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Due to the difficulty of manipulating muscle activation in live, freely swimming fish, a
thorough examination of the body kinematics, propulsive performance, andmuscle activity
patterns in fish during undulatory swimming motion has not been conducted. We propose
to use soft robotic model animals as experimental platforms to address biomechanics
questions and acquire understanding into subcarangiform fish swimming behavior. We
extend previous research on a bio-inspired soft robotic fish equipped with two pneumatic
actuators and soft strain sensors to investigate swimming performance in undulation
frequencies between 0.3 and 0.7 Hz and flow rates ranging from 0 to 20 cm

s in a
recirculating flow tank. We demonstrate the potential of eutectic gallium–indium (eGaIn)
sensors tomeasure the lateral deflection of a robotic fish in real time, a controller that is able
to keep a constant undulatory amplitude in varying flow conditions, as well as using Particle
Image Velocimetry (PIV) to characterizing swimming performance across a range of flow
speeds and give a qualitative measurement of thrust force exerted by the physical platform
without the need of externally attached force sensors. A detailed wake structure was then
analyzed with Dynamic Mode Decomposition (DMD) to highlight different wave modes
present in the robot’s swimming motion and provide insights into the efficiency of the
robotic swimmer. In the future, we anticipate 3D-PIV with DMD serving as a global
framework for comparing the performance of diverse bio-inspired swimming robots
against a variety of swimming animals.
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1 INTRODUCTION

Bio-inspired and bio-mimetic research have both grown steadily over the last 2 decades and allowed
the development of modern, more life-like robots inspired by natural objects. Despite those more
sophisticated designs, robots still fall short of the universality and robustness of animal movement
and lag behind in important areas such as sensing capabilities and perturbation responses. Geckos
run with ease across water (Nirody et al., 2018), crocodiles roll in complex patterns to kill their prey
(Fish et al., 2007), and despite continually changing flow conditions and strong locomotor
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requirements, fish may travel upstream for weeks while fasting
(Crossin et al., 2004). Animals outperform robotic platforms and
are more resilient than traditional robots in large part because of
their compliant structures with integrated sensing capabilities,
which enable them to respond to unexpected changes and
improve stability through morphological intelligence
(Woodward and Sitti, 2018; Siddall et al., 2019; Miriyev and
Kovač, 2020; Shield et al., 2021).

Our aim of bio-inspired robotics is threefold: We want to
understand the fundamental processes of nature, to develop the
ability to mimic parts of it, and eventually to engineer robotic
platforms with similar properties. Recent development in soft
robotics has attempted to expand on nature’s functionality by
creating robots made of materials more akin to those used in
living beings (Ijspeert, 2020). The advantages of soft robotics are
numerous: their ease of construction, inherent safety, and ability
to handle fragile objects or move through unstructured terrains
are all promising characteristics. Among the most often used
modes of actuation are elastomeric actuators, hydrogels, form
memory alloys (SMA), and electroactive polymers (EAP).

One important area of focus for soft robotics is swimming
animals and aquatic locomotion, where models of extremely
mobile systems can be found (Lauder et al., 2007; Kovač,
2013). Fish are agile swimmers (Colgate and Lynch, 2004),
capable of moving in rapidly evolving flow environments and
undergoing strenuous locomotion demands such as swimming
upstream for weeks while fasting (Crossin et al., 2004). They
achieve this high energy efficiency primarily by using the stiffness
of their body structure (Lauder et al., 2011) to change the
amplitude and frequency of their undulation (McHenry et al.,
1995). By matching the frequency of body undulation with the
incident flow, they swim efficiently and convert energy from the
fluid to the body (Akanyeti et al., 2016; Beal et al., 2006; Liao and
Akanyeti, 2017). Caudal fin oscillation is therefore one of the
most effective modes of locomotion in terms of transport costs
(Ludeke and Iwasaki, 2019; Rayner, 1986), as well as underwater
speeds (Block et al., 1992). This results in passive propulsion that
propels even dead fish specimens forward (Liao et al., 2003).

