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Abstract 
This work illustrates the application of the “Second Order Comprehensive 
Adjoint Sensitivity Analysis Methodology” (2nd-CASAM) to a mathematical 
model that can simulate the evolution and/or transmission of particles in a 
heterogeneous medium. The model response is the value of the model’s state 
function (particle concentration or particle flux) at a point in phase-space, 
which would simulate a pointwise measurement of the respective state func-
tion. This paradigm model admits exact closed-form expressions for all of the 
1st- and 2nd-order response sensitivities to the model’s uncertain parameters 
and domain boundaries. These closed-form expressions can be used to verify 
the numerical results of production and/or commercial software, e.g., particle 
transport codes. Furthermore, this paradigm model comprises many uncer-
tain parameters which have relative sensitivities of identical magnitudes. 
Therefore, this paradigm model could serve as a stringent benchmark for in-
ter-comparing the performances of all deterministic and statistical sensitivity 
analysis methods, including the 2nd-CASAM. 
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1. Introduction 

The application of the general second-order adjoint sensitivity analysis metho-
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dology presented in [1] is illustrated in this work by means of a simple mathe-
matical model which expresses a conservation law of the model’s state function. 
This paradigm model is representative of transmission of particles and/or radia-
tion through materials [2] [3], chemical kinetics processes [4] [5], radioactive 
decay modeled by the Bateman equation, etc.  

Although the model is simple, it comprises a large number of model parame-
ters, thereby involving a correspondingly large number of sensitivities (i.e., func-
tional derivatives) of the model’s responses to the model parameters. Further-
more, the model has been deliberately designed so that a large number of relative 
response sensitivities display identical values. The fact that the model has a large 
number of parameters and the fact that all but a few relative sensitivities have 
identical values would make it very difficult, if not impossible, to use statistical 
methods to compute the first- and second-order sensitivities of the responses to 
all of the parameters of this model, since the computational costs would be pro-
hibitive. Of course, statistical methods would not be able to compute the exact 
values of these first- and second-order sensitivities. For such models, involving 
many parameters but relatively few responses, the Second-Order Comprehensive 
Adjoint Sensitivity Analysis Methodology (2nd-CASAM) for Linear Systems, 
presented in Part I [1], is best suited for computing exactly and efficiently the 
first- and second-order response sensitivities. 

This work is organized as follows: Section 2 presents the paradigm evolution 
model. Section 3 presents the application of the 2nd-CASAM [1] for efficiently 
computing the exact closed-form expressions of the first-and second-order sen-
sitivities of a “point-type” response to both model and boundary parameters. 
The concluding remarks offered in Section 4 highlight the comprehensive veri-
fication mechanism which is inherently built into the 2nd-CASAM [1] to ensure 
that the second-level adjoint functions are derived and computed correctly. All 
in all, the exact expressions of the 1st- and 2nd-order sensitivities presented in this 
work provide stringent benchmarks for the verification of the accuracies of any 
other methods, deterministic and/or statistical, for performing sensitivity analy-
sis. 

2. Mathematical Modeling of a Paradigm  
Evolution/Transmission Benchmark Problem 

The general 2nd-CASAM methodology presented in [1] is applied in this work to 
a simple paradigm model, admitting a closed-form analytic solution for conve-
nient verification of all results to be obtained, which simulates a typical evolu-
tion or attenuation of a quantity that will be denoted as ( )tρ , satisfying the 
following linear conservation equation: 

( ) ( )
1

d
0, 0

d

N

i i u
i

t
t n t

t
ρ

ρ σ β β
=

+ = ≤ ≤ ≤ < ∞,∑


            (1) 

( ) , at .in tρ β ρ β= =
 

                     (2) 

The simple evolution system represented by Equations (1) and (2) occurs in 
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the mathematical modeling of many physical systems. dt t= , 0 d utβ β≤ ≤ ≤ < ∞


. 
For example, the dependent variable ( )tρ  could represent [2] [3] the evolution 
of the concentration of a substance in a homogeneous mixture of N materials, 
from an imprecisely known initial quantity, denoted as inρ , measured at an ini-
tial-time value t β=



 towards an imprecisely known final-time value ut β= . 
The quantities in  and iσ  would represent various imprecisely known materi-
al (e.g., chemical) properties of the ith-material ( )1, ,i N=  . 

Alternatively, ( )tρ  could represent [3] [4] [5] the mono-directional propa-
gation (attenuation) of the flux of uncollided particles (e.g., photons) travelling 
through a one-dimensional homogenized multi-material slab of imprecisely 
known thickness ( )uβ β−



 in a direction parallel to the t-coordinate. The con-
dition given in Equation (2) would prescribe a beam of particles of imprecisely 
known intensity inρ  incident on the slab’s surface located at the an imprecisely 
known position t β=



. Each of the slab’s ith-materials ( )1, ,i N=   would be 
characterized by an imprecisely known microscopic cross section iσ  and an 
imprecisely known atomic number density in . Since this work will deliberately 
focus on illustrating the computation of the response sensitivities to imprecisely 
known boundaries of a physical system, the possible imprecisely known sources 
that could appear on the right-side of Equation (1) are not considered, since 
their inclusion would just complicate the mathematical derivations without 
bringing any new mathematical or physical insights. 

A typical response of interest for the physical problem modeled by Equations 
(1) and (2) would be a measurement, denoted as ( )dtρ , of ( )tρ  at some time 
instance (or location within the slab or on the slab’s surface) dt t= ,  
0 d utβ β≤ ≤ ≤ < ∞



. The following functional, denoted as ( )1 ; ,R ρ α β , can 
represent mathematically such a measurement: 

( ) ( ) ( )1 ; , d ,
u

dR t t t t
β

β

ρ ρ δ −∫


α β                  (3) 

where ( )dt tδ −  denotes the well-known Dirac-delta (impulse) functional. In 
Equation (3), the vector α  denotes the “vector of model parameters” and de-
fined as follows: 

( ) ( )
† †

1 1 1, , , , , , , , ,N N N in dn n t
α

α α σ σ ρ    α .          (4) 

Similarly, the vector β  denotes the “vector of boundary parameters” and is 
defined as follows: 

( )†, uβ β


β .                        (5) 

In Equation (4) and throughout this work, the symbol “  ” is used to denote 
“is defined as” or “is by definition,” while the “dagger” ( )†  superscript is used 
to denote “transposition.” 

Although the model parameters inρ , in , iσ , dt , dΣ , together with the 
boundary parameters β



 and uβ  are considered to be imperfectly known and 
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subject to uncertainties, the actual probability distributions of these parameters 
are not known in practice. Usually, only the “nominal” (or “mean”) values and 
the respective variations from the nominal values (e.g., standard deviations) of 
the respective components are known. The nominal values will be denoted using 
the superscript “zero” so that the vector comprising the nominal values of the 
model parameters, denoted as 0α , will be defined for the system under consid-
eration as follows: 

( ) ( )† †0 0 0 0 0 0 0 0 0
1 1 1, , , , , , , , ,N N N in dn n t

α
α α σ σ ρ    α            (6) 

Similarly, the vector comprising the nominal values of the boundary parame-
ters is denoted as 0β  and is defined for the system under consideration as fol-
lows: 

( )†0 0 0, uβ β


β .                        (7) 

Altogether, the physical system modeled by Equations (1) through (7) com-
prises 2 boundary parameters and 2 2N Nα = +  model parameters, which can 
be a large number for realistic problems. For example, the spent fuel dissolver 
model analyzed by Cacuci et al. (2016), which involves equations similar to Equ-
ation (1), comprises 1292Nα =  parameters. 

For subsequent verification of the expressions that will be obtained for various 
response sensitivities, the closed-form solution of Equations (1) and (2) is pro-
vided below, in Equation (8): 

( ) ( )
1

exp .
N

in i i
i

t t nρ ρ β σ
=

 = −  
∑



                 (8) 

In practice, the nominal solution, denoted as ( )0 tρ , is computed by solving 
numerically Equations (1) and (2) using the nominal values for the model and 
boundary parameters. For this illustrative example, the nominal solution of Eq-
uations (1) and (2) has the following expression: 

( ) ( )0 0 0 0 0

1
exp .

N

in i i
i

t t nρ ρ β σ
=

 = −  
∑



                (9) 

Using Equation (9) in Equation (3) yields the following expression for the re-
sponse ( )1 ; ,R ρ α β , which is to be evaluated at the nominal values  

( )0 0 0 0; ,ρe  α β : 

( ) ( )
( )0 0 0 0 0

1
1 , , , ,

; , exp .
in in d d i i i i

N

in d i i
i t t n n

R t n
ρ ρ β β σ σ

ρ ρ β σ
= = = = = =

  = −    
∑

 



α β   (10) 

Of course, the closed-form analytical expression for the problem’s dependent 
variable(s), as provided in Equation (8), and the closed-form expression for the 
response ( )1 ; ,R ρ α β , as given in Equation (10), will not be available for the 
large-scale systems encountered in practice. Therefore, the sensitivities (i.e., 
functional derivatives) of the responses to the model and boundary parameters 
can only be determined numerically. 
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3. Application of the 2nd-CASAM for Computing Exactly and  
Efficiently the 1st- and 2nd-Order Response Sensitivities of  
a “Point Detector” Response to Uncertain Model and  
Boundary Parameters 

The variations between the true and the nominal values of the model and boun-
dary parameters will be considered to constitute the components of the vectors 
δα  and δβ , respectively, defined as follows: 

( ) 0
1, , , ,N i i iα

δ δα δα δα α α−  α               (11) 

( )† 0 0, , , .u u u uδ δβ δβ δβ β β δβ β β− −
   

  β          (12) 

Since the state function is related to the model and boundary parameters α
and β  through Equations (1) and (2), it follows that the variations and δβ  
in the model and boundary parameters will cause a corresponding variation in 
the state function ( )tρ  around the nominal solution ( )0 tρ . In turn, these 
variations will cause variations in the responses ( )1 ; ,R ρ α β  around the respec-
tive nominal response values. For subsequent derivations, it is convenient to use 
the compact notation ( ); ,ρe  α β , with the corresponding nominal values 
denoted as ( )0 0 0 0; ,ρe  α β . 

