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ABSTRACT 
 
Data compression is a special kind of technique for representing various types of data such as text, 
audio, video, images etc. Data compression is used to reduce the number of bits and to store data. 
Different types of data compression mechanism are widely being used for compressing several 
types of data. In the field of data compression Arithmetic Coding is one of the most important 
technique which plays a vital role in lossless data compression. The main objective of this paper is 
to develop an efficient encoding algorithm using Arithmetic Coding. This paper has some test cases 
and found that the proposed technique is more efficient and effective than binary Huffman coding in 
terms of both speed and memory usage. 
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1. INTRODUCTION 
 
Compression is one kind of process or technique 
which has been used to reduce the amount of 
data needed for storage or transmission of data 

like text, audio, video, and image etc. Data 
compression is used in a computer system to 
store data that occupies less space than the 
original form [1]. 
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There are two types of data compression 
process in a computer system. One is lossless 
and another one is lossy technique. In lossless 
data compression there is no loss in the 
information, and the data can be reconstructed 
exactly same as the original. Lossless 
compression is mostly used in text files. In lossy 
compression some data in output is lost but not 
detected by users. Lossy compression mostly 
used in audio, video and image files [2]. In 
modern time several types of data compression 
techniques are used such as Huffman, 
Arithmetic coding, LZW, Shannon-Fano, Run 
length coding etc. 
 
Among them Huffman and Arithmetic coding are 
mostly used for text compression. In the 
research [3], it shows the comparison between 
Huffman and Arithmetic coding by using some 
data. Huffman coding is an entropy encoding 
algorithm used for lossless data compression in 
computer science and information theory. 
Huffman coding based on the frequency of a 
data item [4]. Huffman coding is most commonly 
used technique in data compression. Some 
people use it as one step in a multistep 
compression technique [5]. In Arithmetic coding, 
a message is represented by an interval of real 
numbers between 0 and 1. The performance of 
Arithmetic coding is optimal without the need for 
blocking of input data [6]. 
 
Arithmetic coding is a data compression 
technique that encodes data (the data string) by 
creating a code string which represents a 
fractional value and differs considerably from the 
more familiar compression coding techniques, 
such as prefix (Huffman) codes. Also, it should 
not be confused with error control coding [7]. 
 
In compression when we consider all different 
entropy-coding methods and their possible 
applications, arithmetic coding stands out in 
terms of elegance, effectiveness and versatility. 
Since it is able to work most efficiently in the 
largest number of circumstances and purposes 

[8]. Arithmetic Coding is superior in most 
respects to the better-known Huffman [9] 
method. It represents information at least as 
compactly sometimes considerably more so [6]. 
 
Flexibility is most important advantage of 
Arithmetic Coding. This advantage is significant 
because large compression can be obtained only 
through the use of sophisticated models of the 
input data [10]. 
 

2. ARCHITECTURE 
 

2.1 Huffman Coding 
 
Huffman is a popular method of data 
compression. In computer science Huffman 
coding based on entropy encoding algorithm 
used in lossless data compression. The Huffman 
coding creates a variable-length codes that are 
integral number of bits. It is not very different 
from Shannon-Fano algorithm. The inventor of 
Huffman coding algorithm is David Huffman, who 
invented this technique whenever he was a 
Ph.D. student at MIT [8]. Huffman coding uses a 
specific method for choosing the representation 
for each symbol, resulting in a prefix 
code (sometimes called "prefix-free codes", that 
is, the bit string representing some particular 
symbol is never a prefix of the bit string 
representing any other symbol) that expresses 
the most common source symbols using shorter 
strings of bits than are used for less common 
source symbols. Huffman was able to design the 
most efficient compression method [11]. The 
statistical model of Huffman coding is shown in 
the Fig. 1. 
 
In the case of Huffman coding, the actual output 
of the encoder is determined by a set of 
probabilities. When using this type of coding, a 
symbol that has a very high probability of 
occurrence generates a code with very few bits. 
A symbol with a low probability generates a code 
with a larger number of bits. 

 

 
 

Fig. 1. Statistical model of Huffman coding 
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A Huffman code [12] is generally done by 
following a binary decoder tree. 
 
i. First start with a list free node, where each 

node corresponds to a symbol in the 
alphabet. 

ii. Select two free leaf nodes with the lowest 
weight from the list. 

iii. Construct a parent node for these two leaf 
nodes, the weight of parent node is equal 
to the sum of two child nodes. 

iv. Remove the two child nodes from the list 
and the parent node is added to the list of 
free nodes. 

v. Repeat the process starting from step-2 
until only a single tree remains. 

