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ABSTRACT
Target variant detection has been challenging for Synthetic 
Aperture Radar (SAR), and the performance of the target variant 
recognition needs to be further enhanced. SAR images are 
widely used in the field of target recognition and are important 
to support reconnaissance operations. This paper proposes 
a novel research approach to improve the efficiency of target 
recognition. First, the theory surrounding sparse representation 
and dictionary learning is presented. Secondly, a SAR image 
target recognition model is constructed according to the theory. 
Meanwhile, a dynamic joint sparse representation model is 
proposed based on multi-information and applied to SAR 
image target recognition when sparse representation is under 
consideration. Finally, experiments are set up to validate the 
proposed model. The results are presented as follows: 1. the 
recognition rate range of the sample SAR image target is 0.811– 
0.995 and 0.867–0.990, respectively, when the two cases, with-
out registration processing and with registration processing, 
utilize the recognition method of dictionary learning and sparse 
representation. 2. with the increase in dictionary size, the aver-
age recognition rate of SAR images based on multi-information 
dynamic joint sparse representation also increases under the 
conditions of no logarithm transformation and median filtering 
and after logarithm transformation and median filtering are run. 
Then, the average recognition rate range is 0.63–0.9 and 0.65– 
0.96, respectively. Thus, the recognition rate is improved by 5%- 
10%. 3. the recognition approach based on the sparse represen-
tation of multi-information dynamic joint has distinct sparse 
degrees of SAR image recognition in the case of logarithmic 
transformation and median filtering when the sample image 
has been registered and not been registered. The relative aver-
age recognition rates were 0.950–0.970 and 0.955–0.977, 
respectively. The key contribution of the research is to offer 
a workable solution to the issues plaguing SAR target variant 
recognition and to improve the significant limitations in the 
state-of-the-art literature thoroughly.
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Introduction

The continuous operation of synthetic aperture radar (SAR) under all-weather 
situations makes it a useful intelligence reconnaissance instrument. SAR 
automated target recognition (ATR) is a crucial aspect of SAR picture inter-
pretation that has been intensively researched over the past two decades. 
Particular SAR target recognition approaches concentrate mostly on two 
technologies: feature extraction and classifier development. The objective of 
feature extraction is to minimize the dimensionality of the original SAR data to 
facilitate future decision-making. The target area, target shape, scattering 
centers, principal component analysis (PCA) features, linear discriminant 
analysis (LDA) features, image decompositions, etc., are popular SAR target 
recognition characteristics. The objective of the classifier design is to select the 
target category based on the original SAR picture or the derived data. Many 
classifiers, such as K-nearest neighbor (KNN), support vector machine (SVM), 
sparse representation-based classification (SRC), and convolutional neural 
network (CNN), have been used for SAR target detection as pattern recogni-
tion technology has advanced. Also, other implementations employed PCA 
and LDA to extract SAR image features and categorize them using KNN. In 
addition, the elliptical Fourier descriptor was used for the SAR target contour, 
and then used the SVM classifier to recognize the target. The classification 
performance and application breadth of various classifiers are often distinct. 
Consequently, to increase the performance of recognition, it is required to 
choose a more efficient and robust classifier.

On the other hand, sparse representations have attracted a lot of interest 
recently in several disciplines, particularly pattern recognition. Sparse repre-
sentations try to represent signals with the smallest number of significant 
coefficients possible. This is crucial for a variety of applications, including 
compression. It is often possible to achieve a high compression rate with 
practically undetectable data loss using wavelets. Using SAR pictures for 
automated target detection and decision-making is gaining popularity. The 
success of such tasks is contingent on the degree to which the reconstructed 
SAR pictures display particular characteristics of the underlying scene using 
sparse representation techniques. We create an image generation approach 
that formulates the SAR imaging issue as a sparse signal representation 
problem based on the fact that typical underlying sceneries display sparsity 
in terms of such characteristics. Sparse signal representation, mostly utilized in 
real-valued issues, provides several capabilities for reconstruction and recog-
nition tasks, including superresolution and feature improvement. For com-
plex-valued issues, such as SAR, selecting the dictionary and representation 
method for effective sparse representation is a significant difficulty. As we are 
often interested in characteristics of the SAR reflectivity field’s magnitude, our 
novel method is intended to express the magnitude of the complex-valued 
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dispersed field sparsely. This transforms the picture reconstruction task into 
a joint optimization problem, including the size and phase of the underlying 
field reflectivities. We construct the mathematical underpinning for this 
strategy and suggest an iterative solution for the associated joint optimization 
issue. In terms of creating high-quality SAR pictures and displaying robustness 
in the face of ambiguous or restricted data, our experimental findings illustrate 
the superiority of our technology over earlier approaches.