3.1. Computing the 1st-Order Sensitivities ( )R1 ; ,ρ α β  Using the  
1st-LASS 

The total first-order sensitivity of the response ( ) ( )1 1; ,R Rρ ≡ eα β  defined in 
Equation (3) is provided [6] by the 1st-order total sensitivity (G-differential) 

( )0
1 ; ; ,Rδ δρ δ δe α β  evaluated at ( )0 0 0 0; ,ρe  α β , which is computed by ap-

plying the definition of the first-order G-differential to Equation (3), to obtain 
the following expression: 

( )

( ) ( ) ( )
( )

( ) ( )

0

0 0

0
1

0 0

, 0

1 1

; ; ,

d d
d

,

u u

d d

ind dir

R

t t t t t t

R R

β εδβ

β εδβ ε

δ δρ δ δ

ρ εδρ δ εδ
ε

δ δ

+

+ = =

   + − −  
  

= +

∫
e e

e

 



α β

       (13) 

where the indirect-effect term ( )1
indRδ  and, respectively, the direct-effect term 

( )1
dirRδ  are defined as 

( ) ( ) ( )
0

0

0
1 d ,

u
ind

dR t t t t
β

β

δ δρ δ −∫


                  (14) 

( ) ( ) ( ) ( ) ( ) ( )0

0 0

0 0
1 d

u

d

dir
d d d

t t

t
R t t t t t t

t

β

β

ρ
δ δ ρ δ δ

=

 ∂ ′− − =  ∂  
∫


        (15) 

The variation ( )tδρ , of the state function ( )tρ , which appears in Equation 
(14) is the solution of the following First-Level Forward Sensitivity System 
(1st-LFSS) obtained by G-differentiating Equations (1) and (2) around the no-
minal parameter values: 
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( )
( )

( ) ( )

0 0

1

0 0 0 0 0

1

d
d

, 0

N

i i
i

N

i i i i u
i

t
t n

t

t n n t

δρ
δρ σ

ρ δσ σ δ β β

=

=

   +

= − + ≤ ≤ ≤ < ∞,

∑

∑


         (16) 

( ) ( )
0

0 0d
, at .

d in
t

t
t

t
β

ρ
δρ β δβ δρ β

=

  + = = 
  



  

           (17) 

Since the closed-form solution represented by Equation (9) is not available 
in practice, the direct effect term, ( )1

dirRδ , defined by Equation (15) can be 
computed by differentiating (numerically, in practice) the solution of Equa-
tions (1) and (2). Also, in practice, the sensitivities included in the indirect ef-
fect, ( )1

indRδ , defined by Equation (14) could be computed only by successively 
setting all but one of the parameter variations ( )1, , , , ,in i i un tδρ δσ δ δβ δβ δ



 to 
zero in the 1st-LFSS [comprising Equations (16) and (17)] and solving numeri-
cally the corresponding forms of the resulting 1st-LFSS. Thus, using the 1st-LFSS 
to compute the sensitivities of the response ( )1 ; ,R ρ α β  would require 2 4N +  
large-scale computations. 

The need for performing these 2 4N +  large-scale computations can be 
avoided by applying the 2nd-CASAM presented in Part I (Cacuci, 2020). In order 
to apply the 2nd-CASAM, the function ( )tδρ  is considered to be an element of 
a Hilbert space ( ) ( ) ( )1 0 0, ,t t uβ βΩ Ω



H , endowed with the following inner 
product, denoted as ( ) ( )1 2,t tρ ρ , between two (square-integrable) functions 

( ) ( ) ( )1
1 ttρ ∈ ΩH  and ( ) ( ) ( )1

2 ttρ ∈ ΩH : 

( ) ( ) ( ) ( )
0

0
1 2 1 2, d .

u

t t t t t
β

β

ρ ρ ρ ρ∫


                (18) 

The construction of the requisite First-Level Adjoint Sensitivity System 
(1st-LASS) commences by multiplying Equation (16) by a square-integrable 
function ( ) ( ) ( ) ( )1 1

ttψ ∈ ΩH  and integrating the left-side of the resulting equa-
tion by parts once, so as to transfer the differential operation from ( )tδρ  onto 

( ) ( )1 tψ . This sequence of steps yields the following relation: 

( ) ( )
( )

( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

0

0

0

1 0 0

1

1
1 0 0

1

1 10 0 0 0

d
d

d

d
d

d

.

u

u

N

i i
i

N

i i
i

u u

t
t t n t

t

t
t t n t

t

β

β

β

β

δρ
ψ δρ σ

ψ
δρ ψ σ

ψ β δρ β ψ β δρ β

=

=

    + 
  
 

= − + 
  

+ −

∑∫

∑∫





 

           (19) 

The following sequence of operations is performed next using Equation (19): 
1) Require that the first term on the right-side of Equation (19) be identical 

with the indirect effect ( )1
indRδ  defined in Equation (14). 

2) Use the right-side of Equation (16) to replace the term multiplying ( ) ( )1 tψ
on the left-side of Equation (19). 
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3) Eliminate the unknown quantity ( )0
uδρ β  on the right-side of Equation 

(19) by imposing the condition ( ) ( )1 0 0uψ β = . 
4) Insert the boundary condition provided in Equation (17) into Equation 

(19). 
The result of the above sequence of operations is the following expression for 

( )1
indRδ : 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

0

0

10 0 0
1

1

1 0

d

d
,

d

uNind
i i i i

i

in
t

R n n t t t

t
t

β

β

β

δ δσ σ δ ψ ρ

ρ
ψ β δρ δβ

=

=

= − +

    + −  
    

∑ ∫




 

         (20) 

where the first-level adjoint function ( ) ( )1 tψ  appearing in Equation (20) is the 
solution of the following First-Level Adjoint Sensitivity System (1st-LASS): 

( ) ( ) ( ) ( ) ( )
1

1 0 0 0 0 0

1

d
, 0 ,

d

N

i i d u
i

t
t n t t t

t
ψ

ψ σ δ β β
=

− + = − ≤ ≤ ≤ < ∞∑


   (21) 

( ) ( )1 0 0uψ β =                        (22) 

In terms of the first-level adjoint function ( ) ( )1 tψ , the partial sensitivities of 
( )1 ; ,R ρ α β  with respect to the variations in the model parameters are the 

quantities in Equation (20) that multiply the respective parameter variations, 
namely: 

( ) ( ) ( )
0

00

10 01 d , 1, , ,
u

i
i

R n t t t i N
β

β

ψ ρ
σ

 ∂
= − = ∂ 

∫
e



           (23) 

( ) ( ) ( )
0

00

10 01 d , 1, , .
u

i
i

R t t t i N
n

β

β

σ ψ ρ
 ∂

= − = ∂ 
∫

e


           (24) 

( ) ( )
0

1 01 ,
in

R
ψ β

ρ
 ∂

= ∂ e


                    (25) 

( ) ( ) ( )
0 0

1 01 d
,

d
t

tR
t

β

ρ
ψ β

β
=

  ∂  = −   ∂     e






               (26) 

Recalling the expression of the direct effect term, ( )1
dirRδ , defined in Equa-

tion (15), yields the following additional first-order sensitivity: 

( ) ( ) ( )0

0 0

0 01 d
d

d

u

d

d
d t t

tR t t t t
t t

β

β

ρ
ρ δ

=

 ∂  ′= − − =  
∂   

∫


           (27) 

Since neither the direct-effect nor the indirect-effect terms depend on the var-
iation uβ∂ , it follows that 

1 0.
u

R
β

∂
≡

∂
                         (28) 

It is evident from Equations (23) through (27) that the sensitivities of the re-
sponse ( )1 ; ,R ρ α β  can be computed by fast quadrature methods applied to the 
integrals appearing in these expressions, after the 1st-level adjoint function 

( ) ( )1 tψ  has been obtained by solving once the 1st-LASS, which comprises Equa-
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tions (21) and (22). Notably, the 1st-LASS needs to be solved once only since the 
1st-LASS does not depend on any variations in the model parameters or state 
functions. Particularly important is the response sensitivity to the “initial condi-
tion” inρ  since, as Equation (25) indicates, the value of the 1st-level adjoint 
function ( ) ( )1 tψ  at the “initial time-value” 0t β=



 is proportional to the re-
sponse sensitivity to the “initial condition”. Since the value of the 1st-level adjoint 
function ( ) ( )1 tψ  at 0t β=



 can be obtained only after computing the entire 
evolution of ( ) ( )1 tψ , from the “final-time” 0

ut β=  to the “initial-time” 0t β=


, 
it becomes apparent that response sensitivities to initial conditions provide a 
stringent verification procedure for assessing the accuracy of the solution of the 
1st-LASS. 

