool. 
As a result, the performance of generated model can be further 
improved.

3. Model coefficient estimation method

Using the two-stage construction scheme, the structure of the 
model can be determined. The estimation of model coefficients 
is then achieved by a modified ETLBO in this paper. Among 
various meta-heuristic based methods, teaching–learning-
based optimization (TLBO) is one of the more popular new 
tools, and is proposed by Rao in [28]. It mimics a class of 
teaching process where the teacher and students share ideas to 
gain group knowledge. The algorithm turns out to be a pow-
erful tool for solving a number of constrained/unconstrained 
engineering optimization problems [29–31]. The original 
TLBO has potential to be enhanced by variants modifications 
for specific applications.

Some studies [32, 33] adopted an elitist strategy to increase 
the convergence speed of the TLBO. However, the number of 
elitists in these methods is fixed all along the iterative optim-
ization of the problem, due to which an improper selection of 
the number may lead to premature or slow convergence. To 
relieve this, a novel modified elitist TLBO is proposed in this 
paper. The number of elitists inertially changes with the itera-
tion process aiming to intelligently keep the elitists without 
largely gaining possibilities of being trapped in the prema-
ture. Two evolution phases, namely the teaching phase and 
the learning phase, are employed in the algorithm process. It 
is assumed that a population of particles is a class of students. 
The elitist strategy is embedded within the teaching phase.

3.1. Teaching phase

The teaching phase illustrates that a teacher shares his/her 
knowledge with the students. At first, the best performing 
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Table 1. Benchmark test results for different algorithms.

Sphere f1 Schwefel’s problem 1.2   f2 Rosenbrock   f3 Ackley   f4 Griewank   f5

wPSO 5.916  ×  102  ±  1.098  ×  103 4.203  ×  10−1  ±  8.133  ×  100 1.341  ×  105  ±  5.603  ×  105 7.860  ×  100  ±  5.885  ×  100 6.345  ×  100  ±  1.608  ×  101

PSO-CF 2.148  ×  103  ±  4.711  ×  103 4.260  ×  102  ±  5.454  ×  10−1 3.664  ×  105  ±  1.562  ×  106 1.063  ×  101  ±  7.878  ×  100 1.868  ×  101  ±  3.189  ×  101

DE 1.738  ×  101  ±  5.412  ×  101 3.751  ×  10−1  ±  4.624  ×  10−0 1.989  ×  103  ±  8.303  ×  103 2.652  ×  100  ±2.077  ×  100 1.174  ×  100  ±  5.353  ×  10−1

TLBO 1.120  ×  10−60  ±  9.675  ×  10−60 0.000  ×  100 ±  0.000  ×  100 2.892  ×  101  ±  1.837  ×  10−1 4.086  ×  10−15  ±  5.838  ×  10−15 0.000  ×  100 ±  0.000  ×  100

ETLBO 4.337  ×  10−90 ±  5.511  ×  10−89 3.295  ×  10−33  ±  6.735  ×  10−32 2.890  ×  101 ±  1.627  ×  10−1 3.494  ×  10−15  ±  8.605  ×  10−15 0.000  ×  100 ±  0.000  ×  100

Rastrigin   f6 Step   f7 Schwefel’s problem 2.21   f8 Schwefel’s problem 2.26   f9 Quartic   5 f10

wPSO 8.031  ×  101  ±  1.609  ×  102 6.299  ×  102  ±  1.116  ×  103 1.837  ×  101  ±  1.564  ×  101 −4.784  ×  103  ±  3.064  ×  103 1.609  ×  101  ±  8.850  ×  100

PSO-CF 1.192  ×  102  ±  1.283  ×  102 1.679  ×  103  ±  4.223  ×  103 2.362  ×  100  ±  2.441  ×  101 −4.871  ×  103  ±  2.501  ×  103 1.620  ×  101  ±  8.998  ×  100

DE 2.232  ×  102  ±  1.427  ×  102 1.982  ×  101  ±  5.736  ×  101 1.772  ×  101  ±  1.845  ×  101 −4.722  ×  103  ±  2.003  ×  103 1.384  ×  101  ±  4.228  ×  100

TLBO 0.000  ×  100 ±  0.000  ×  100 5.490  ×  100 ±  4.837  ×  100 1.326  ×  10−29  ±  1.858  ×  10−28 −  4.973  ×  103 ±  3.693  ×  103 9.410  ×  100  ±  2.090  ×  100