Many scholars have employed sparse representation to improve pattern 
recognition, face recognition, image reduction, etc. For example, a face recog-
nition technique based on Wright’s sparse representation is the standard for all 
applications. This method calculates the reconstruction error for face recogni-
tion based on the sparse representation result utilizing the training sample 
data to build a dictionary. Then the training stage achieves a relatively robust 
recognition suited to recognize picture targets with local similarity even when 
the face is partially obscured by noise, pollution, etc. Some of the most 
significant methodologies of the literature review are presented in the next 
section of the paper. Specifically, Section 2 is the literature review section. 
Section 3 describes the methods and the design of the model. Exemptions for 
applying the proposed method are outlined in Section 3. Section 4 includes 
details about the experimental design, and finally section 5 concludes by 
summarizing the findings and drafting the following potential directions for 
the work.

Literature Review

Numerous researchers have successfully incorporated sparse representation 
into the field of Synthetic Aperture Radar (SAR) to detect target images (Ma, 
Jia, and Hu 2020). The Method of Optimal Directions (MOD) for learning 
dictionaries was proposed in 1999. To train the vocabulary, the technique 
takes training samples from real-world images. The generated dictionary 
atoms exhibit Gabor-like behaviors and have receptive field characteristics 
that are extremely comparable to those of basic cells (Zhou and Xu 2020). 
However, the MOD method’s high level of complexity entails a significant 
matrix inversion operation when updating dictionary rules (Guo and Feng  
2020). The joint orthogonal dictionary approach was put up in 2005. This 
technique creates a redundant dictionary by concatenating many orthogonal 
dictionaries (Wang et al. 2021). Due to the unique structure of the dictionary, 
the Block Coordinate Relaxation (BCR) algorithm can be employed to update 
the sparse representation coefficients in units of blocks during sparse coding to 
speed up the solution process of sparse coding.

Additionally, the strong structural attributes of the dictionary also make 
the updated rules of the dictionary have a stronger theoretical basis (Shi 
et al. 2021). In 2006, the K-Singular Value Decomposition (K-SVD) 
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dictionary learning algorithm was proposed. The singular value decomposi-
tion technique is employed to resolve the rank approximation problem, and 
each atom is updated one by one, which simplifies the computational 
process (Xue et al. 2020). Basis functions like the receptive fields of cells 
in the primary visual cortex were obtained by utilizing the sparse coding 
neural gas algorithm (Xu 2021). It was later proposed in the idea of sparse 
orthogonal transformation. So, images are clustered according to certain 
characteristics. Then, an orthogonal dictionary is trained separately for each 
class. The algorithm utilizes an orthogonal dictionary, making forward and 
inverse transformations easy.

However, this method requires clustering the entire image. This undoubt-
edly increases the time to process and space complexity of the algorithm (Yan 
et al. 2020). The translation invariance dictionary method is designed since 
similar structural features appear at different positions in dictionary atoms (Yi 
and Zhao 2020). In 2010, under the assumption that dictionary atoms them-
selves also have redundant structural information, a double-sparse dictionary 
learning algorithm was proposed (Yang, Tang, and Tang 2021). In the later 
proposed hierarchical dictionary idea, the atoms in the dictionary that con-
tribute the most energy to the signal representation are distributed in the first 
layer. Atoms with smaller contributions are distributed among the remaining 
dictionary levels. The experimental results show that the convergence and 
efficiency of the algorithm are better than the K-SVD algorithm (Xing et al.  
2021).

It Is practically impossible to gather training samples in all states or con-
figurations of the target due to the complexity of the target environment, 
target configuration, and target structure. Thus, it cannot represent all situa-
tions in the real world. Moreover, training has difficulties in SAR target variant 
recognition, and it is necessary to improve the recognition performance of 
target variants. Therefore, the research employs dictionary learning techniques 
and sparse representation models to investigate target recognition in SAR 
images.