Solving the 1st-LASS, cf. Equations (21) and (22), yields the following expres-
sion for the 1st-level adjoint function ( ) ( )1 tψ : 

( ) ( ) ( ) ( )1 0 0 0 0

1
1 exp ,

N

d d i i
i

t H t t t t nψ σ
=

  = − − −    
∑           (29) 

where ( )dH t t−  is the customary Heaviside unit-step functional, defined as 

( )
1, ;
0, .

d
d

d

t t
H t t

t t
≥

−  <
                     (30) 

Inserting the result from Equation (29) into Equations (23)-(26), respectively, 
yields the following expressions: 

( ) ( )
0

0 0 0 0 0 0 0 01

1
exp , 1, , ,

N

i in d d i i
ii

R n t t n i Nρ β β σ
σ =

 ∂  = − − =   ∂   
∑

e
 

     (31) 

( ) ( )
0

0 0 0 0 0 0 0 01

1
exp , 1, , ,

N

i in d d i i
ii

R t t n i N
n

σ ρ β β σ
=

 ∂  = − − =   ∂   
∑

e
 

     (32) 

( )
0

0 0 0 01

1
exp ,

N

d i i
iin

R t nβ σ
ρ =

 ∂  = −   ∂   
∑

e


              (33) 

( )
0

0 0 0 0 0 0 01

1 1
exp ,

N N

in i i d i i
i i

R n t nρ σ β σ
β = =

 ∂    = −     ∂     
∑ ∑

e




         (34) 

( )0 0 0 0 0 0 01

1 1
exp .

N N

in i i d i i
i id

R n t n
t

ρ σ β σ
= =

∂    = − −   ∂    
∑ ∑



          (35) 

The magnitudes of the 1st-order relative sensitivities provide a quantitative 
measure for ranking the importance of the respective parameters in affecting the 
response (e.g., the importance of the respective parameter’s uncertainty in con-
tributing to the overall uncertainty in the response). For the paradigm illustra-
tive evolution problem considered in this work, Equations (23) and (24) indicate 
the important fact that the relative sensitivities of the response to the parameters 

iσ , ( )( )1 1i iR Rσ σ∂ ∂ , and the relative sensitivities of the response to the pa-
rameters in , ( )( )1 1i iR n n R∂ ∂ , respectively, happen to be identical, for all of 
these 2N model parameters, since 

( ) ( ) ( )
0

0

11 1

1 1 1

d , 1, , .
u

i i i i

i i

n nR Rt t t i N
R R n R

β

β

σ σ
ψ ρ

σ
∂ ∂ = − ≡ = ∂ ∂∫



        (36) 
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Therefore, statistical methods that use a priori screening techniques to reduce 
the number of model parameters that are actually considered in the respective 
statistical uncertainty/sensitivity analysis will very likely fail to achieve their goal 
for problems that have many parameters with identical relative sensitivities, as is 
the case shown in Equation (36). Hence, this illustrative paradigm problem, 
which has many model parameters that have identical relative sensitivities, 
would be a prime candidate for testing the various statistical methods for sensi-
tivity and uncertainty analysis. In contrast, a single large-scale computation for 
obtaining the adjoint function ( ) ( )1 tψ  suffices for computing exactly and effi-
ciently, using just quadrature methods, the 2 4N +  sensitivities of the response 

( )1 ; ,R ρ α β  with respect to all model and boundary parameters. 
In the particular case when the response ( )1 ; ,R ρ α β  is located at d ut β= , 

the expressions of the response sensitivities provided in Equations (31)-(35) re-
main valid, with the stipulation that d ut β= . 

The results for the 1st-order response sensitivities obtained in Section 2.1 can 
also be verified by noting that the solution of the 1st-LFSS, comprising Equations 
(16) and (17), has the following expression: 

( ) ( ) ( ) ( )

( )

0 0 0 0 0 0 0

1 1

0 0 0 0 0

1
exp , 0 .

N N

in i i in in i i i i
i i

N

i i u
i

t n t n n

t n t

δρ ρ δβ σ δρ ρ β δσ σ δ

β σ β β

= =

=

 = + + − + 
 

 × − ≤ ≤ ≤ < ∞  

∑ ∑

∑

 

 

   (37) 

3.2. Computing the 2nd-Order Sensitivities of the Response  
( )R1 ; ,ρ α β  Using Second-Level Adjoint Sensitivity Systems  

(2nd-LASS) 

The starting point for obtaining expressions of the 2nd-order response sensitivi-
ties is provided by the G-differentials of the expressions shown in Equations 
(23)-(27). To keep the notation as simple as possible, the superscript “zero” will 
henceforth be omitted (except where stringently needed) when denoting “no-
minal values,” since it will be clear from the derivations to follow that all 1st- and 
2nd-order sensitivities are to be evaluated at the nominal values of parameters. 

3.2.1. Results for the 2nd-Order Response Sensitivities Corresponding to  
( ) iR i N1 ; , , 1, ,ρ α β σ∂ ∂ =   

The first-order G-differential of Equation (23) yields: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

0

0

0 0

0 0

1

1 1

, 0

1 1

d d
d

,

u u

i

i i

i idir indir

R

n n t t t t t

R R

β εδβ

β εδβ ε

δ
σ

εδ ψ εδψ ρ εδρ
ε

δ δ
σ σ

+

+ = =

  ∂ 
  ∂   

   − + + +    
  

         ∂ ∂   = +         ∂ ∂               

∫

e

e e

e e

 

  (38) 
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where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

0

1

1 1 0 0

for 1, , :

d ,
u

i dir

i i

Ri N

n t t t n
β

β

δ
σ

δ ψ ρ δβ ψ β ρ β

   ∂ =    ∂     

− +∫

e



  





       (39) 

( ) ( ) ( ) ( ) ( ) ( )

0

0 0

0 0 0

1

1 1

for 1, , :

d d .
u u

i indir

i i

Ri N

n t t t n t t t
β β

β β

δ
σ

δψ ρ ψ δρ

   ∂ =    ∂     

  − − 
  

∫ ∫

e

e 





       (40) 

The direct-effect term defined by Equation (39) can be computed immediate-
ly, since the adjoint function ( ) ( )1 tψ  and the forward function ( )tρ  are 
known. However, the indirect-effect term defined by Equation (40) contains the 
variation ( ) ( )1 tδψ  in the adjoint function and, respectively, the variation 

( )tδρ  in the forward function, both of which depend on parameter variations 
and neither of which is immediately available. The variation ( ) ( )1 tδψ  of the 
1st-level adjoint function ( ) ( )1 tψ  is related to the parameter variations through 
the G-differential of the 1st-LASS, which is derived by applying the definition of 
the G-differential to Equations (21) and (22). Thus, taking the G-differential of 
the 1st-LASS, cf. Equations (21) and (22), yields the following equations eva-
luated at the nominal parameter values: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

1

1 0 0

1

d

d

, 0 ,

N

i i d d
i

N

i i i i u
i

t
t n t t t

t

t n n t

δψ
δψ σ δ δ

ψ δσ σ δ β β

=

=

 
  ′− + = − −

− + ≤ ≤ ≤ < ∞

∑

∑


        (41) 

( ) ( ) ( )
( ) ( ) ( ) ( )

0

1
1 1 0d

0
d

u

u u

t

t
t

t
β

ψ
δψ δβ δψ β

=

  + = = 
  

.        (42) 

Taken together, Equations (16), (17), (41), and (42) constitute a well-posed 
system of equations which could, in principle, be solved to obtain the variations 

( ) ( )1 tδψ  and ( )tδρ  in terms of the parameter variations. However, such a pro-
cedure would be just as impractical computationally as solving the 1st-LFSS. 
Therefore, the need for solving these equations (which depend on parameter vari-
ations) will be circumvented by expressing the indirect-effect term defined in Equ-
ation (40) in an alternative way so as to eliminate the appearance of ( ) ( )1 tδψ  and 

( )tδρ . For this purpose, we introduce another Hilbert space, denoted as 
( ) ( ) ( )2 0 0, ,t t uβ βΩ Ω



H , which comprises, as elements, two-component vectors 
of the form ( ) ( ) ( ) ( ) ( ) ( )2 2 2

1 2,i i it t tψ ψ 
 ψ , with square-integrable functions 

( ) ( )2 , 1,2ij t jψ = . The inner product between two elements 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2

1 2,i i i tt t tψ ψ  ∈ Ω ψ H  and  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 2,i i i tt t tϕ ϕ  ∈ Ω ϕ H  in the Hilbert space ( ) ( )2

tΩH  will be 

denoted as ( ) ( ) ( ) ( )2 2

2
,i it tψ ϕ  and is defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0

2
2 2 2 2

2 1
, d .

u

i i ij ij
j

t t t t t
β

β

ψ ϕ
=

∑ ∫


ψ ϕ              (43) 

Writing Equations (16) and (41) in matrix form, as follows:  

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1
1

1

1

1

1

d 0
d

d0
d

,

N

i i
i

N

i i
i

N

d d i i i i
i

N

i i i i
i

n
tt

tn
t

t t t t n n

t n n

σ
δψ

δρσ

δ δ ψ δσ σ δ

ρ δσ σ δ

=

=

=

=

 − +  
     + 
 

 ′− − − + 
 =
 

− + 
 

∑

∑

∑

∑

         (44) 

and using the definition given in Equation (43), we now construct the inner 
product of Equation (44) with a square integrable two-component function 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 11 12, tt t tψ ψ  ∈ Ω ψ H  to obtain the following relation: 

( ) ( ) ( ) ( )
( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

0

0

0

0

1
2 2 1

11 12

1

1

2 2 1
11 12

1

d 0
d, d

d0
d

, d .