The study of these fish locomotion habits culminated in the
creation of a number of soft robotics capable of moving in liquids
(Struebig et al., 2020; Nguyen and Ho, 2021): Robotic fish
mimicking the motion of tuna (Barrett, 1996), even exceeding
their hunting speeds (Zhu et al., 2019), robots replicating the
rapid “C-start” maneuver seen in carangiform fish (Marchese
et al., 2014), or robotic platforms powered acoustically and
capable of swimming in three dimensions (Katzschmann et al.,
2018, 2016). Additionally, lateral body movements and reflex-
base jumping skills have been transferred to robots (Fan et al.,
2005; Wright et al., 2019; Kim J. et al., 2020; Zhao et al., 2020;
Yang et al., 2021). The mechanisms by which fish use their soft
structures, the interaction between active and passive stiffness
control, as well as the internal dynamics, are all under-explored
and hold significant potential for bio-mimetic technology transfer
(Low and Chong, 2010; Low et al., 2010). Although full passive fin
systems will advance through water in the same manner as fish,
variations in flow velocity or frequency have an impact on thrust
output and drag (Jayne and Lauder, 1996; Yun et al., 2011, 2015).

To mimic the ability of fish to adjust the amplitude of their
swimming body undulations and fully exploit soft surfaces, it is
required to control those aspects based on sensory information.

Qualitative hydrodynamic investigations are required to
determine how different swimming styles affect swimmers’
thrust performance. The goal of this paper is to enhance
studies of living animals by showcasing a simple, robophysical
fish platform, enabling the exploration of undulatory locomotion
parameters during different swimming and flow conditions,
including characteristics not usually seen in swimming
animals. Our robophysical fish platform can be used to
experimentally investigate questions pertaining to the
fundamentals of fish swimming relating Strouhal number to
swimming efficiency (Nudds et al., 2014; Eloy, 2012; Floryan
et al., 2018) to formulate relevant conservation planning for fish
populations in the wild (Link et al., 2017).

Inspired by the rainbow trout, we perform flow experiments
with a soft robotic fish platform, consisting of two pneumatically
actuated soft actuators and equipped with soft strain sensors. We
investigate undulation frequencies ranging from 0 to 1 Hz and
flow speeds of 0 to a maximum of 20 cm

s . We first assess the sensor
performance of the soft strain sensors, and then explore the
controller behavior in the different flow and frequency
conditions. We then perform a Particle Imaging Velocimetry
(PIV) analysis, measuring the flow angles produced by the
undulatory motion, assessing the thrust production of the
robot with the wake power model and in the end, we analyze
the flow field behind the robotic platform using Dynamic Mode
Decomposition (DMD).

With bio-inspired robotics, we can explore new capabilities
and hopefully narrow the gap between human-made robots and
their natural counterparts. Not only is reverse engineering used to
improve robotics, but it also allows biology to test hypotheses that
would be impossible to test with live specimens, and hence serves
as “model animals” for biomechanics science (Siddall et al., 2021;
Nyakatura et al., 2019). The present study provides insights into
the control strategies adopted from the rainbow trout and the
resulted thrust generated.

2 METHODS

The proposed soft-robotic system is composed of a robotic fish,
consisting of two soft pneumatic actuators that are attached to a
flexible panel with stiffness comparable to that of a fish body and
equipped with integrated eutectic gallium–indium (eGaIn)
sensors (Figure 1A). A PID controller was used to control the
undulation movement and conduct velocity and frequency
sweeps in a recirculating flow tank.

2.1 Soft Robotic Fish Platform With eGaIn
Sensors
A simple, fish-like geometry was constructed representing the
spine and fin of the animal, with a core plastic sheet (Plastic Shim
Stock™ 0.5 mm, Artus). A silicone fast-PneuNet actuator molded
with uncured elastomer (Dragon Skin™ 20, Smooth-On)
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(Mosadegh et al., 2014), 10 cm in length and 2 cm in height, was
attached with a cured silicone sealant (ELASTOSIL™ E43,
Wacker) to both sides of the sheet, representing the muscles
of the fish for lateral undulation motion. The segmented and
chambered soft actuator allows for a smooth bending pattern,
similar to the undulation motion of fish (Figure 1A; Figure 2A).