The novelty is presented that a multi-information dynamic joint sparse 
representation model based on the sparse representation model is proposed 
in addition to the study of the recognition effect of the sparse representation 
model in SAR images. The performance of the model will be compared by 
implementing experiments. The effect of recognition is confirmed. The objec-
tive of the research is to offer a workable concept to recognize targets effec-
tively in SAR images.

The rest of the manuscript is constructed as follows: Section 2 defines the 
methods and model design. Section 3 introduces the experimental design. 
Section 4 presents the results and analysis of the conducted research with 
interesting outcomes. Section 5 is allocated to discussion. Section 6 concludes 
the research.
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Methods and the Design of the Model

Dictionary Learning and Sparse Representation: Method of Optimal Directions

The Method for the Construction of the Dictionary
The overcomplete (or redundant) dictionary is the basic premise of sparse 
representation of signals. The degree to which the dictionary atoms accurately 
describe the signal determines whether the representation coefficients of the 
signal in the dictionary are sparse (Huang, Xiao, and Yin 2020) The repre-
sentation coefficients of the signal are sparser and closer than the dictionary 
atoms and the signal agrees. Therefore, obtaining a dictionary that matches the 
image signal is one of the core contents of the sparse representation theory. 
Researchers pointed out that the atoms of an ideal dictionary in which the 
image signal is sparsely represented should have the characteristics shown in 
Figure 1 (Zhang and Li 2021).

Figure 1 depicts that to be able to represent various local structural features 
in the image sparsely, the types and numbers of atoms need to be increased. 
Therefore, overcomplete dictionaries were proposed (Luo et al. 2021). So far, 
the construction of the method classification of the overcomplete dictionary 
has been shown in Figure 2.

The Model of Sparse Representation
Suppose that there are C-type training samples, and the c-th type of training 
samples form a small dictionary Ac, then the K-type training samples can form 
a dictionary A= [A1, A2, . . . , Ac], c = 1, 2, . . . , C. Hypothesis is constructed as 
follows: any sample of class c can be linearly represented by the training 
samples of that class. Then, a test sample can be linearly represented by the 
class of training samples to which it belongs, i.e., y ¼ Ax0. If the test sample 

Characteristics of dictionary atoms

Time 
frequency 

local
Multiscale

AnisotropyRich 
direction

Figure 1. The features of dictionary atoms.
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belongs to class c, then x0 ¼ 0; . . . ; 0; uc; 1; uc; 2; ::; 0; . . . ; 0½ �T. Its expression 
is generalized as y=Ax. Then, according to dictionary A, the test sample y is 
sparsely resolved, as shown in Eq. (1). 

x̂2 ¼ argmin xj jj j2; s:t:Ax ¼ y (1) 

The resulting solution is not unique, but the coefficient x2, which is not 
necessarily sparse, is obtained. According to the data, numerous training 
target classes linearly represent test samples. Ideally, the test target is only 
relevant to the training samples of the class to which it belongs. Therefore, l2 is 
transformed to the l0 norm to guarantee the sparsity and uniqueness of the 
coefficients, as shown in Eq. (2). 

x̂0 ¼ argmin xj jj j0; s:t:Ax ¼ y (2) 

Orthogonal matching pursuit and other greedy algorithms can obtain approx-
imate resolutions. Meanwhile, Eq. (2) is a Non-deterministic Polynomial-hard 
(NP-hard) problem, and it is difficult to obtain a more accurate solution. But if 
x0 is sparse enough, Eq. (2) can be equivalent to Eq. (3). 

x̂1 ¼ argmin xj jj j1; s:t:Ax ¼ y (3) 

The resolution for l0 is transformed into the resolution for the norm l1. In this 
way, many methods can obtain more accurate coefficients (Damotharasamy  
2020).

The Classification of a Sparse Representation
The test samples are categorized based on the reconstruction error after the 
sparse coefficients are produced according to the sparse solution. In Eq. (4), 
the categorization criteria are displayed. 

Method of constructing super 
complete dictionary

Using existing tools such as multi-scale basis and 
orthogonal basis analysis 

The dictionary is constructed by the combination of 
orthogonal basis and frame

Generating functions using parameterization

Dictionary learning in signal set

Figure 2. The method to construct an overcomplete dictionary.
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minrc yð Þ ¼ y � Aδc x̂0ð Þj jj j2 (4) 

Among them, rc(y) represents the reconstruction error; δc x̂0ð Þ means taking 
the value at the position corresponding to the c-th target in x̂0, and the 
remaining position values equal to 0 (Jabs, Acharya, and Denniston 2021).