u

u

N

i i
i

N

i i
i

N

d d i i i i
i

N

i i i i
i

n
ttt t t

tn
t

t t t t n n
t t t

t n n

β

β

β

β

σ
δψ

ψ ψ
δρσ

δ δ ψ δσ σ δ
ψ ψ

ρ δσ σ δ

=

=

=

=

 − +  
         + 
 

 ′− − − + 
  =   

− + 
 

∑
∫

∑

∑
∫

∑





 (45) 

Integrating by parts the left-side of Equation (45) so as to transfer the diffe-
rential operations on ( ) ( )1 tδψ  and ( )tδρ  to differential operations on ( ) ( )2

11 tψ  
and ( ) ( )2

12 tψ  yields the following relation: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

0

0

0

0

0

0

2 1 1
11

1

2
12

1

2 2 1 20 (1) 0 0 0 0 0
11 11 12

(2)
2 1 2110 0

12 11
1

2
12

d d
d

d d
d

d
d

d

d
d

u

u

u

N

i i
i

N

i i
i

u u u u

N

i i
i

t t t n t
t

t t t n t
t

t
t t n t

t

t
t

t

β

β

β

β

β

β

ψ δψ δψ σ

ψ δρ δρ σ

ψ β δψ β ψ β δψ β ψ β δρ β

ψ
ψ β δρ β δψ ψ σ

ψ
δρ

=

=

=

 − +  

 + +  

= − + +

 
− + + 

  

+ − +

∑∫

∑∫

∑∫







 

 

( ) ( )
0

0

2
12

1
d .

u N

i i
i

t n t
β

β

ψ σ
=

 
 
  

∑∫


  (46) 

The last two terms on the right-side of Equation (46) will represent the indi-
rect-effect term defined in Equation (40) by requiring that 
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( ) ( ) ( ) ( )

( ) ( )

2
211

11
1

1

d
d

exp ,

N

i i
i

N

i i in i i
i

t
t n

t

n t n t n

ψ
ψ σ

ρ ρ β σ

=

=

+

 = − = − −  

∑

∑


             (47) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
212

12
1

1

1

d

1 exp .

N

i i
i

N

i i d d i i
i

t
t n

dt

n t n H t t t t n

ψ
ψ σ

ψ σ

=

=

− +

  = − = − − − −    

∑

∑
       (48) 

The boundary conditions for Equations (47) and (48) are established by re-
quiring that the contributions involving the unknown quantities ( ) ( )1 0δψ β



 
and ( )0

uδρ β  in Equation (46) vanish, which can be accomplished by imposing 
the following conditions: 

( ) ( ) ( ) ( )2 20 0
11 120, 0.uψ β ψ β=     =



                 (49) 

The system of equations comprising Equations (47)-(49) constitutes the 
2nd-Level Adjoint Sensitivity System (2nd-LASS) for the two-component vec-
tor-valued function ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2

1 11 12, tt t tψ ψ  ∈ Ω ψ H , which is called the 
2nd-level adjoint function. It is important to note that the 2nd-LASS is indepen-
dent of parameter variations. 

Replacing the left-side of Equation (46) by the right-side of Equation (45) and 
taking into account Equations (47)-(49) yields the following expression for the 
indirect-effect term defined in Equation (40): 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

1

1

2 2 1
11 12

1

2 1 20 0 0 0
11 12

for 1, , :

, d

,

u

i indir

N

d d i i i i
i

N

i i i i
i

u u

Ri N

t t t t n n
t t t

t n n

β

β

δ
σ

δ δ ψ δσ σ δ
ψ ψ

ρ δσ σ δ

ψ β δψ β ψ β δρ β

=

=

  ∂
=   ∂   

 ′− − − + 
  =   

− + 
 

+ +

∑
∫

∑

 



 (50) 

Using the conditions given in Equations (17) and (42) in the last terms on the 
right side of Equation (50) yields the following expression for the indirect-effect 
term: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

0

0

0

1

1

2 2 1
11 12

1

2
12

for 1, , :

, d

d
.

d

u

i indir

N

d d i i i i
i

N

i i i i
i

in
t

Ri N

t t t t n n
t t t

t n n

t
t

β

β

β

δ
σ

δ δ ψ δσ σ δ
ψ ψ

ρ δσ σ δ

ρ
ψ β δρ δβ

=

=

=

  ∂
=   ∂   

 ′− − − + 
  =   

− + 
 

   + −  
   

∑
∫

∑



 



 (51) 
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Adding the direct-effect term defined in Equation (39) to Equation (51) and 
identifying in the resulting expression the coefficients multiplying the variations 

iδσ , inδ , inδρ , dtδ , δβ


 and uδβ  yields the following expression for the 
respective 2nd-order sensitivities of the response ( )1 ; ,R ρ α β : 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

0 0

2
2 1 21

11 12d d ; , 1, , ;
u u

j j
j i

R n t t t n t t t i j N
β β

β β

ψ ψ ψ ρ
σ σ
∂

= − − =
∂ ∂ ∫ ∫

 

  (52) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

0

0

2
2 1 21

11 12

1

d d

1, ;
d ; , 1, , ;

0, ;

u u

u

j j
j i

ij ij

R t t t t t t
n

i j
t t t i j N

i j

β β

β β

β

β

σ ψ ψ σ ψ ρ
σ

δ ψ ρ δ

∂
= − −

∂ ∂

=
− = =  ≠

∫ ∫

∫

 





    (53) 

( ) ( )
2

21
12 ; 1, , ;

in i

R i Nψ β
ρ σ
∂

= =
∂ ∂ 

               (54) 

( ) ( ) ( )
( ) ( )0

0

22
2 111

11

d
; 1, , ;

d

u

d

d
d i t t

tR t t t i N
t t

β

β

ψ
ψ δ

σ
=

 ∂ ′= − − = = 
∂ ∂   

∫



     (55) 

2
1 0; 1, , ;

u i

R i N
β σ
∂

= =
∂ ∂

                   (56) 

( ) ( ) ( ) ( ) ( ) ( )
0

2
1 21

12 ; 1, , .i
i t

d tR n i N
dt

β

ρ
ψ β ρ β ψ β

β σ
=

 ∂
= − = ∂ ∂  



  



    (57) 

The 2nd-order sensitivities shown in Equations (52)-(57) can be computed af-
ter having determined the 2nd-level adjoint function ( ) ( ) ( ) ( ) ( ) ( )2 2 2

1 11 12,t t tψ ψ 
 ψ  

by solving the 2nd-LASS comprising Equations (47)-(49) using the nominal pa-
rameter values (the superscript “zero,” which indicates “nominal values,” has 
been omitted, for simplicity). Since the model parameters in  depend on the 
index 1, ,i N= 

, it follows that the right-sides of Equations (47) and (48) also 
depend on this index. Strictly speaking, therefore, the 2nd-level adjoint sensitivity 
function ( ) ( ) ( ) ( ) ( ) ( )2 2 2

1 11 12,t t tψ ψ 
 ψ  is a function of the index 1, ,i N= 

. 
Hence, in the most unfavorable situation, the 2nd-LASS, comprising Equations 
(47)-(49) would need to be solved numerically for each distinct value in , for a 
total of N-times. Even in such a “worse-case scenario,” however, only the right 
sides (i.e., “sources”) of Equations (47) and (48) would need to be modified, 
which is relatively easy to implement computationally. The left-sides of these 
equations remain unchanged, since they are independent of the index 1, ,i N= 

. 
In many practical situations, however, it is possible to reduce drastically the 

number of computations involving the 2nd-LASS by changing the dependent 
and/or the independent variables. For example, in the case of the 2nd-LASS com-
prising Equations (47)-(49), the following simple change of the dependent va-
riables ( ) ( )2

11 tψ  and ( ) ( )2
12 tψ : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
11 11 12 12, ,i it n t t n tψ ϕ ψ ϕ= =              (58) 

would transform Equations (47)-(49) into the following form: 
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( ) ( ) ( ) ( ) ( )
2

211
11

1

d
,

d

N

i i
i

t
t n t

t
ϕ

ϕ σ ρ
=

+ = −∑                (59) 

( ) ( ) ( ) ( ) ( ) ( )
2

2 112
12

1

d
d

N

i i
i

t
t n t

t
ϕ

ϕ σ ψ
=

− + = −∑ ,             (60) 

( ) ( ) ( ) ( )2 2
11 120, 0.uϕ β ϕ β=     =



                 (61) 

The above (alternative) 2nd-LASS, comprising Equations (59)-(61) is indepen-
dent of the index 1, ,i N= 

, and would need to be solved (numerically or ana-
lytically) only once, to obtain the following expressions for the functions 

( ) ( )2
11 tϕ  and ( ) ( )2

12 tϕ : 

( ) ( ) ( ) ( )2
11

1
exp ,

N

in i i
i

t t t nϕ ρ β β σ
=

 = − −  
∑

 

           (62) 

( ) ( ) ( ) ( ) ( )2
12

1
1 exp .

N

d d d i i
i

t t t H t t t t nϕ σ
=

  = − − − −    
∑        (63) 

The components of the 2nd-level adjoint function ( ) ( )2
1 tψ  can now be ob-

tained by multiplying the functions ( ) ( )2
11 tϕ  and ( ) ( )2

12 tϕ  by the respective 
model parameters in , as indicated in Equation (58), to obtain the following ex-
pressions for the components of the 2nd-level adjoint function  

( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 11 12,t t tψ ψ 

 ψ : 

( ) ( ) ( ) ( )2
11

1
exp ,

N

i in i i
i

t n t t nψ ρ β β σ
=

 = − −  
∑

 

          (64) 

( ) ( ) ( ) ( ) ( )2
12

1
1 exp .