The fabrication process for the soft strain sensors is shown in
Figure 1B, based on the work from (Park et al., 2010). For the first
layer with the microchannel pattern, uncured silicone rubber
(EcoFlex™ 0030, elastic modulus E � 125 kPa) is poured into a 3D
printed (Objet30™ Objet Geometries Ltd.) mold. For the second

layer, uncured liquid silicone is coated on a flat substrate with a
thickness of 1 mm. Both layers are than cured for an hour at 60°C
in a convection oven. The flat layer is then spin-coated (1,000 rpm
for 60 s) with uncured silicone and partially cured at room
temperature for 10 min. Then, the layer with the microchannel
pattern is gently placed on the flat layer, and the combined
structure is cured again.

After bonding, conductive liquid metal eutectic Gallium-
Indium (eGaIn, Sigma-Aldrich) is injected into the
microchannels using two syringes, one for injection and the
other to release the air captured in the channels during

FIGURE 1 | (a) Schematic of soft robotic fish platform (b) Soft sensor fabrication process: (A) Uncured silicone rubber is poured into the 3D printed mold. (B) To
fabricate the unpatterned second layer, uncured liquid silicone is coated on a flat substrate. (C) To bond the layers, the flat layer is spin-coated with uncured silicone and
partially cured at room temperature. (D) The layer with the micro-channel-pattern is gently placed on the flat layer, and the combined structure is cured again. (E) After
bonding, eGaIn is injected into the micro-channels using two syringes. (F) Two wires are connected and securely attached with a silicone adhesive. Image
reproduced from (Lin et al., 2021).

FIGURE 2 |Overview of the robot and its performance. (A) Top view of soft robotic fish with soft actuator and sensor (Lin et al., 2021). (B) Sensor linearity, sampled
at 100 Hz over 1s of undulation at 1 Hz (Lin et al., 2021). (C) Sensor error histogram, with a fitted Gaussian distribution (Lin et al., 2021). (D) Overview of all the
components of the setup to control the soft robotic fish. (E) Illustration of the controller implemented to adapt to external disturbances. All images reproduced and
modified from (Lin et al., 2021).
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fabrication. Two wires are connected to both ends of the
microchannel via the syringe holes. Finally, a silicone glue (Sil-
Poxy, SmoothOn™) is applied and cured around the holes into
which the wires are inserted, firmly holding the wires and sealing
the holes.

Changes in the cross-sectional region of the eGaIn-filled
channels result in changes in electrical resistance, which can
be used to measure the bending amplitude of the soft robot. The
sensors have low temperature sensitivity (Vogt et al., 2013) and
the liquid’s incompressibility makes them ideal for water
experiments with change of ambient pressure (Hellebrekers
et al., 2018; Schwab et al., 2021). For calibration testing, the
sensor was bent in the undulation range of −50 to 50°, and during
this angle sweep the voltage was sampled. In comparison to the
ground truth kinematics obtained from videography, the sensor
response was linear (R2 � 0.952, Figure 2B), with a relative error
well described by Gaussian noise with a standard deviation of
0.4% (Figure 2C).

In this work, hook-and-loop fasteners instead of embedded
fabric like in (Mengüç et al., 2014) were used, for quick
adjustment and replacement of the sensors onto the soft
actuators.

2.2 Model and Controller Design
To characterize swimming robots, various models for undulatory
locomotion have been proposed (Salumäe et al., 2012; Bliss et al.,
2013). In this paper, a data-driven, lumped parameter model was
used, which is a popular method when modeling compliant
robots (Sadler and Sandor, 1973; Wang and Huston, 1994;
Nishikawa et al., 2015). The soft silicone robot was treated as
a chain of rigid elements, which are connected by hinges with
constant stiffness and damiping coefficients. The parameter of the
hinges were then optimized with genetic algorithm using
experimental ground-truth kinematics (Lin et al., 2021).
Compared to finite element simulations (Allard et al., 2007) or
machine learning tools (Gillespie et al., 2018), this data-driven
approach is computationally less demanding while still managing
to capture the behavior of the soft robotic fish (Lin et al., 2021).

The model uses the pressure as input and takes the co-
contraction effects as well as hydrodynamic forces into
account, successfully predicting the angle and position of the
soft robotic fish and simulating the ground-truth behavior. This
enables a faster testing of a controller, without the need of
constant experiments for verification. In the future, the model
will hopefully accelerate more sophisticated control designs and
guide the further development of soft swimming robots.