 
In Fig. 2, the binary Huffman tree processes the 
substring “BOOMBOOM”. In Huffman encoding 
the substring “BOOMBOOM” generate a bit 
string 001101001101 that occupy 12 bits. The 
Huffman generated code-word for some test 
cases are shown in Table 1. 
 
In data structure requires O (log n) time per 
insertion, and a tree which have n leaves has   
2n-1 nodes, this algorithm operates in time O     
(n log n). 

 
Fig. 2. Huffman binary tree 

Table 1. Find bits in huffman encoding 
 
Message Huffman Coding Bits 
Cocacola 1011001101000001 16 
Boomboom 001101001101 12 
Data 001011 6 
Book 001101 6 
Lossless 01000110100111 14 
Be a bee 0110010000010111 16 

 
 

2.2 Arithmetic Coding 
 
Arithmetic coding is important because it was 
invented as an alternative of Huffman coding 
after a gap of 25 years. It is superior in 
performance to the Huffman coding when the 
substring is fairly small or redundancy in a 
alphabet. In 1948 this idea first comes from 
Shannon’s observation that message may be 
encoded by their cumulative probability. This can 
also be seen in static Huffman coding where a 
sequence of symbols is assigned on Huffman 
code-word to achieve a better compression ratio. 
Arithmetic coding is now the method of choice for 
adaptive coding on multilevel symbol alphabets 
because of: 
 

• Its speed. 
• Minimum storage requirements. 
• Effectiveness of compression. 

 
In Arithmetic coding successive symbols of the 
text reduce the size of the interval. Likely 
symbols reduce the range by less than the unlike 
symbols and added fewer bits to the message 
[6]. The range of the interval (0,1] denoting it half 
open interval. Starting with the interval (0,1] then 
every interval is divided in several subintervals. 
The size of the interval is proportional to the 
current probability of the corresponding symbol 
of the alphabet. The subinterval from the coded 
symbol is then taken as the interval of the next 
symbol. Approximately the codeword length is 
equal to -log2p(s), where p(s) is the probability of 
the source sequences. 
 
The basic idea of Arithmetic coding is to assign 
short codeword to more probable events and 
longer codeword to less probable events. 
Arithmetic coding provides a special mechanism 
for removing redundancy of the input data.  
 
There is another thing in the Arithmetic coding is 
that there is no problem which characters are 
assigned in the interval range. As long as it is 
done in the same manner by both the encoder 
and the decoder. The three symbol set used here 
in the message “DATA” would look like in the 
Table 2. 

 
Once character probabilities are known, 
individual symbols need to be assigned a range 
along a “probability line,” nominally 0 to 1. It 
doesn’t matter which characters are assigned 
which segment of the range, as long as it is done 
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in the same manner by both the encoder and the 
decoder. 
 
Here is the original encoding algorithm for 
arithmetic coding. 
 

Set low to 0.0 
Set high to 1.0 

 
While there are still input symbols do 
 

get an input symbol 
code_range = high - low. 
high = low + range*high_range(symbol) 
low = low + range*low_range(symbol) 

       End of While output low 
 

Table 2. Probability analysis using Arithmetic 
coding 

 
Character Probability Range 
D 1/4 0.00 – 0.25 
A 2/4 0.25 – 0.75 
T 1/4 0.75 – 1.00 

 
Following the encode process we can find the 
message “DATA” as below: 
 

Character Low value          High Value 
D 0.0 1.0 
A 0.0 0.25 
T 0.0625 0.1875 
A 0.15625 0.1875 
 0.171875 0.1875 

So the final low value, 0.171875 which generates 
6 bits (0.001011) of the message. 
 
In Table 3 some substrings are taken and find 
the number of bits for each of these substrings 
according to Arithmetic coding. 

 
Table 3. Find bits in arithmetic coding 

 
Message Arithmetic coding Bits 
Cocacola 001010100100001 15 
Boomboom 1000111001 10 
Data 10011 5 
Book 101 3 
Lossless 101100010111 12 
Be a bee 011110001001 12 

 

2.3 Experimental Design 
 
The experimental design of the research is 
shown in Fig. 3. After taking the raw text or 
paragraph as input, the system will calculate the 
probability of each symbol. The cumulative 
probability can be calculated from the initial 
probability. The proposed formula will be applied 

in the probability and we will get a decimal 
number as output. The decimal number will be 
converted to binary number which is our encoded 
data. Finally we will compare our performance 
with most popular Huffman coding.   
 