SAR Target Recognition Based on Sparse Representation and Dictionary 
Learning

According to the proposed sparse representation model, the given SAR image 
recognition process based on sparse representation and dictionary learning is 
shown in Figure 3.

Pre-processing is defined as follows: the training and test samples are pre- 
processed by segmentation, registration, and interception. The experiment 
examines the effect of registration on the experimental outcomes by compar-
ing the recognition results in unregistered and registered cases, respectively.

Constructing a dictionary is defined as follows: the intercepted training 
sample images are column vectorized and spliced into a dictionary. The 
eigenvectors are subjected to dimensionality reduction. Random matrices 
are employed to randomly project vectors to reduce computational 
complexity.

Sparse representation is defined as follows: the truncated test sample images 
are column vectorized. The test sample vector is sparsely represented 

Test sample Training sample 

Pretreatment Pretreatment

Construct 
dictionary

Sparse 
representation

Classification 
results

Figure 3. The recognition process of SAR target based on sparse representation and dictionary 
learning.
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according to the sparse representation model, and the sparse representation 
coefficients are obtained.

Classification is described as follows: referring to Eq. (4), sparse coefficients 
are used to reconstruct the vector of the test sample. According to the size of 
the reconstruction error, the test objects are identified (Hajipour, Namin, and 
Shirazi 2021).

SAR Target Recognition Based on Multi-Information Joint Dynamic Sparse 
Representation and Dictionary Learning

The Joint Sparse Representation Model
The sparse joint model refers to the linear representation of multiple input 
signals utilizing the same dictionary atoms on the same dictionary. Like the 
sparse representation model of a single input signal, M images of the same 
target are incorporated into the sparse representation model, as shown in 
Eq. (5). 

x̂if g
M
i¼1¼ argmin

XM

i¼1
yi � Axij jj j

2
2; s:t: xij jj j0 � S;"1 � i � M (5) 

The elements in Eq. (5) are expressed in the form of a matrix, as shown in 
Eq. (6). 

X ¼ argmin Y � AXj jj j
2
F; s:t: Xj jj jl0nl2 � S (6) 

Among them, X ¼ x1; x2; . . . ; xi; xM½ � is the sparse coefficient matrix; Y ¼
y1; y2; . . . ; yi; yM½ � is the input signal matrix, which refers to the input informa-

tion formed by M images of the same test target matrix; xi is the sparse 
coefficient vector of the input signal on the dictionary A; S is the sparsity; 

Xj jj jl0nl2 
means that after each row of the matrix is resolved by the l2 norm, the 

obtained vector is resolved by norm l0.
Again, the classification of the final test target is like the single-signal sparse 

representation. The magnitude of the comparison reconstruction error is 
utilized to achieve classification, as shown in Eq. (7). 

ĉ ¼ argmin Y � ŶC
�
�

�
�

�
�

�
�

F ¼ argmin Y � AδC X̂
� ��

�
�
�

�
�

�
�
F (7) 

Then, 

ŶC ¼ AδC X̂
� �

(8) 

ŶC represents the reconstruction of the test samples utilizing the c-th training 
samples.

When compared with the single-signal sparse representation model, the 
joint sparse representation model restricts multiple input signals to have the 
same sparsity pattern. The model comprehensively utilizes the similarity and 
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correlation between multiple input signals to enhance the final recognition 
performance of the test target (Peng 2020).

The Joint Dynamic Sparse Representation Model
The joint dynamic sparse representation model has two types of applications. 
The first method divides the training sample image into multiple different sub- 
regions, constructs corresponding dictionaries for the images of different sub- 
regions, and utilizes the joint dynamic sparse representation model to sparsely 
resolve the images of different sub-regions of the test sample. The error 
obtains the final recognition result (Wu et al. 2021). The second method 
implements all the training samples to form a dictionary and utilizes the 
joint dynamic sparse representation model to resolve the multiple images of 
the test samples sparsely. This approach is like the joint sparse representation 
model, but it emphasizes that multiple test sample images have similar sparse 
representation patterns in the same dictionary (Wu, Yong, and Fan 2020).

The first joint dynamic sparse representation model is shown in Eqs. 
(9)-(11). 