N

i d d d i i
i

t n t t H t t t t nψ σ
=

  = − − − −    
∑       (65) 

Using Equations (64) and (65) in Equations (52)-(57) and performing the re-
spective operations yields the following results for the respective partial 
2nd-order sensitivities: 

( ) ( )
2

21

1
exp ; , 1, , ;

N

in j i d d i i
ij i

R n n t t n i j Nρ β β σ
σ σ =

∂  = − − = ∂ ∂  
∑

 


     (66) 

( ) ( )

( )

2
1

1
exp ; 1, , ;

j i d ij in d
j i

N

d i i
i

R n t t
n

t n j N

σ β δ ρ β
σ

β σ
=

∂  = − + − ∂ ∂

 × − =  
∑

 





           (67) 

( ) ( )
2

1

1
exp ; 1, , ;

N

i d d i i
iin i

R n t t n i Nβ β σ
ρ σ =

∂  = − − = ∂ ∂  
∑

 

        (68) 

( ) ( )
2

1

1 1
1 exp ; 1, , ;

N N

in i d i i d i i
i id i

R n t n t n i N
t

ρ β σ β σ
σ = =

∂    = − + − − =   ∂ ∂    
∑ ∑

 

  (69) 

2
1 0; 1, , ;

u i

R i N
β σ
∂

= =
∂ ∂

                    (70) 

( ) ( )
2

1

1 1
1 exp ; 1, , .

N N

in i d i i d i i
i ii

R n t n t n i Nρ β σ β σ
β σ = =

∂    = + − − =   ∂ ∂    
∑ ∑

 



  (71) 
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As before, the right-sides of expressions shown in Equations (66)-(71) are to 
be evaluated at the nominal values for the parameters, but the superscript “zero,” 
which indicates “nominal values,” has been omitted, for notational simplicity. 

3.2.2. Results for the 2nd-Order Response Sensitivities Corresponding to  
( ) iR n i N1 ; , , 1, ,ρ α β∂ ∂ =   

Computing the first-order G-differential of Equation (24), at the nominal para-
meter values, yields: 

( ){ ( ) ( ) ( ) ( )

( ) ( ) }( )

0

00

0

0 0

1 11

, 0

1 1

d
d

d

,

u u

i i
i

i idir indir

R t t
n

t t t

R R
n n

β εδβ

β εδβ

ε

δ σ εδσ ψ εδψ
ε

ρ εδρ

δ δ

+

+

= =

  ∂   − + +    ∂   
× +  

         ∂ ∂   = +         ∂ ∂               

∫
e

e e

e e

 



    (72) 

where the direct-effect and indirect-effect terms, respectively, are evaluated at 
the nominal parameter values and are defined as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

00

11

1 0 0

d

, for 1, , ;

u

i
i dir

i

R t t t
n

i N

β

β

δ δσ ψ ρ

δβ σ ψ β ρ β

   ∂  −   ∂     

+ =

∫
e 

  





          (73) 

( ) ( ) ( )

( ) ( ) ( )

0

00 0

0

0 0

11

1

d

d , for 1, , .

u

u

i
i indir

i

R t t t
n

t t t i N

β

β

β

β

δ σ δψ ρ

σ ψ δρ

    ∂   −     ∂         

  − = 
  

∫

∫

e e

e









         (74) 

The direct-effect term defined in Equation (73) can be computed immediately, 
since the adjoint function ( ) ( )1 tψ  and the forward function ( )tρ  are known. 
On the other hand, the indirect-effect term defined by Equation (74) contains 
the variation ( ) ( )1 tδψ  in the adjoint function and, respectively, the variation 

( )tδρ  in the forward function, both of which depend on parameter variations 
and neither of which is immediately available. Comparing Equation (74) to Equ-
ation (40) readily indicates that the right sides of these equations differ only in 
that the model parameter iσ  plays in Equation (74) the same role as the model 
parameter in  plays in Equation (40). Thus, the same procedure that has been 
previously used in Section 2.2.1 to obtain an alternative expression for the indi-
rect-effect term defined in Equation (40) by means of a second-level adjoint 
function is applied to Equation (74) to obtain the following result: 

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

0 0

0

0

0

2 01
22

1

12 2
21 22

1

d
for 1, , :

d

, d .
u

in
i tindir

N

d d i i i i
i

N

i i i i
i

tRi N
n t

t t t t n n
t t t

t n n

β

β

β

ρ
δ ψ β δρ δβ

δ δ ψ δσ σ δ
ψ ψ

ρ δσ σ δ

=

=

=

     ∂  = = −      ∂        
 ′− − − + 
  +    

− + 
 

∑
∫

∑

e

e





 



  (75) 
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where the 2nd-level adjoint function ( ) ( ) ( ) ( ) ( ) ( )2 2 2
2 21 22,t t tψ ψ 

 ψ  satisfies the 
following 2nd-LASS: 

( ) ( ) ( ) ( ) ( )
2

221
21

1 1

d
exp ,

d

N N

i i i in i i
i i

t
t n t n

t
ψ

ψ σ σ ρ β σ
= =

 + = − −  
∑ ∑



        (76) 

( ) ( ) ( ) ( ) ( ) ( )
2

222
22

1 1

d
1 exp ,

d

N N

i i i d d i i
i i

t
t n H t t t t n

t
ψ

ψ σ σ σ
= =

  − + = − − − −    
∑ ∑   (77) 

( ) ( ) ( ) ( )2 2
21 220, 0.uψ β ψ β=     =



                  (78) 

The sources on the right-sides of the 2nd-LASS defined by Equations (76)-(78) 
are to be evaluated at the nominal values for the parameters, but the superscript 
“zero,” which indicates “nominal values,” has been omitted, for notational sim-
plicity. 

Comparing Equations (76)-(78) to Equations (47)-(49) and recalling Equa-
tions (59)-(61) indicates that the components of the 2nd-level adjoint function 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
2 21 22,t t tψ ψ 

 ψ  have the following expressions: 

( ) ( ) ( ) ( ) ( ) ( )2 2
21 11

1
exp

N

i i in i i
i

t t t t nψ σ ϕ σ ρ β β σ
=

 = = − −  
∑

 

        (79) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
22 12

1
1 exp .

N

i i d d d i i
i

t t t t H t t t t nψ σ ϕ σ σ
=

  = = − − − −    
∑     (80) 

Adding the direct-effect term defined in Equation (73) to the expression for 
the indirect-effect term shown in Equation (75) and identifying in the resulting 
expression the coefficients multiplying the variations iδσ , inδ , inδρ , dtδ , 
δβ



 and uδβ  yields the following expression for the respective 2nd-order sensi-
tivities of the response ( )1 ; ,R ρ α β : 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

0

0

2
2 1 21

21 22

1

d d

d ; , 1, , ;

u u

u

j j
j i

ij

R n t t t n t t t
n

t t t i j N

β β

β β

β

β

ψ ψ ψ ρ
σ

δ ψ ρ

∂
= − −

∂ ∂

− =

∫ ∫

∫

 





       (81) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

0 0

2
2 1 21

21 22d d ; , 1,..., ;
u u

j j
j i

R t t t t t t i j N
n n

β β

β β

σ ψ ψ σ ψ ρ
∂

= − − =
∂ ∂ ∫ ∫

 

  (82) 

( ) ( )
2

21
22 ; 1, , ;

in i

R i N
n

ψ β
ρ
∂

= =
∂ ∂ 

                  (83) 

( ) ( ) ( )
( ) ( )0

0

22
2 211

21

d
; 1, , ;

d

u

d

d
d i t t

tR t t t i N
t n t

β

β

ψ
ψ δ

=

 ∂ ′= − − = = 
∂ ∂   

∫



      (84) 

( ) ( ) ( ) ( ) ( )
( ) ( )

0

12
1 21

21

d
; 1, , ;

d
u

i u u u
u i t

tR n i N
n t

β

ψ
ψ β ρ β ψ β

β
=

 ∂
= − − = 

∂ ∂   


   (85) 

( ) ( ) ( ) ( ) ( ) ( )
0

2
1 21

22

d
; 1, , .

di
i t

tR n i N
n t

β

ρ
ψ β ρ β ψ β

β
=

 ∂
= − = ∂ ∂  



  



      (86) 
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Inserting the expressions obtained in Equations (79) and (80) for the compo-
nents of the 2nd-level adjoint function ( ) ( ) ( ) ( ) ( ) ( )2 2 2

2 21 22,t t tψ ψ 
 ψ  into Equa-

tions (81)-(86) yields the following expressions, where all quantities are to be 
evaluated at the nominal parameter values ( )0 0 0 0; ,ρe  α β : 

( ) ( )

( )

2
1

1
exp ; 1, , ;

j i d ij in d
j i

N

d i i
i

R n t t
n

t n j N

σ β δ ρ β
σ

β σ
=

∂  = − + − ∂ ∂

 × − =  
∑

 





          (87) 

( ) ( )
2

21

1
exp ; , 1, , ;

N

in j i d d i i
ij i

R t t n i j N
n n

ρ σ σ β β σ
=

∂  = − − = ∂ ∂  
∑

 


     (88) 

( ) ( )
2

1

1
exp ; 1, , ;

N

i d d i i
iin i

R t t n i N
n

σ β β σ
ρ =

∂  = − − = ∂ ∂  
∑

 

        (89) 

( ) ( )
2

1

1 1
1 exp ; 1, , ;

N N

in i d i i d i i
i id i

R t n t n i N
t n

ρ σ β σ β σ
= =

∂    = − + − − =   ∂ ∂    
∑ ∑

 

  (90) 

2
1 0; 1, , ;

u i

R i N
nβ

∂
= =

∂ ∂
                      (91) 

( ) ( )
2

1

1 1
1 exp ; 1, , .