As we know Arithmetic coding work within an 
interval of 0 and 1 then subdivide the substring 
according to this process and find the final bit of 
input string. We start with a current interval (L,H] 
initialized (0,1]. For each symbol of the file, we 
perform two steps that subdivide the current 
intervals into subintervals, one for each possible 
alphabet symbol. The size of a symbol 
subinterval is proportional to the estimated 
probability that the symbol will be the next 
symbol in the text, according to the model of the 
input. Select the subinterval corresponding to the 
symbol that actually occurs next in the file, and 
make it the new current interval. The final interval 
will be that interval which matches with the input 
text.  
 
Finally the lowest decimal number of the interval 
will be processed for binary data. Fig. 4 shows 
the details of the calculations.  
 
In Fig. 4 we look at the frequency for different 
letters. And generate a string ‘SLOE’ according 
to their frequency for the message of text 
‘LOSSLESS’. We encode the string ‘SLOE’ by 
dividing up the interval (0,1] and allocate each 
letter as an interval whose size depends on the 
probability. Our message of text starts with ‘L’, so 
we take the ‘L’ interval first and divide it up again 
in the same way. The interval between LS and 
LL starts with the lower interval of ‘L’ 4/8. Then 
the lower interval between LS and LL will be 4/8. 
Then we find the higher interval by calculating 
lower interval + (frequency of L / length of text * 
frequency of S / length of text). So, we find 
4/8+(2/8*4/8) = 40/64 as higher interval for LS. 
Then for the next interval between LL and LO we 
take the higher interval of the previous one LS as 
our lower interval. So our lower interval for LL is 
40/64. To find the higher interval between LS and 
LL we use the previous calculation like lower 
interval + (frequency of L/ length of text * 
frequency of L/ length of text). By put the value 
we get the higher interval as 40/64+(2/8 *2/8) = 
44/64. In third step we see the next letter of the 
message of text ‘O’ so now we subdivide the ‘O’ 
interval in the same way. After continuing this 
process we get our desired message 
‘LOSSLESS’ with lower and higher interval. Thus 
we can represent the text message ‘LOSSLESS’ 
with these two intervals. 
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Fig. 3. Experimental design of arithmetic encoding 
 

 
 

Fig. 4. The process of the proposed technique 
 
Then we find out the binary number of these two 
intervals and take the smaller one as our output. 
 
Thus, after continuing the technique we 
represent the message as any number in the 
interval [11628544/ 16777216, 11629568/ 
16777216). Then we convert the two numbers as 
a binary one to get our result.  

 
11628544                
 
16777216  

 
               212 * 2839 
     =  
                   224 

Calculate the probability of each symbol of the text 

Calculate the cumulative probability 

Start with a current interval within the interval (0, 1] 

Subdivide the current interval into subintervals 

Select the subinterval corresponding to the event occurs in the text 

Generate actual decimal number of the subinterval 

Input Raw Data 

Encode data 

Performance Analysis 



 
   

 
 

Habib and Chowdhury; JSRR, 4(1): 60-67, 2015; Article no.JSRR.2015.009 
 
 

 
65 

     =    0.101100010111 (Result) 
 

               11629568              
 
               16777216     
 
              210 * 11357 
     =  
                   224 

 

     =    0.10110001011101 

 
In these two intervals we chose the small binary 
one as our desired result. The details of the 
proposed technique are explained with the 
following steps: 
 

STEP 1: We have generated a new string or 
text according to the frequency of original 
message. We encode the text by dividing 
up the interval (0, 1] and allocate each 
letter or symbol in an interval range whose 
size depends on the probability. 

STEP 2: First of all we took the first symbol of 
the original message or text as input and 
thus the length of text will be two. Define 
new lower interval which is found from step 
one. Find out its next interval by multiplying 
according to the frequency of these two 
symbols separately. Finally add the sum of 
the above multiplication with the lower 
interval of the latest segment. 

STEP 3: In this step we will take next symbol 
of the text and its length will be three. 
Define its new lower interval from step 2. 
Finally the output will be the lower interval. 

STEP 4: However, in the third step the length 
of text will be four and as usually take the 
input of a new symbol. Find out the new 
lower interval for the current segment of 
the step from step 2. Calculate the higher 
interval for each segment of the existing 
text length of four by multiplying all the 
frequency of each symbol one another and 
add them with the current lower interval. 

STEP 5: Take a new symbol as input and 
length of text will be increases to five. Then 
set the new lower interval from step 4 for 
this step. For every segment of the text 
find out their next interval again with 
multiplying the frequencies of all the five 
symbols individually and finally add them 
with lower interval. Thus we will find the 
output of a lower interval. 