ETLBO 0.000  ×  100 ±  0.000  ×  100 6.278  ×  100  ±  3.434  ×  100 1.665  ×  10−44 ±  1.795  ×  10−43 −3.990  ×  103  ±  2.915  ×  103 9.364  ×  100 ±  2.275  ×  100

M
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student in the class will be selected as the teacher. The value 
of the difference DMeani between the teacher Ti and the mean 
knowledge of the students Meani in the ith is first calculated 
as follows,

T TDMean rand Mean ,i i F i1 ( )= ⋅ − (21)

where rand1 is a uniform distributed random number between 
0 and 1, and TF is an integer between 1 and 2 implemented as

= +( ( ))T round 1 rand 0,1 .F 2 (22)

The students then gain knowledge from the difference DMeani 
as shown below,

St St DMean ,ij ij i
new old= + (23)

where Stij
new and Stij

old are the jth new and old students of the 
ith iteration. The knowledge of the old and new students is 

evaluated and the better ones will be retained in the student 
population for the next phase.

3.2. Learning phase

The learning phase is the second step of TLBO and mimics 
the class learning of the student by personal interaction. In 
this section, every student will be given a chance to randomly 
find a classmate and gain knowledge from this classmate. The 
detailed implementation of the step is shown below,

⎪

⎪
⎧
⎨
⎩

St
St St St f St f St

St St St f St f St

rand if

rand if
ij

ij ik ij ik ij

ij ij ik ij ik

new
old

3

old
3

=
+ − <

+ − <

( ) ( ) ( )

( ) ( ) ( )
 

(24)

where Stij and Stik are the jth and kth students selected from 
the population in the ith iteration. The student Stij updates his 

Figure 1. Benchmark test results for different algorithms. (a) Griewank problem. (b) Rastrigin problem.

Figure 2. Schematic diagram of the membrane mirror fabrication system.
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knowledge by learning the deviation between him/herself and 
another randomly selected kth student Stik. The student with 
better knowledge performance will be the dominant learning 
direction and the learning student will update their knowledge 
accordingly.

3.3. Elitist strategy

The original TLBO performs well on the majority of bench-
mark tests in terms of exploration and exploitation ability 
[34]. However, it has slowly met some problems due to the 
average focus on the population and the missing of some 
important solutions. The elitist strategy aims to accelerate the 
convergence by maintaining the best performing solutions 
in each iteration rather than updating all the candidates [35]. 
These best performing particles act as elitists and are assumed 
to have a higher possibility of achieving the global optimum. 
In this paper, Ne elitists are reserved for the next generation. 
The number Ne is defined as inertial decreasing from NeMax to 
zero, shown as follows,

N Nround
IterMax Iter

IterMax
.e eMax⎜ ⎟

⎛
⎝

⎞
⎠= ×

−
 (25)

The decreasing number of elitists would significantly speed 
up the convergence speed in the first stage of the iteration pro-
cess with many elitists, and keep the exploitation ability in the 
later stage by removing the elitists for more potential trials. 
The elitists are selected by ascending order of fitness function 
evaluations and used in calculating the Meani of TLBO in (21). 
This ETLBO makes it easy to achieve the desired searching 
results with low computational complexity. It is suitable for 
estimating the coefficients of the mirror surface model.

In order to illustrate the performance of the new ETLBO 
algorithm, it was compared with some popular meta-heuristic-
based methods, including weighted PSO [36], PSO-CF [37] 
and classical DE/rand/1/bin [38] as well as the original TLBO 
method. The PSO method mimics bird swarms adjusting 
positions using social and cognitive learning methods, asso-
ciated with two learning parameters c1, c2, and weighting 
factor w. The DE method demonstrates individual interactions 
by crossover and mutation sections, with crossover rate CR 
and mutation rate F as the featured parameters. The simple 
variants used here are the most popular ones in their family. 
All the tests are implemented in 10 well-known functions as 
defined in [39] and shown below:

 (f1) Sphere function: dimension  =  30, [−100, 100];
 (f2) Schwefel’s problem 1.2: dimension  =  30, [−100, 100];
 (f3) Rosenbrock function: dimension  =  30, [−30, 30];
 (f4) Ackley’s function: dimension  =  30, [−32, 32];
 (f5) Griewank function: dimension  =  30, [−600, 600];
 (f6) Rastrigin function: dimension  =  30, [−5.12, 5.12];
 (f7) Step function: dimension  =  30, [−100, 100];
 (f8) Schwefel’s problem 2.21: dimension  =  30, [−100, 100];
 (f9) Schwefel’s problem 2.26: dimension  =  30, [−500, 500];
(f10) Quartic function: dimension  =  30, [−1.28, 1.28].