N N

in i d i i d i i
i ii

R t n t n i N
n

ρ σ β σ β σ
β = =

∂    = + − − =   ∂ ∂    
∑ ∑

 



    (92) 

3.2.3. Results for the 2nd-Order Response Sensitivities Corresponding to  
( ) inR1 ; ,ρ α β ρ∂ ∂  

The 2nd-order response sensitivities corresponding to ( )1 ; , inR ρ ρ∂ ∂α β  will be 
calculated in this Section by taking the G-differential of Equation (25). Since the 
model responses need to be written in the form of an inner product in order to 
apply the adjoint sensitivity analysis methodology, Equation (25) is re-written in 
the following form: 

( ) ( ) ( ) ( ) ( )1 11 d .
u

in

R t t t
β

β

ψ β ψ δ β
ρ

 ∂
= = − ∂ 

∫


 

             (93) 

Taking the G-differential of Equation (93) yields 

( ) ( ) ( ) ( ) ( )
0

0

1 1 01

0

1 1

d d
d

,

u u

in

in indir indir

R t t t t

R R

β ε δβ

β ε δβ ε

δ ψ εδψ δ β εδβ
ρ ε

δ δ
ρ ρ

+

+ =

  ∂   = + − −    ∂    

      ∂ ∂   = +      ∂ ∂         

∫
 

 

   (94) 

where 

( ) ( ) ( ) ( )
0

0

1 01 d ,
u

in dir

R t t t
β

β

δ δβ ψ δ β
ρ

  ∂  ′− −  ∂   
∫


 

           (95) 

and 

( ) ( ) ( )
0

0

1 01 d .
u

in indir

R t t t
β

β

δ δψ δ β
ρ

  ∂  −  ∂   
∫




             (96) 
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The direct-effect defined in Equation (95) can be computed immediately, 
since the adjoint function ( ) ( )1 tψ  is known. Noteworthy, the indirect-effect 
term defined in Equation (96) only contains the variation ( ) ( )1 tδψ  in the 
1st-level adjoint function, but does not contain the variation ( )tδρ  in the for-
ward function, as in Sections 2.2.1 and 2.2.2. Therefore, the 2nd-level adjoint 
function that would be needed to recast the indirect-effect term defined in Equa-
tion (96), by following the same general procedure as used in Sections 2.2.1 and 
2.2.2, would be a one-component (as opposed to a “two-component” vector) 
function. Thus, the 2nd-LASS needed to recast the indirect-effect term defined in 
Equation (96) is constructed by following a procedure similar to the one that was 
used in Section 2.1, by applying the definition provided in Equation (18) to con-
struct the inner product of a square-integrable function ( ) ( ) ( ) ( )2 1

31 ttψ ∈ ΩH  
with Equation (41) and integrating the left-side of the resulting equation by parts 
once, so as to transfer the differential operation from ( ) ( )1 tδψ  onto ( ) ( )2

31 tψ . 
This sequence of steps yields the following relation: 

( ) ( ) ( ) ( ) ( ) ( )
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i
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t
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β

ψ δψ δψ σ

ψ β δψ β ψ β δψ β

ψ
δψ ψ σ

=

=

 − +  

= − +

 
+ + 

  

∑∫

∑∫





 

            (97) 

The last term on the right-side of Equation (97) is now required to represent 
the indirect-effect term defined in Equation (96). This is accomplished by re-
quiring that 

( ) ( ) ( ) ( ) ( )
2

231 0
31

1

d
,

d

N

i i
i

t
t n t

t
ψ

ψ σ δ β
=

+ = −∑


               (98) 

The boundary condition for Equations (98) is established by requiring that the 
contribution involving the unknown quantity ( ) ( )1 0δψ β



 in Equation (97) va-
nish, which can be accomplished by imposing the following condition: 

( ) ( )2 0
31 0.ψ β =



                         (99) 

As before, Equations (98) and (99), which comprise the 2nd-LASS for the 
2nd-level adjoint function ( ) ( )2

31 tψ , are to be solved at the nominal parameter 
values. 

Replacing the right-side of Equation (41) into the left-side of Equation (97) 
and taking into account Equations (29), (42) and (99) yields the following ex-
pression for the indirect-effect term defined in Equation (96): 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0

2 11
31

1
d .

u N

d d i i i i
iin indir

R t t t t t n n t
β

β

δ ψ δ δ ψ δσ σ δ
ρ =

  ∂    ′= − − + +    ∂     
∑∫



 (100) 

Adding the direct-effect term defined in Equation (95) to Equation (100) and 
identifying in the resulting expression the coefficients multiplying the variations 

iδσ , inδ , inδρ , dtδ , δβ


 and uδβ  yields the following expressions for the 
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respective 2nd-order sensitivities of the response ( )1 ; ,R ρ α β : 

( ) ( ) ( ) ( )
0

0

2
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u
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j in
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β

β

ψ ψ
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∂
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           (101) 
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σ ψ ψ
ρ

∂
= − =

∂ ∂ ∫
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           (102) 
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2
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31 d ;
u

d
d in

R t t t t
t

β

β

ψ δ
ρ

∂ ′= − −
∂ ∂ ∫



              (103) 

2 2
1 10; 0;

in in u in

R R
ρ ρ β ρ
∂ ∂

= =
∂ ∂ ∂ ∂

                 (104) 

( ) ( ) ( )
( ) ( )0

0 0

12
1 01 d

d ;
d

u

in t

tR t t t
t

β

β β

ψ
ψ δ β

β ρ
=

 ∂  ′= − − =  ∂ ∂   
∫








        (105) 

The closed-form solution of the 2nd-LASS provided in Equations (98) and (99) 
has the following expression: 

( ) ( ) ( ) ( )2 0 0
31

1
exp ,

N

i i
i

t H t t nψ β β σ
=

 = − −  
∑

 

            (106) 

Replacing the result for the 2nd-level adjoint function obtained in Equation 
(106) into Equations (101)-(103) and carrying out the respective operations 
yields the following expressions, which are to be evaluated at the nominal para-
meter values: 

( ) ( )
2

1

1
exp ; 1, , ;

N

j d d i i
ij in

R n t t n j Nβ β σ
σ ρ =

∂  = − − = ∂ ∂  
∑

 


      (107) 

( ) ( )
2

1

1
exp ; 1, , ;

N

j d d i i
ij in

R t t n j N
n

σ β β σ
ρ =

∂  = − − = ∂ ∂  
∑

 


      (108) 

( )
2

1

1 1
exp ;

N N

i i d i i
i id in

R n t n
t

σ β σ
ρ = =

∂    = − −   ∂ ∂    
∑ ∑



           (109) 

( )
2

1

1 1
exp ;

N N

i i d i i
i iin

R n t nσ β σ
β ρ = =

∂    = −   ∂ ∂    
∑ ∑





            (110) 

3.2.4. Results for the 2nd-Order Response Sensitivities Corresponding to  
( ) dR t1 ; ,ρ α β∂ ∂  

The 2nd-order response sensitivities corresponding to ( )1 ; , dR tρ∂ ∂α β  will be 
calculated in this Section by taking the G-differential of Equation (27), which 
yields the following expression: 

{ } ( )
0

0

0 01

0

1 1

d d
d

,

u u

d d
d

d ddir indir

R t t t t
t

R R
t t

β ε δβ

β ε δβ ε

δ ρ εδρ δ εδ
ε

δ δ

+

+ =

  ∂    ′= − + − −    ∂    

      ∂ ∂   = +      ∂ ∂         

∫
       (111) 

where 
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( ) ( ) ( )

( ) ( )

0

0

01

2

1 1

d

exp ,

u

d d
d dir

N N

d in i i d i i
i i

R t t t t t
t

t n t n

β

β

δ δ ρ δ

δ ρ σ β σ
= =

  ∂  ′′= − −  ∂   

   = −      

∫

∑ ∑





         (112) 

and 

( ) ( )
0

0

01 d .
u

d
d indir

R t t t t
t

β

β

δ δρ δ
  ∂  ′= − −  ∂   

∫


            (113) 

Noteworthy, the indirect-effect term defined in Equation (113) only contains 
the variation ( )tδρ  in the forward function but does not contain the variation 

( ) ( )1 tδψ  in the 1st-level adjoint function. Therefore, the 2nd-level adjoint func-
tion that would be needed to recast the indirect-effect term defined in Equation 
(113) would be a one-component (as opposed to a two-component vector) func-
tion. Thus, the 2nd-LASS needed to recast the indirect-effect term defined in Eq-
uation (113) is constructed by following a procedure similar to the one that was 
used in Section 2.1, by applying the definition provided in Equation (18) to con-
struct the inner product of a square-integrable function ( ) ( ) ( ) ( )2 1

41 ttψ ∈ ΩH  
with Equation (16)and integrating the left-side of the resulting equation by parts 
once, so as to transfer the differential operation from ( )tδρ  onto the function 

( ) ( )2
41 tψ . This sequence of steps yields the following relation [which is analogous 

to Equation (19)]: 

( ) ( )
( )

( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

0

0

0

2
41

1

2
241

41
1

2 20 0 0 0
41 41

d
d

d

d
d

d

.

u

u

N

i i
i

N

i i
i

u u

t
t t n t

t

t
t t n t

t

β

β

β

β

δρ
ψ δρ σ

ψ
δρ ψ σ

ψ β δρ β ψ β δρ β

=

=

    + 
  
 

= − + 
  

+ −

∑∫

∑∫





 

           (114) 

The following sequence of operations is now performed using Equation (114): 
1) Require that the first term on the right-side of Equation (114) be identical 

with the indirect effect ( )1 indirect
Rδ  defined in Equation (113). 