X̂ ¼ argmin
XK

k¼1
yk � Akxkj jj j

2
2; s:t: Xj jj jG � S (9) 

Xj jj jG ¼ xg1

�
�
�
�

�
�

�
�

2; xg1

�
�
�
�

�
�

�
�

2; . . .
h i�
�
�

�
�
�

�
�
�

�
�
�

0
(10) 

xgx ¼ X gSð Þ ¼ X gS 1ð Þ; 1ð Þ; . . . ;X gS Kð Þ;Kð Þ½ �
T
2 RK (11) 

X is the obtained sparse coefficient matrix; yk is the signal of the k-th subregion 
of the input sample; xk is the sparse coefficient vector corresponding to the 
input signal yk; Ak is the dictionary formed by the k-th subregion of the 
training sample; S is the sparsity; xgx represents an index vector of non-zero 
elements in the sparse coefficient matrix.

The second joint dynamic sparse representation model is shown in Eqs. 
(12)-(13). 

X̂ ¼ argmin
XM

m¼1
ym � Axmj jj j

2
2; s:t: Xj jj jG � S (12) 

xgx ¼ X gSð Þ ¼ X gS 1ð Þ; 1ð Þ; . . . ;X gS Mð Þ;Mð Þ½ �
T
2 RM (13) 

Among them, ym is the m-th image of the input sample; xm is the sparse 
coefficient vector corresponding to the input signal ym; A is a dictionary 
composed of training samples.
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SAR Target Recognition Based on Multi-Information Joint Dynamic Sparse 
Representation and Dictionary Learning

The Identification of the Process Design
The flowchart for the SAR target recognition method follows the associated 
theory of the joint sparse representation model and the joint dynamic sparse 
representation model based on the multi-information joint dynamic sparse 
representation is shown in Figure 4.

Image pre-processing is described as follows: SAR images, in contrast to 
optical images, are very azimuth sensitive. Coherence speckles are also easily 
able to degrade the image quality. Furthermore, the target location informa-
tion is more sensitive to the target image domain information. As a result, the 
pre-processing of a target picture, shadow segmentation, target registration, 
and interception are required before target detection in SAR images is realized. 
The image is pre-processed, such as segmentation, registration, and an inter-
ception, and the target image used for final recognition is obtained.

Constructing the dictionary is described as follows: through the pre- 
processing method, all the original training samples are processed. The 

Pretreatment

Image domain 
amplitude information 

data matrix

Frequency domain 
amplitude 

information data 
matrix

Construct image 
domain dictionary

Target shadow 
information 
data matrix

Construct 
shadow 

dictionaryConstructing 
frequency domain 

dictionary

Pretreatment

Image domain 
amplitude 

information vector

Target shadow 
information vector

Frequency domain 
amplitude 

information vector

Joint dynamic 
sparse 

representation

Target recognition

Training sample Test sample

Figure 4. The flow chart of SAR target recognition method based on multi-information joint 
dynamic sparse representation.
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training samples for recognition of size 63 × 63 are obtained. On the one hand, 
the image-domain magnitude information of all training samples used for 
recognition is column-vectorized. The data matrix of the formed image 
domain amplitude information is represented by 
S1 ¼ t1; t2; . . . ; tNum½ � 2 Rd�Num. Among them, ti 2 Rd represents the image 
domain amplitude information vector of the i-th training sample; i represents 
the dimension of the information vector; Num is the number of training 
samples. On the other hand, the images of all training samples used for 
recognition are transformed to the frequency domain by a two-dimensional 
(2D) Fourier transformation. The frequency-domain amplitude information is 
quantized by a column vector and the frequency domain amplitude informa-
tion data matrix is denoted by S2 ¼ p1; p2; . . . ; pNum½ � 2 Rd�Num. Among them, 
pi 2 Rd represents the frequency domain amplitude information vector of the 
i-th training sample.

Additionally, the original training images are segmented. The binary image 
of the shadow area of the object is obtained by utilizing segmentation pro-
cesses. Among them, the amplitude of the shadow area is 1, the amplitude of 
the other areas is 0, and the amplitude information of the binary image is 
converted into a column vector to form the target shadow information matrix 
S3 ¼ s1; s2; . . . ; sNum½ � 2 Rd�Num. Among them, si 2 Rd represents the shadow 
information vector of the i-th training sample. The three kinds of information 
of the training samples directly construct the dictionary, namely A1=S1, 
A2=S2, and A3=S3.