To compare the performance of the algorithms on a fair 
basis, the population number is set as 30 and the function 

evaluations are set as 15 000. The weighted PSO uses c1  =  1, 
c2  =  3, wmax  =  0.9, wmin  =  0.4; for PSO-CF, c1  =  c2  =  2.05, 
K  =  0.729; and for classical DE, F  =  0.7, CR  =  0.5. The 
NeMax of the ETLBO method is experimentally set as 8. To 
eliminate experimental incidents, 30 different runs were 
employed. The search results are shown in table 1 with mean 
values and standard deviations for each parameter setting 
respectively.

It can be observed from table 1 that the ETLBO ranks first 
in benchmark tests f1, f3, f4, f8 and f10. However, it ranks second 
in f2, f7 and f9 tests, outperformed by the original TLBO. This 
is due to the fact that the fast convergence may cause some 
unexpected missing of the global optimum and trapping in 
the local minimum. In the test of the f5 and f6 problems, both 
original TLBO and ETLBO achieve the global optimum. To 
compare the optimal results of these two tests, the average 
converging speed of 30 runs of all five methods on solving 
the Griewank and Rastrigin benchmark problems are shown 
in figure 1. Both figures 1(a) and (b) show the superb perfor-
mance of the ETLBO method, which achieves near optimum 
within only 20 iterations.

4. Experiment and results

This paper investigates the surface measurement problem 
in membrane mirror manufacture. The proposed modeling 
method is used for mirror surface measurement during the 
fabrication process. In other words, the mirror surface is 
reconstructed by identification using information measured 
by several distance sensors.

4.1. Experimental setup

In order to shape the membrane mirror, a negative pressure 
approach is adopted. The negative pneumatic forming device 
is a closed loop system, including controller, sensor and actu-
ator, shown in figure  2. A mechanical mold with a precise 

Figure 3. Partial enlarged detail of the installation of range finders.
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parabolic surface is utilized as the frame of the desired mem-
brane mirror. The membrane material is clamped on the frame 
edge and its shape is changed by the negative pressure. To 
generate vacuumed force, the mechanical frame is designed 
to have a hollow structure, with the air pipeline assembled 
on its sub-surface. As the power source, a draught fan gener-
ates suction at different amplitudes according to the control 
signal from the controller. Meanwhile, an air-valve array is 
also designed to provide an additional control channel for 
adjusting the power of the negative pressure. An industrial 
computer with a VME (VersaModule Eurocard) bus is selected 
as the control unit for its excellent real-time performance and 
high fault tolerance capability.

Different from traditional surface measuring methods, a 
sensor array is designed inside the top surface of the mold 
frame, collecting shape information on the membrane mirror 
and providing training data to the surface reconstructing 

algorithm. In this paper, an ultrasonic range finder mic  +  25/D/
TC is selected to constitute this sensor array. It could achieve 
0.015 mm resolution in the range of 30–350 mm. Further, this 
sensor is non-sensitive to environmental change since it self-
compensates for temperature and pressure. Due to space and 
cost limitations, it is not possible to make the sensor array 
too large. On the other hand, more training data for surface 
identification could be obtained by increasing the quantity of 
sensors. To reconcile this contradiction, an electromechanical 
unit is built to enable the sensor to swing in a small range 

2.5 , 2.5[ ]θ∈ − ° ° , with 0.5 ° angle resolution, as illustrated in 
figure 3. In the experimental system, the sensor array is com-
posed of 36 range finder units distributed on the top surface of 
the frame, and the desired surface would not be affected by the 
swing mechanism of the sensor array.

Figure 4. Information flow chart of the closed loop.

Table 3. Sensibility analysis of parameter settings for different 
optimization algorithms.

Optimization 
algorithm Parameter setting

RMS  
(mm)

ETLBO NeMax  =  2 0.0092  ±  0.0011
NeMax  =  4 0.0035  ±  0.0013
NeMax  =  8 0.0011  ±  0.0006
NeMax  =  15 0.0113  ±  0.0024
NeMax  =  20 0.0264  ±  0.0029

PSO c1  =  1, c2  =  3, w  =  0.9 0.0235  ±  0.1335
c1  =  1.5, c2  =  2.5, w  =  0.9 0.0473  ±  0.2471
c1  =  2, c2  =  2, w  =  0.9 0.0357  ±  0.1774
c1  =  1, c2  =  3, w  =  0.7 0.0371  ±  0.2539
c1  =  1, c2  =  3, w  =  0.5 0.0647  ±  0.2775

DE F  =  0.9, CR  =  0.9 0.1195  ±  0.2315
F  =  0.7, CR  =  0.9 0.0879  ±  0.6943
F  =  0.5, CR  =  0.9 0.2049  ±  0.7147
F  =  0.7, CR  =  0.7 0.0932  ±  0.6249
F  =  0.7, CR  =  0.5 0.1127  ±  0.5398

Table 2. Model terms obtained by different methods.