The amplitude control system is designed in Simulink
(MATLAB™ R2020b) and a flow chart is shown in Figure 2E.
A proportional-integral-derivative (PID) controller is used for
pressure adjustments in response to the measured curvature. Fish
can be observed to adjust their undulation frequency to different
flow conditions, while their amplitude remains constant (Tytell
and Lauder, 2004). The goal of the controller is therefore to
maintain a specific amplitude across a range of undulation
frequencies and flow speeds, by controlling the pressure. The
verification of the controller performance was previously done in
a static tank (Lin et al., 2021) (Figure 2A) and we now evaluate

the output of such a controller in a flow tank with varying
flow rates.

Figure 2D shows the components for the controller and the
experimental setup. Through a digital pressure regulator
(ITV0050-3BS, SMC), 2.5 bar compressed air is supplied to the
system. The PneuNet actuators are controlled by two directional
solenoid valves (SYJ7320-5LOU-01F-Q, SMC) respectively. A
micro-controller (ATmega328 on Arduino Uno, Arduino)
sends the control signals to the valves as well as to the
pressure regulator. The robotic platform is mounted on a
150 mm long, 20 × 30 mm rectangular aluminum section with
a 2 mm wall thickness. Currently, the controller’s response is
limited by the use of peak amplitude, which suggests that the
control input is changed only twice per oscillation cycle.

2.3 Experimental Setup
Particle Image Velocimetry (PIV) (Willert and Gharib, 1991) is
an establishedmethod used to study flow phenomena (Sfakiotakis
et al., 1999) and is well adapted for investigating the physics
surrounding the soft robotic fish platform discussed in this paper.
Experiments were conducted at Swiss Federal Laboratories for
Material Science large scale water flume (Engineering Laboratory
Design, Inc.). This facility has a cross section of 0.6 × 1 m2 and a
fully transparent, 6 m long test section (Figure 3A). The system is
driven by a variable speed pump, allowing precise control of the
water bulk speed from 0.02 m/s to 1.5 m/s. Controlled velocity
profiles at the inlet and outlet of the test section are ensured by a 6:
1 inlet contraction and outlet diffuser with guide vanes.

The tail motion and velocity fields were captured using a PIV
system that consists of a pulsed Nd:YAG laser, double cavity, with
100 mJ per pulse at 532 nm and a maximum repetition rate of
100 Hz and two 5.5 Mpx SCMOS cameras. The laser beam was
guided through a laser arm to the sheet optics, allowing to
illuminate a cross section of the robotic fish and the PIV
tracers on a horizontal plane at 1/3 the foil height from the
bottom. The PIV cameras were positioned underneath the water
flume floor and calibrated simultaneously with a 3D calibration
target. The cameras were run in double frame mode at 24 fps and
equipped with 50 mm focal-length lenses achieving a spatial
resolution of 10 px/mm. The combined field of view of both
cameras covered an area of 400, ×, 200 mm, aligned with the flow
direction. The field of view of Camera 1 was centered on the
robotic fish, whereas Camera 2 was used to retrieve the velocity
field at the trailing edge of the flexible foil. The origin of the
coordinate system was placed at the leading edge of the
robotic fish.

The position of the tail of the robotic fish was retrieved by
segmentation and thresholding of the recorded images with an
algorithm developed in MATLAB. Thanks to short pulsed laser
illumination (5 ns pulse duration) the images showed little or no
blurring, allowing us to reconstruct the position of the tail with an
accuracy of ± 1 mm.

For the PIVmeasurements, spherical, glass seeding particles of
10 microns were used, while the laser sheet thickness was about
2 mm, in view of the strong 3D structure of velocity field. The
images were stitched side-by-side and processed with a multi-grid
approach having final interrogation window size of 32 × 32 Px

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7917224

Schwab et al. Swimming Performance Explored With Biorobot

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


and 50% overlap, yielding to a physical resolution of 0.625
velocity vectors/mm. For each trial, 1,000 images have been
recorded to enable the calculation of the mean and rms
velocity field, as well as Dynamic Mode Decomposition
(DMD) (Schmid, 2010) of the velocity field.