2) Use the right-side of Equation (16) to replace the term multiplying ( ) ( )2
41 tψ

on the left-side of Equation (114). 
3) Eliminate the unknown quantity ( )0

uδρ β  on the right-side of Equation 
(114) by imposing the condition ( ) ( )2 0

41 0uψ β = . 
4) Insert the boundary condition provided in Equation (17) into Equation 

(114). 
The result of the above sequence of operations is the following expression for 

the indirect-effect term defined in Equation (113): 

( ) ( ) ( ) ( )

( ) ( ) ( )

0

0

0

21
41

1

2 0
41

d

d
,

d

uN

i i i i
id indir

in
t

R n n t t t
t

t
t

β

β

β

δ δσ σ δ ψ ρ

ρ
ψ β δρ δβ

=

=

  ∂  = − +  ∂   

    + −  
    

∑ ∫




 

       (115) 
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where the first-level adjoint function ( ) ( )2
41 tψ  appearing in Equation (115) is the 

solution of the following First-Level Adjoint Sensitivity System (1st-LASS) eva-
luated at the nominal parameter values: 

( ) ( ) ( ) ( ) ( )
2

241 0 0 0
41

1

d
, 0 ,

d

N

i i d u
i

t
t n t t t

t
ψ

ψ σ δ β β
=

′− + = − − ≤ ≤ ≤ < ∞∑


    (116) 

( ) ( )2 0
41 0.uψ β =                        (117) 

The solution of Equations (116) and (117) is: 

( ) ( ) ( ) ( ) ( )2
41

1 1
1 exp .

N N

d i i d d i i
i i

t t t n H t t t t nψ δ σ σ
= =

    = − + − − −        
∑ ∑   (118) 

In terms of the 2nd-level adjoint function ( ) ( )2
41 tψ , the partial 2nd-order re-

sponse sensitivities corresponding to ( )1 ; , dR tρ∂ ∂α β  are obtained by adding 
Equations (112) and (115), and subsequently identifying in the resulting expres-
sion the coefficients multiplying the variations iδσ , inδ , inδρ , dtδ , δβ



 and 

uδβ . This sequence of operations yields the following expressions: 

( ) ( ) ( )
0

0

2
21

41 d ; 1, , ;
u

j
j d

R n t t t j N
t

β

β

ψ ρ
σ
∂

= − =
∂ ∂ ∫



             (119) 

( ) ( ) ( )
0

0

2
21

41 d ; , 1, , ;
u

j
j d

R t t t i j N
n t

β

β

σ ψ ρ
∂

= − =
∂ ∂ ∫



            (120) 

( ) ( )
2

2 01
41 ;

in d

R
t

ψ β
ρ
∂

=
∂ ∂ 

                     (121) 

( )
22

1
2

1 1
exp ;

N N

in i i d i i
i id

R n t n
t

ρ σ β σ
= =

∂    = −   ∂    
∑ ∑



           (122) 

2
1 0;

u d

R
tβ

∂
=

∂ ∂
                         (123) 

( ) ( ) ( )
0

2
2 01

41

d
.

dd t

tR
t t

β

ρ
ψ β

β
=

 ∂  = −  
∂ ∂   







               (124) 

Replacing the result for the 2nd-level adjoint function obtained in Equation 
(118) into Equations (119)-(124) and carrying out the respective operations 
yields the following expressions, which are to be evaluated at the nominal para-
meter values: 

( ) ( )
2

21

1
1 exp ; 1, , ;

N

i in d i i d i i
ij d

R n t n t n j N
t

ρ β σ β σ
σ =

∂   = − + − − =  ∂ ∂  
∑

 


 (125) 

( )

( )

22
1

1

1

1

exp ; , 1, , ;

N

i in d i i
ij d

N

d i i
i

R t n
n t

t n i j N

σ ρ β σ

β σ

=

=

 ∂  = − + −  ∂ ∂    
 × − =  

∑

∑







          (126) 

( )
2

1

1 1
exp ;

N N

i i d i i
i iin d

R n t n
t

σ β σ
ρ = =

∂    = − −   ∂ ∂    
∑ ∑



           (127) 
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( )
22

1
2

1 1
exp ;

N N

in i i d i i
i id

R n t n
t

ρ σ β σ
= =

∂    = −   ∂    
∑ ∑



             (128) 

2
1 0;

u d

R
tβ

∂
≡

∂ ∂
                        (129) 

( )
22

1

1 1
exp .

N N

in i i d i i
i id

R n t n
t

ρ σ β σ
β = =

∂    = − −   ∂ ∂    
∑ ∑





         (130) 

3.2.5. Results for the 2nd-Order Response Sensitivities Corresponding to  
( )R∂ ∂1 ; ,ρ α β β



 

The 2nd-order response sensitivities corresponding to ( )1 ; , dR tρ∂ ∂α β  will be 
calculated in this Section by taking the G-differential of Equation (26), which 
first needs to be written in the form of an inner product in order to apply the 
2nd-CASAM, as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1 11 d d
d .

d d

u

t

t tR t t t
t t

β

ββ

ρ ρ
ψ β ψ δ β

β
=

   ∂  = − = − −   ∂     
∫




 



   (131) 

Taking the G-differential of Equation (131) at the nominal parameter values 
(the superscript “zero,” denoting nominal values, is again omitted) yields: 

( ) ( ) [ ] ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0

0 0

0

0

1 1 01

0

1 10

1 1 0

d d d
d d

d d
d

d d

dd d .
d d

u u

u

u

R t t
t

t t
t t t t

t t

t t
t t

β ε δβ

β ε δβ ε

β

β β

β

β

δ ψ εδψ ρ εδρ δ β εδβ
β ε

ρ ρ
δβ ψ δ β δβ ψ

δρρδψ ψ δ β

+

+ =

  ∂    = − + + − −      ∂      

   
′= − +   

   

 
− + − 

 

∫

∫

∫

 







 



  



(132) 

Using Equations (29) and (8) in the first term on the right-side of Equation 
(132) yields the following result: 

( ) ( ) ( ) ( )
0

0

1 0d
d 0.

d

u t
t t t

t

β

β

ρ
ψ δ β

 
′ − = 

 
∫




                (133) 

It is convenient to replace the quantity ( )d dtδρ , which appears in the last 
term on the right-side of Equation (132), by using Equation (16) which, together 
with the result obtained in Equation (133) makes it possible to express the rela-
tion in Equation (132) in the following form: 

1 1 1 ,
dir indir

R R R
δ δ δ

β β β
        ∂ ∂ ∂   = +        ∂ ∂ ∂             

            (134) 

where 

( ) ( ) ( ) ( )10 01

1
,

N

i i i i
idir

R n nδ ρ β ψ β δσ σ δ
β =

  ∂  = +  ∂   
∑

 



         (135) 

and 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0

1 1 01

1

d
d .

d

u N

i i
iindir

tR t n t t t t
t

β

β

ρ
δ δψ σ ψ δρ δ β

β =

    ∂    = − + −     ∂       
∑∫







 (136) 

The indirect-effect term defined in Equation (136) will be expressed in terms 
of a square integrable two-component adjoint function  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
5 51 52, tt t tψ ψ  ∈ Ω ψ H  by first constructing the inner product 

of Equation (44) with ( ) ( )2
5 tψ  to obtain the following relation: 

( ) ( ) ( ) ( )
( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

0

0

0

0

1
2 2 1

51 52

1

1

2 2 1
51 52

1

d 0
d, d

d0
d

, d .

u

u

N

i i
i

N

i i
i

N

d d i i i i
i

N

i i i i
i

n
ttt t t

tn
t

t t t t n n
t t t

t n n

β

β

β

β

σ
δψ

ψ ψ
δρσ

δ δ ψ δσ σ δ
ψ ψ

ρ δσ σ δ

=

=

=

=

 − +  
         + 
 

 ′− − − + 
  =   

− + 
 

∑
∫

∑

∑
∫

∑





(1) 

Integrating by parts the left-side of Equation (137) so as to transfer the diffe-
rential operations on ( ) ( )1 tδψ  and ( )tδρ  to differential operations on 

( ) ( )2
51 tψ  and ( ) ( )2

52 tψ  yields the following result: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( )

0

0

0

0

0

0

2 1 1
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1

2
52

1

2 1 2 1 20 0 0 0 0 0
51 51 52

2
2 1 2510 0

52 51
1

2
252

52

d d
d

d d
d

d
d

d

d
d

u

u

u

N

i i
i

N

i i
i

u u u u

N

i i
i

t t t n t
t

t t t n t
t

t
t t n t

t

t
t

t

β

β

β

β

β

β

ψ δψ δψ σ

ψ δρ δρ σ

ψ β δψ β ψ β δψ β ψ β δρ β

ψ
ψ β δρ β δψ ψ σ

ψ
δρ ψ

=

=

=

 − +  

 + +  

= − + +

 
− + + 

  

+ − +

∑∫

∑∫

∑∫







 

 

( )
0

0 1
d .

u N

i i
i

t n t
β

β

σ
=

 
 
  

∑∫


    (138) 

The last two terms on the right-side of Equation (138) will represent the indi-
rect-effect term defined in Equation (136) by requiring that 

( ) ( ) ( ) ( ) ( ) ( )
2

251 0 0
51

1 1

d d ,
d d

N N

i i in i i
i i

t
t n t n t

t t
ψ ρψ σ δ β ρ σ δ β

= =

  + = − − = −      
∑ ∑

 

  (139) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
2 152 0

52
1 1

0 0 0

1 1

d
d

exp .