Method Selected terms
RMS  
(mm)

First stage: 
FRA

{1 3 4 5 9 10 12 13 18 20 22 29 33 34 46 47 
49 50 51 52 53 57 58 61 62 67 69 71 73 75 
81 82 83 85 87 90 94 101 103 107 109 112 
114 115 116 120 122 126 129 134 136 137 
138 140 144 146 151 152 153 155 160 161 
163 170 173 176 178 180 184 186 187 188 
189 191 192 193 195 197 198 200 201 205 
206 208 214 220 224 227 230 231}

0.0052

Two-stage Difference to FRA: {13 52 57 69 101 107 
112 122 129 153 163 184 201 206 227}

0.0036

Change to: {7 21 59 63 72 89 102 106 123 
142 156 168 175 196 218}
The other terms are left.

OLS All 231 terms in the candidate pool 1.6235

Meas. Sci. Technol. 27 (2016) 124005
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Both the surface reconstruction and control strategy are 
implemented in the motion control card, using the digital 
signal processor (DSP) TMS6414t as the computational core. 
This DSP could operate at a main frequency of 1 GHz, pro-
viding powerful computational ability. To transfer data among 
the closed loop units, such as the data acquisition card, motion 
control card and power amplifier, a VME bus with 200 Mbit s−1  
transfer speed is used, supplying an extra real-time guarantee. 
An information flow chart of the manufactured system is 
shown in figure 4

4.2. Simulation discussion and data analysis

A two-stage model selection algorithm is used to measure 
the surface of the membrane mirror. To evaluate the mea-
suring performance, the negative pressure is kept constant to 
maintain the expected mirror surface (already formed). The 
distance information collected by the sensor array is used as 
training data for the identification algorithm.

As mentioned above, there are 36 sensors in the array, 
and each sensor can generate 11 training points by swinging. 
Therefore, there are in total 396 training points for surface 
reconstruction. Considering the layout of the sensor array, a 
coordinate transformation should be conducted on the dis-
tance data, which is defined as

x y z x y z
l

x y z
, , , , 1

cos
ij ij

ij j

B B B
2 2 2

( ) ( )
⎛

⎝

⎜
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⎞

⎠

⎟
⎟

θ
= −

+ +
′ ′ ′ (26)
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 (27)

where x y z, ,B B B i( )  denotes the rectangular coordinates of 
the ith sensor, lij denotes the measurement of the ith sensor 
with angle θ ∈ − ° − ° − ° − ° ° ° ° °{ 2.5 , 2 , 1.5 , 1.0 , 0 , 0.5 , 1.0 , 1.5 ,j  
° °}2.0 , 2.5 , and ϕ and σ denote the angle of x y z, ,B B B i( )  in the 

polar coordinate system of the horizontal plane and vertical 
plane respectively. x y z, , ij( )′ ′ ′  is the training data used in the 
model construction method.

As the most popular optical analysis tool, Zernike poly-
nomials with degree numbers from 0 to 20 are generated 
and include 231 terms. The membrane mirror in this paper 
lies in a rectangular region rather than a unit circular region, 
which means that the properties of the original Zernike poly-
nomials cannot be maintained. It is necessary to construct a 
novel set of Zernike terms. According to reference [25], the 
original Zernike terms could project into a new defined region 
by Gram–Schmidt orthogonalization. The procedure could be 
expressed as
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Figure 5. Model performance based on different coefficient estimation methods.

Table 4. Performance comparison of different coefficient 
estimation methods.

Modeling method RMS (mm) Peak error (mm)

ETLBO (our method) 0.0015 0.0086
TLBO 0.0089 0.0112
Particle swarm optimization 0.6021 2.7293
Differential evolution 0.1258 0.4783
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0 0 0
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where Zi denotes the standard Zernike term; Pi is the novel 
constructed Zernike term; ai and bi are coefficients to be deter-
mined; and m and n are set to be 40 and 50 respectively, based 
on the dimensions of the rectangular region. As a result, the 

obtained novel Zernike terms are still orthogonal in the non-
circular region and possess clear physical meanings, which 
could be used as a candidate basis pool for reconstructing 
the mirror surface. Next, 196 sampling data are employed 
for identification, and the remaining 196 points are used to 
validate the model performance. The x and y coordinates are 
regarded as model input, while the value in the z direction is 
taken as the output. Applying a two-stage strategy with the 
root-mean-square (RMS) as the cost function, 90 terms are 
selected from 231 candidates, with the stopping criterion set 
at 0.02 mm. The index number of model terms selected by 
FRA and the two-stage method are listed in table 2. As seen 

Figure 6. The expected mirror surface.