Pre-processing of test samples is defined as follows: the test samples are 
processed utilizing the same steps as the training phase is conducted. To 
determine the information vector y1 of the test sample image domain ampli-
tude, the pre-processed test picture is employed, and the frequency domain 
amplitude information vector y2, and the target shadow information vector y3 
are found.

The joint dynamic sparse representation of test samples is described as 
follows: when combined with the dictionaries A1, A2, and A3 constructed in 
the training phase, the joint dynamic sparse representation model sparsely 
resolves the image domain amplitude vector y1, frequency domain amplitude 
vector y2, and shadow information vector y3 of the test sample. The sparse 
representation coefficients x1, x2, and x3 of the two kinds of information are 
based on the test samples when their respective dictionaries are obtained.

Identification of test samples is described as follows: the minimum recon-
struction error criterion is employed to identify the test target, as shown in 
Eq. (14). 

ĉ ¼ argmin
XK

k¼1
ωk yk � Akδc xkð Þj jj j

2
2 (14) 
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ĉ represents the category of the test target; ωk represents the weight of the 
information; yk � Akδc xkð Þj jj j

2
2 represents the reconstruction error of the k-th 

information vector of the test sample; δc xkð Þ represents the coefficient value of 
the position corresponding to the c-th category in xk; the value of δc xkð Þ

corresponding to the position of other categories is 0.

Experimental Design

The experimental data comes from the Moving and Stationary Target 
Acquisition and Recognition (MSTAR) dataset. The dataset contains target 
images at multiple elevation angles and multiple azimuth angles. The resolu-
tion of the target image is 0.3 m × 0.3 m. The training samples are BMP2 
(BMP2SN9563, BMP2SN9566, and BMP2SNC21), armored vehicles 
BTR70SNC71, and main battle tanks T72 (T72SN132, T72SN812, and 
T72SNS7) when the radar pitch angle is 17°. The test samples are images of 
3 categories and seven models when the radar elevation angle is 15°, including 
armored vehicles BMP2 (BMP2SN9563, BMP2SN9566, BMP2SNC21), 
armored vehicles BTR70SNC71, and main battle tanks T72 (T72SN132, 
T72SN812, T72SNS7). The specific content of the parameters taken in the 
experiment is shown in Table 1.

Target Recognition Effect Based on Sparse Representation and Dictionary 
Learning

Figure 5 shows the results obtained by the recognition method based on sparse 
representation and dictionary learning to identify the target of the sample SAR 
image.

Figure 5 depicts that in the case of no registration process, the recognition 
rate of this recognition method is 0.985, 0.811, 0.893, 1, 0.838, 0.995, and 0.862, 
respectively when recognizing the target of the sample SAR image. On the 
other hand, in the case of registration processing, when the recognition model 
detects the target of the sample SAR image, the recognition rates are 0.964, 
0.867, 0.903, 0.985, 0.953, 0.990, and 0.918, respectively. The data show that 
without registration processing, the recognition results of non-target variants 
are better, but the recognition results of target variants are poor.

Table 1. Settings of MSTAR experimental parameters.

Data Category
The Training Samples 

(Pitch Angle =17°)
The Test Samples 
(Pitch Angle =15°)

BMP2 SN9563 233 195
SN9566 232 196
SNC21 233

BTR70 C71
T72 SN132

SNS7 228 191
SN812 231 195
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After the registration process is conducted, the recognition performance of 
non-target variants remains stable, and the recognition results of target variants 
are improved to a certain extent. For the two variants of the T72 tank, the 
recognition rate has increased by 5%-10%. Thus, the average recognition rate 
has also increased by 2.8%. The data shows that the recognition method based on 
sparse representation has higher requirements on the location registration of the 
target in the SAR image.

When the registration process is not performed, the recognition results are not 
very robust. But after registering all the targets, the method is feasible and effective, 
and the operation is simple. It directly utilizes the amplitude information of the 
target area and surrounding of the image without extracting other features of the 
target and does not consider the azimuth angle of the target, etc., information; no 
need to design other classifiers and employs the reconstruction error for 
identification.

The Effect of Image Recognition Based on Multi-Information Joint Dynamic 
Sparse Representation and Dictionary Learning

Image Recognition Results Without Registration
The sample SAR picture is recognized using the multi-information joint 
dynamic sparse representation and dictionary learning identification method 
in the unregistered scenario, as shown in Figure 6.
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Figure 5. Model recognition effects based on sparse representation and dictionary learning in 
different situations.
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Without logarithmic transformation and median filtering, as shown in 
Figure 6, the average identification rate of this technique for SAR images 
similarly increases as the vocabulary size increases. The recognition rate ranges 
from 0.63 to 0.99 on average. The average recognition rate of the method for 
SAR images with logarithmic transformation and median filtering rises as the 
dictionary size does.