 
 

3. IMPLEMENTATION 
 
3.1 Arithmetic Coding 
 
In the pseudo code we define two variables 
called low and high for store lower and higher 
interval accordingly. In line 4 we check the 
redundancy of the Text symbols with a function 
redundancy_check () and store it in an array 
Red_msg[]. Then in line 5 a loop from 1 to length 
of Text will work while another loop in line 7 from 
1 to length of the array Red_msg[] will going on. 
Then we store the value of j in a variable position 
in line 8. While in line 9 we check if the value of i 
is 1and the comparison of encoded string and 
input Text is not equal i then a function 
Store_interval () is used in line 11 to store some 
value. In Store_interval () the parameters low, 
high, string and position are used to pass several 
data. Through this function we store the value of 
lower and higher interval in two variables low, 
high with the encoded string and position of the 
value. 
 

In line 14 we checks if the comparison between 
the Text and string is minimum and equal to i 
then Store_interval () function is used again to 
store values finally and break the nested loop on 
line 7. Thus continuing the process and find the 
value of string as our input Text. Finally in line 
17, 18 we convert the lower and higher interval of 
the encoded Text with a function DecToBin () to 
binary one and store them in two separate array 
of variable called low and high. 
 

3.2 Encoding Algorithm 
 

Encoding () 
 

BEGIN 
 

1 Input: Text 
2 Output: Encoded bit stream 
3  low = 0, high = 1; 
4 Red_msg [] = redundancy_check (Text); 
5 For i=1 to length of Text  
6 low = high;  
7 For j=1 to length of Red_msg [] 
8 position = j; 
9 if (i ==1 AND compare  not equal i) 
10 string [] =  Red_msg[j]; 
11 Store_interval (low, high, string, 
                                 position); 
12 elseif (i>1) 
13 string [] = Text [i- 1]*Red_msg [j]; 
14 If (compare equal to i) 
15 Store_interval (low, high, string, 
                                 position);  
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16 break;                                     
17 low [position] = DecToBin (low); 
18 high [position] = DecToBin (high); 
19 END 
Store_interval (low, high, string, position) 
 
{ if(position>1) 
  String [position].low=high; 
 else 
  String [position].low=low; 
 low = String [position].low; 
 temp = 1; 
 for k = 1 to length of string 
  val = redundancy_check 

(string[k]) / length of Text * temp; 
  temp = val; 
 String [position].high= temp; 
 high = String [position].high; 
 Encoding_string [position] = string; } 

 

4. PERFORMANCE ANALYSIS 
 

In this research authors show a new 
implementation technique of Arithmetic coding. 
The proposed data structure is array based and 
simple to search. The proposed data structure 
does not need any branch or pointer, thus is very 
compact as compared with the existing schemes. 
The complexity of the original arithmetic coding is 
O(n) whereas the complexity of the proposed 
technique is O(logn). The performance of 
proposed technique is also better than a popular 
algorithm for arithmetic coding implementation 
proposed by [13]. The technique also compared 
with a contemporary Huffman based 
compression technique [14] and it is performed 
better in terms of memory usage. 
 
In these following case examples in Table 4 
shown that the Huffman algorithm takes more 
bits stream than our proposed algorithm using 
Arithmetic coding. So, we can assure that our 
proposed technique using Arithmetic coding 
takes less bits than Huffman coding in text 
compression. 
 
Table 4. Comparison between bit streams of 
Huffman and proposed Arithmetic Algorithm 

 
Message Bits in  

huffman 
Bits in  
proposed  
arithmetic  
coding 

Cocacola 16 16 
Boomboom 12 11 
Data 6 6 
Book 6 5 
Be a bee 16 14 

In the Table 4, it has been shown that the 
proposed technique always performs better than 
the Huffman technique for most test cases. 
Though the technique is compared with some 
sample data in the above Fig., but the algorithm 
is applicable for any size of text or paragraph 
data.  
 

4. CONCLUSION 
 
The main contribution of this research is to 
develop a new encoding algorithm by using the 
principle of arithmetic coding. In the research we 
have also compare the performance of Huffman 
encoding algorithm with our developed algorithm. 
We have shown that proposed techniques 
significantly better than Huffman Coding 
techniques in terms of memory requirements. 
The proposed technique is tested for Computer 
devices, however it may be implementing for 
mobile devices also. In future an efficient 
algorithm may be designed for decode the 
encoded bit stream. 
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