Figure 7. The reconstruction error surface.
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in table 2, the model performance is further improved by the 
refinement operation in the second stage, by replacing some 
bases selected in the first stage. Because the acquired data 
contains redundant information, the corresponding informa-
tion matrix is highly ill-conditioned. As a result, although the 
OLS method makes use of all the candidate bases, the error 
of the obtained model is still far beyond the tolerance. These 
results show that the two-stage strategy could make a compact 
model with desirable performance. Further, it is non-sensitive 
to ill-conditioned problems.

After the model structure is determined, the coefficient of 
each model basis can be optimized using the aforementioned 
ETLBO. The motivation of introducing an elitist strategy is 
to avoid premature convergence and speed it up. Although a 
number descending strategy is adopted in the modified ETLBO 
in this paper, the initial number of elitists or the maximum 
elite proportion in the population needs to be discussed. The 
convergence speed increases with the elite number. However, 
too large a ratio of elitists in the population will cause pre-
mature convergence and a fall in the local minimum trap. Too 
small an elite number slows convergence, weakens the elite 
strategy, and means optimal performance cannot be obtained, 
yet an overwhelming penetration of elitists in the population 
risks causing premature convergence. In the application of 
ETLBO in the surface reconstruction problem, different values 
of elitist number NeMax are tested for the linear-in-the-param-
eters model of the expected mirror surface obtained by the 
two-stage method. Moreover, three counterpart algorithms, 
namely weighted PSO [36], TLBO [28] and DE/rand/1/bin 
[38], compared in the benchmark tests are also employed for 
comparison here. Moreover, to analyze the sensibility of mul-
tiple param eters in each method, five different parameter set-
tings are tested for each algorithm and 30 different runs are 
employed. The number of the population is set as 30 and the 
maximum iteration is set as 400; the simulation results are 
listed in table 3. According to the testing results, the repeat-
ability of each algorithm is validated and reasonable parameter 
settings of each method are obtained: the weighted PSO uses 
c1  =  1, c2  =  3, w  =  0.9; the parameters F  =  0.7, CR  =  0.9 are 
set for DE; and the NeMax of ETLBO is set as 8, which could be 
used in the following surface reconstruction experiment.

In practice, the coefficients of the surface model are 
searched using these optimization methods with the afore-
mentioned settings. The number of the population is set as 
30 and the maximum iteration is set as 400, while the stop-
ping criterion is set as 0.02 mm. The corresponding results are 
listed in figure 5 and table 4.

As seen from table 4, the modified ETLBO ranks first in 
both the RMS and the peak error of the reconstructed surface. 
The expected surface and reconstruction error are shown in 
figures 6 and 7 respectively. Using the constructed model, the 
mirror surface measuring accuracy could reach 15 µm.

5. Conclusion

In this study, the membrane mirror surface measurement 
problem is solved from the point of view of system identi-
fication. The mirror surface is constructed in the form of a 

linear-in-the-parameters model, using transformed Zernike 
polynomials which are suitable for the rectangular region as a 
basis function. The model terms are selected using a two-stage 
strategy. Then the corresponding coefficients are optimized by 
a modified ETLBO algorithm.

From analysis of the simulation results and the experi-
ment conducted on a pneumatic membrane mirror fabrica-
tion system, the two-stage strategy is shown to provide an 
effective way to maximize the approximating performance 
of Zernike polynomials and generate a parsimonious model. 
Furthermore, this recursive modeling method behaves well 
with ill-conditioned problems, while the OLS is out of opera-
tion. At the same time, the coefficients estimated by the modi-
fied ETLBO also help to improve the model performance in 
comparison with other heuristic methods. According to simu-
lation analysis, the number of elitists in ETLBO should be 
selected as 25% of the total population in order to reconcile 
the contradiction between accuracy and convergence speed. 
Validated by the testing data, the surface measuring accuracy 
of the obtained model can reach 15 µm. The proposed sur-
face measuring method is also applicable to other manners 
of membrane mirror manufacture, as long as enough training 
data can be acquired for the identification method.
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