2.4 Test Parameters
The closed loop controller of the soft robotic fish has been tested
at different flow conditions. First the water flow speed has been
adjusted step-wise from 0 cm

s to 19.4 cm
s , while the actuation

frequency was kept constant at 0.55 Hz. Afterwards, the
actuation frequency has be varied step-wise from 0.3 to
0.7 Hz, while the water flow speed has been left constant at
5.5 cm

s . The exact test parameters of the water flow speed
sweep and of the frequency sweep are given in Table 1 and 2,

respectively. Before varying the flow speed and frequency a
reference trial (No. 1 and 7) at 0 cm

s and a frequency of
0.55 Hz have been performed.

3 RESULTS AND DISCUSSION

The relationship of the amplitude, frequency, and water flow
speed is investigated by examining the strain sensor reading, the
tail location derived from the film, and the flow field visualized by
PIV. To analyze a wide range of the characteristics of the soft
robot, a water flow speed sweep between 5 cm

sec and 20 cm
sec as well as

cyclic undulation frequencies of the soft fish platform were tested
ranging from 0.3 to 0.7 Hz.

3.1 Sensor Performance
Figure 4 shows the sensor reading performance for two
exemplary trials: trial 8 was performed at a undulation
frequency of 0.3 Hz and a constant flow velocity of 5 cm

sec
(Figures 4A,C), while trial 11 (Figures 4B,D) was conducted
at a frequency of 0.7 Hz. By performing a Discrete Fourier
transform of the measurements of the undulatory soft robot,
we observed rather high second harmonics in at 0.3 Hz
(Figure 4A) compared to 0.6 Hz (Figure 4B). Those second
harmonics are hypothesized to be introduced by unwanted
structural interactions between the robot’s center plastic sheet
and the actuators.

3.2 Flow Field Measurements
We analyzed the average flow speed around the swimming fish by
PIV experiments. In the time averaged flow field, a clear upside
V-shape pattern can be observed (Figures 5A,B), with two
distinct jets originating from the tail motion. The angle
enclosed by the jets varies in the different trials.

By plotting the angle enclosed by the jets as a function of the
different flow parameters, we can illustrate how they affect the
time-average features of the flow field associated to the tail

FIGURE 3 | Experimental setup at the Flow Tunnel at Empa Zürich for the PIV experiments. (A)General setup of the flow tunnel. (B) The fishrobot was placed in the
water flow tank, and different flow speeds as well as undulation frequencies have been tested.

TABLE 1 | Flow speed sweep.

Trial No Flow [cms ] Freq. [Hz]

1 0 0.55
2 5.3 0.55
3 8.8 0.55
4 12.3 0.55
5 15.8 0.55
6 19.4 0.55

TABLE 2 | Frequency sweep.

Trial No Flow [cms ] Freq. [Hz]

7 0 0.55
8 5.5 0.3
9 5.5 0.4
10 5.5 0.5
11 5.5 0.6
12 5.5 0.7
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FIGURE 4 | Comparison of sensor results and video analysis of the tail position during trial 8 and 11. (A) The Fast Fourier transform spectrum of closed loop trial
08 at 0.3 Hz undulation input frequency. (B) The Fast Fourier transform spectrum of closed loop trial 11 at 0.6 Hz undulation input frequency. (C) The measured
resistance over time compared to the tail position extracted from the video of trial 08. (D) The measured resistance over time compared to the tail position extracted from
the video of trial 11.

FIGURE 5 | Comparison of the average flow fields at different undulation frequencies, indicating two water jets deflected at changing angles. (A) Average flow field
during closed loop control and 0.3 Hz undulation frequency (narrow angle). (B) Average flow field during closed loop control and 0.6 Hz undulation frequency (wide
angle). (C) Water flow angle measured at x � 233 mm and tail displacement depending on the water flow. (D) Comparison of Amplitude depending on the undulation
frequency for open loop (FF) and closed loop (CL).
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motion. Figure 5C depicts the flow angle and displacement as a
function of the water flow speed in the recirculating flow tank.
The closed loop control is able to adjust the power input to the
water flow speed, maintaining a rather constant displacement up
to a water flow speed of 15cms .