The average recognition rate is between 0.65–0.96. Overall, the average 
recognition rate of this method is improved by 5%-10%. The data show that 
the number change and median filter processing can improve the target 
recognition performance in this experimental scenario.

Image Recognition Results After Logarithmic Transformation and Median Filtering
In the case of logarithmic transformation and median filtering, the recognition 
technique based on multi-information joint dynamic sparse representation 
and dictionary learning is utilized to detect the sample SAR image, as shown in 
Figure 7.

When the sample image is not registered in Figure 7, following logarithmic 
transformation and median filtering, the average identification rate of the 
recognition method for SAR images under varying sparsity is between 0.955 
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Figure 6. Results of image recognition without registration.
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and 0.977. The average recognition rate of the SAR image recognition 
approach under various sparsity conditions ranges from 0.950 to 0.970 when 
the sample images are registered, and this rate increases as sparsity increases. 
This recognition technique’s typical recognition rate has increased.

The average recognition rate of this method after registration processing is 
slightly lower than the average recognition rate without registration proces-
sing. In this experimental scenario, both training and target are assumed to be 
seven classes, but there are three classes of targets. Among the three models of 
BMP2, the three models of T72 are relatively close. After the registration, the 
influence of the difference in the position of the target in the image is removed, 
and the target and the target variant would become more similar. Therefore, it 
is easy to misclassify each other when the seven categories are divided.

After the registration process is conducted, the recognition performance of 
non-target variants remains stable, and the recognition results of target var-
iants are improved to a certain extent. For the two variants of the T72 tank, the 
recognition rate has increased by 5%-10%. Thus, the average recognition rate 
has also increased by 2.8%. The data shows that the recognition method based 
on sparse representation has higher requirements on the location registration 
of the target in the SAR image.

When the registration process is not performed, the recognition results are 
not very robust. But after registering all the targets, the method is feasible and 
effective, and the operation is simple. So, it directly utilizes the amplitude 
information of the target area and surrounding of the image without extract-
ing other features of the target and does not consider the azimuth angle of the 
target, etc., information; no need to design other classifiers and employs the 
reconstruction error for identification.
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Figure 7. Image recognition results after logarithmic transformation and median filtering (a) Model 
recognition effect without registration processing; (b) Model recognition effect after registration 
processing.
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When logarithmic transformation and median filtering are conducted with 
the increment of the dictionary size, the average detection ratio of the pro-
posed approach is improved by 5%-10%. The data show that the number 
change and median filter processing can improve the target recognition 
performance in this experimental scenario.

Conclusion

This investigation primarily examines sparse representation-based 
approaches for SAR image target detection, with a particular emphasis on 
sparse joint representation, joint dynamic sparse representation, and dic-
tionary learning.

The benefits of the two models of discriminative dictionary learning and 
joint dynamic sparse representation are combined in the SAR target recogni-
tion approach based on these two techniques. Still, it maintains good recogni-
tion performance when the dictionary size is small. Additionally, the sparse 
joint representation exploits the local similarity between the target and target 
variants and improves the recognition of target variants. The conclusions are 
as follows:

(1) after all targets are registered, the recognition method based on sparse 
representation and dictionary learning is feasible and effective, and the 
operation is simple. The identification method directly utilizes the 
amplitude information of the target area and its surroundings in the 
image, without extracting other features of the target, nor considering 
the azimuth angle and other information of the target, and does not 
need to design other classifiers. It uses reconstruction error for 
identification.

(2) Whether to perform the logarithmic transformation, median filtering, 
and registration processing on the image data has a certain influence on 
the recognition effect of the dynamic joint sparse representation model 
based on multi-information. The drawback is that all the investigated 
SAR image target recognition techniques are experimentally tested 
using slices that were found and retrieved from the MSTAR data. In 
actuality, the geography of the target geography and environment is 
complicated.

Therefore, the proposed method will be further validated when combined with 
SAR target detection in complex environments. The purpose is to construct 
a detection model employing theories of sparse representation and dictionary 
learning. The research aims at playing a role in the detection of SAR image 
targets in a certain manner.
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