N N

i i i i
i i

N N

i i d i i
i i

t
t n n t t

t

n t n t

ψ
ψ σ σ ψ δ β

σ β σ δ β

= =

= =

 − + = − 
 

   = − −      

∑ ∑

∑ ∑



 

        (140) 

The boundary conditions for Equations (139) and (140) are established by 
requiring that the contributions involving the unknown quantities ( ) ( )1 0δψ β



 
and ( )0

uδρ β  in Equation (138) vanish, which can be accomplished by impos-
ing the following conditions: 
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( ) ( ) ( ) ( )2 20 0
51 520, 0.uψ β ψ β=     =



                  (141) 

Solving Equations (139)-(141) yields the following expressions for the com-
ponents of the 2nd-level adjoint function ( ) ( ) ( ) ( ) ( ) ( )2 2 2

5 51 52,t t tψ ψ 
 ψ , to be eva-

luated at the nominal parameter values: 

( ) ( ) ( ) ( )2
51

1 1
exp ,

N N

in i i i i
i i

t H t n t nψ ρ β σ β σ
= =

   = − −      
∑ ∑

 

        (142) 

( ) ( ) ( ) ( )2 0 0
52

1 1
1 exp ,

N N

i i d i i
i i

t n H t t t nψ σ β σ
= =

    = − − −       
∑ ∑



       (143) 

Using Equations (137)-(141) and (17) in Equation (136) yields the following 
expression for the indirect-effect term defined in Equation (136): 

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

0

0

0

21
52

1

2 2 1
51 52

1

d
d

, d

for 1, , .

u

in
tindir

N

d d i i i i
i

N

i i i i
i

tR
t

t t t t n n
t t t

t n n

i N

β

β

β

ρ
δ ψ β δρ δβ

β

δ δ ψ δσ σ δ
ψ ψ

ρ δσ σ δ

=

=

=

     ∂   = −      ∂        
 ′− − − + 
  +   

− + 
 

=

∑
∫

∑





 





 (144) 

Adding the direct-effect term defined in Equation (135) to Equation (144) and 
identifying in the resulting expression the coefficients multiplying the variations 

iδσ , inδ , inδρ , dtδ , δβ


 and uδβ  yields the following expressions for the 
respective 2nd-order sensitivities of the response ( )1 ; ,R ρ α β : 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

2
2 1 21

51 52

10 0

d d

; 1, , ;

u u

j j
j

j

R n t t t n t t t

n j N

β β

β β

ψ ψ ψ ρ
σ β

ρ β ψ β

∂
= − −

∂ ∂

+ =

∫ ∫
 



 



        (145) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

2
2 1 21

51 52

10 0

d d

; 1, , ;

u u

j j
j

j

R t t t t t t
n

j N

β β

β β

σ ψ ψ σ ψ ρ
β

σ ρ β ψ β

∂
= − −

∂ ∂

+ =

∫ ∫
 



 



        (146) 

( ) ( )
2

21
52 ;

in

R
ψ β

ρ β
∂

=
∂ ∂ 



                       (147) 

( ) ( ) ( )
( ) ( )0

0

22
2 511

51

d
;

d

u

d

d
d t t

tR t t t
t t

β

β

ψ
ψ δ

β
=

 ∂ ′= − − =  
∂ ∂   

∫




           (148) 

2
1 0;

u

R
β β
∂

=
∂ ∂



                          (149) 

( ) ( ) ( )
0

2
21

51

d
.

d
t

tR t
t

β

ρ
ψ

β β
=

 ∂
= −  ∂ ∂  



 

                  (150) 

Inserting the expressions obtained in Equations (142) and (143) for the com-
ponents of the 2nd-level adjoint function ( ) ( ) ( ) ( ) ( ) ( )2 2 2

5 51 52,t t tψ ψ 
 ψ  into Equa-
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tions (145)-(150) yields the following expressions, where all quantities are to be 
evaluated at the nominal parameter values: 

( ) ( )
2

1

1 1
1 exp ; 1, , ;

N N

j in d i i d i i
i ij

R n t n t n j Nρ β σ β σ
σ β = =

∂    = + − − =   ∂ ∂    
∑ ∑

 




 (151) 

( ) ( )
2

1

1 1
1 exp ; 1, , ;

N N

j in d i i d i i
i ij

R t n t n j N
n

σ ρ β σ β σ
β = =

∂    = + − − =   ∂ ∂    
∑ ∑

 




 (152) 

( )
2

1

1 1
exp ;

N N

i i d i i
i iin

R n t nσ β σ
ρ β = =

∂    = −   ∂ ∂    
∑ ∑





             (153) 

( )
22

1

1 1
exp

N N

in i i d i i
i id

R n t n
t

ρ σ β σ
β = =

∂    = − −   ∂ ∂    
∑ ∑





           (154) 

2
1 0;

u

R
β β
∂

=
∂ ∂



                        (155) 

( )
22

1

1 1
exp .

N N

in i i d i i
i i

R n t nρ σ β σ
β β = =

∂    = −   ∂ ∂    
∑ ∑



 

          (156) 

4. Concluding Remarks 

Due to the symmetry of the mixed 2nd-order sensitivities, the following identities 
hold: 

1) The expression provided in Equation (81) must be identical to the expres-
sion provided in Equation (53). This identity provides an independent mutual 
verification of the accuracy of the computations of the 2nd-level adjoint functions 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
2 21 22,t t tψ ψ 

 ψ  and ( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 11 12,t t tψ ψ 

 ψ . 
2) The expression provided in Equation (101) must be identical to the expres-

sion provided in Equation (54). This identity provides an independent mutual 
verification of the accuracy of the computations of the 2nd-level adjoint functions 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
3 31 32,t t tψ ψ 

 ψ  and ( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 11 12,t t tψ ψ 

 ψ . 
3) The expression provided in Equation (102) must be identical to the expres-

sion provided in Equation (83). This identity provides an independent mutual 
verification of the accuracy of the computations of the 2nd-level adjoint functions 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
3 31 32,t t tψ ψ 

 ψ  and ( ) ( ) ( ) ( ) ( ) ( )2 2 2
2 21 22,t t tψ ψ 

 ψ . 
4) The expression provided in Equation (119) must be identical to the expres-

sion provided in Equation (55). This identity provides an independent mutual 
verification of the accuracy of the computations of the 2nd-level adjoint functions 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
4 41 42,t t tψ ψ 

 ψ  and ( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 11 12,t t tψ ψ 

 ψ . 
5) The expression provided in Equation (120) must be identical to the expres-

sion provided in Equation (84). This identity provides an independent mutual 
verification of the accuracy of the computations of the 2nd-level adjoint functions 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
4 41 42,t t tψ ψ 

 ψ  and ( ) ( ) ( ) ( ) ( ) ( )2 2 2
2 21 22,t t tψ ψ 

 ψ . 
6) The expression provided in Equation (121) must be identical to the expres-

sion provided in Equation (103). This identity provides an independent mutual 
verification of the accuracy of the computations of the 2nd-level adjoint functions 
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( ) ( ) ( ) ( ) ( ) ( )2 2 2
4 41 42,t t tψ ψ 

 ψ  and ( ) ( ) ( ) ( ) ( ) ( )2 2 2
3 31 32,t t tψ ψ 

 ψ . 
7) The expression provided in Equation (145) must be identical to the expres-

sion provided in Equation (57). This identity provides an independent mutual 
verification of the accuracy of the computations of the 2nd-level adjoint functions 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
5 51 52,t t tψ ψ 

 ψ  and ( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 11 12,t t tψ ψ 

 ψ . 
8) The expression provided in Equation (146) must be identical to the expres-

sion provided in Equation (86). This identity provides an independent mutual 
verification of the accuracy of the computations of the 2nd-level adjoint functions 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
5 51 52,t t tψ ψ 

 ψ  and ( ) ( ) ( ) ( ) ( ) ( )2 2 2
2 21 22,t t tψ ψ 

 ψ . 
9) The expression provided in Equation (147) must be identical to the expres-

sion provided in Equation (105). This identity provides an independent mutual 
verification of the accuracy of the computations of the 2nd-level adjoint functions 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
5 51 52,t t tψ ψ 

 ψ  and ( ) ( )1 tψ . 
10) The expression provided in Equation (148) must be identical to the ex-

pression provided in Equation (124). This identity provides an independent 
mutual verification of the accuracy of the computations of the 2nd-level adjoint 
functions ( ) ( ) ( ) ( ) ( ) ( )2 2 2

5 51 52,t t tψ ψ 
 ψ  and ( ) ( ) ( ) ( ) ( ) ( )2 2 2

4 41 42,t t tψ ψ 
 ψ . 

The point-detector response ( )1 ; ,R ρ α β  considered in this work turned out 
to be independent of the imprecisely known upper-boundary point uβ , except 
when the response is located at the nominal value of the uncertain upper boun-
dary (i.e., when the nominal values of the quantities dt  and uβ  coincide). In 
this case, the expressions of the 1st- and 2nd-order response sensitivities derived 
in this work remain valid, but with the stipulation that dt  is replaced by uβ . 

A “reaction-rate” detector response, which depends on both the lower and 
upper uncertain boundary points, will be considered in the companion work [7] 
in order to illustrate the possible direct and indirect contributions to the sensi-
tivities of such responses stemming from the uncertain domain boundaries.  
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