Figure 5D compares the performance of the robotic platform
in feed forward and closed loop control over a range of
frequencies. We can observe that controller keeps the
amplitude of the soft fish approximately constant while in feed
forward control, the amplitude drops significantly with increasing
frequency. This illustrates the potential of the controller to mimic
the swimming behavior of fish, adapting the parameters to keep a
constant tail-tip amplitude in changing environments.

3.3 Wake Power
Although the actual flow field exhibits a 3D structure, an
approximate estimate of the wake power (the net energy flux)
can be obtained from the 2D PIV measurements. Previous
experimental work using flapping foils (Triantafyllou et al.,
2000) and swimming live fish (Fish and Lauder, 2005)
demonstrates that the Strouhal number, a fundamental
dimensionless parameter, dominates the hydrodynamic

performance of fish locomotion, because it correlates with
vortex shedding dynamics (Eloy, 2012; van Leeuwen et al., 2015).

St � fAtail

vswim
,

where vswim is the mean swimming speed during undulatory
movements, Atail is the peak-to-peak amplitude of the tail tip, and
f the frequency.

Studies suggest, that the optimal number is in general optimal
between 0.1 and 0.55 St, (0.25–0.35 for carangiform swimmers
and 0.4–0.5 for anguilliform swimmers) (Nudds et al., 2014;
Taylor et al., 2003; Floryan et al., 2018).

Assuming a steady-state, uniform velocity profile upstream
and a 2D flow field of thickness equal to the height of the robot,
the wake power was estimated by integrating the kinetic energy
measured by PIV analysis (TytellSchultz and Webb, 2002; 2007).
We computed the kinetic energy flux under 2D assumption from
the PIV averaged flow fields on a control volume surrounding the
swimmer. In this case the upstream input can be expressed as
1
2 ρhwU

3, where U is the flow speed, h the height of the robot, and
w the width of the wake. Therefore, the net wake power can den
be expressed by

FIGURE 6 |Wake power coefficient and Thrust in relation to the water flow speed and to the undulation frequency (Data for thrust from (Jusufi et al., 2017). (A) Cp

and thrust decreasing with increasing water flow speed. (B)Cp and thrust increase with increasing undulation frequency.Cp reachesmaximum at 0.6 Hz, thrust at 0.7 Hz
(at flow speed of 5.3cms ). (C) A value range similiar to swimming fish can be observed for the Strouhal Number, which measures the efficiency of the swimmer. Values for
C_P and Thrust agree, with a local maximum at 4.5 St.
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Pwake′ � 1
2
ρU∫ U + u( )2 + v2 + w2 − U2[ ]dS

where u, v and w are the axial, lateral and vertical fluid velocities
produced by the robot, respectively. The power coefficient Cp is
obtained by normalizing the wake power by 1

2 ρ2 hLU3, where L is
the length of the swimmer ((Schultz and Webb, 2002; Tytell and
Lauder, 2004; Krueger, 2006)).

In the present case wemeasured aCp close to zero at a water speed
of roughly 15 cm

s , which would indicate an estimate of the maximum
robotic fish swimming speed. At 5.3 cm

s , we measured an optimal
actuation frequency of 0.6 Hz. InFigure 6, we additionally plotted the
results from open-loop experiments with a force sensor attached to
the robotic fish platform (Jusufi et al., 2017). We can observe that the
results from the PIV experiments agree qualitatively with the results
fromprevious experiments. The slight differencesmight be explained,
besides the limitations of this approach, by the new controller
implemented in this study, which leads to a slightly different
optimal frequency (0.6 Hz compared to 0.8). Furthermore, the
wake power model estimates an higher self propelled speed as the
Cp equal zero at roughly 15 cm

s , while the previously measured thrust
equals zero at 13 cm

s .
In Figure 6C, it can be observed that as the St number

increases, the thrust as well as the Cp gradually increase from
negative to positive values.

It should be stressed that this analysis of 2D data is based on
simplistic assumptions and provides only a rough estimate of the
wake power and the power coefficient, providing just an indication of

the expected swimming speed and the optimal actuation frequency.
More accurate estimates require measuring the full 3D flow field.
Nevertheless, these results show that a thrust assessment is possible
without attaching sensors. We envision to use this method with a
range of swimmers like e.g., eels, bluegills, or trouts.

3.4 Dynamic Mode Decomposition Analysis
of the Velocity Field
Dynamic Mode Decomposition (DMD) is an emerging purely
data-driven technique that provides linearly reduced order
models for high-dimensional, complex systems (SchmidRowley
et al., 2009; 2010; Tu et al., 2014; Kutz et al., 2016). Coupled
spatio-temporal coherent patterns or modes can be extracted
from the observed data. DMD has applications in fluid dynamics,
neuroscience, robotics, or disease modeling.

As the swimming locomotion is periodic, DMD analysis can
be useful to extract the dominant space-time modes of the flow
field. As an example, Figure 7A shows the real and imaginary
parts of the eigenvalues associated to each spatial mode for an
undulation frequency of 0.55 Hz and a free stream velocity of
9.3 cm

s . Besides the zero-frequency mode 7, which represents the
average velocity field, we can identify modes 1, 3, and 5 as well as
theirs conjugates 2, 4, and 6 that dominate the instantaneous flow
field as in view of their amplitude.

Mode 1 (Figure 7B) has a frequency equal to 1.7 Hz, roughly
three times the undulation frequency. This mode is associated to

FIGURE 7 | Dynamic mode decomposition (DMD) of flow field behind robotic fish. (A) Real and Imaginary parts of the 10 DMDmodes used for the decomposition. Circles
are color coded based on the modes’ amplitude. (B–D) Contour map of the vertical velocity component and velocity vectors for DMD mode 1, mode 3 and mode 5.
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the presence of a vortex centered at x � 0, y � − 260 mm and shed
by the tail motion at a frequency equal to three times the
swimmer undulation frequency. Mode 3 (Figure 7C) has a
frequency equal to 1.1 Hz or twice the undulation frequency.
As the vertical velocity contour map is symmetric, we expect this
mode to be associated to an instantaneous thrust that oscillates
periodically between negative and positive values, influencing the
instantaneous propulsion. Mode 5 (Figure 7D) has a frequency
equal to the undulation frequency (0.55 Hz), and it is directly
related to the oscillatory motion of the tail. As the vertical velocity
contour map is anti symmetric, we do not expect this mode to be
directly linked to a positive or negative trust along the streamwise
direction. On the contrary, the lateral component of the thrust
vector should be non-zero. We observed these modes also in the
other trials, performed with different operating parameters.

4 CONCLUSION

This article extends the pneumatically-actuated system from (Jusufi
et al., 2017) with strain sensors described in (Park et al., 2010, 2012) to
create a fully soft pneumatic platform. The real-time data from the
soft sensors are in agreement with the observed motion analysis and
show robust, noise-tolerant real-time curvature measurements. The
platform’s swimming performance was tested in a flow tank and the
robotic fish is able tomaintain a constant amplitude of the tailmotion
over a wider range of different water flow speeds and undulation
frequencies compared to the feed forward approach used in (Jusufi
et al., 2017). controller was able to keep a constant tip–tip deflection.

We further show that the Wake Power Model is able to
qualitatively measure thrust exerted by the fish platform
without the need of attaching external force sensors.

Furthermore, DMD analysis was explored to illustrate the relevant
modes of the flow field, showing potential to understand the
swimming dynamics of bio-mimetic robots. Here, we focused on
the design and characterization of a single soft actuator on each side,
although we envisage integrating multiple soft actuators sequentially.
In the future, we plan to couple 3D velocity measurements, pressure
field/thrust reconstruction andDMD to investigate how the geometry,
the mechanical properties, and the control strategy of the swimmer
affect swimming performance. We also envision to enhance the
features of the soft strain sensors (e.g., the sensitivity durability or
flexibility) and use the multi-sensing techniques presented in (Kim T.
et al., 2020). A future goal is to further integrate the sensor in soft
actuators and improve the interface between biocompatible materials
and highly stretchable sensors to provide excellent adhesion. This
would make it possible to investigate how the modulation of body

stiffness may reduce internal bending resistance, and matching the
undulation frequency to specific flow speeds is used to improve
swimming speed as well as energy storage (Akanyeti et al., 2016).

With robophysics we can explore new capabilities with a goal
to narrow, if not close, the capability gap between human-made
robots and their natural counterparts.
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