
*Corresponding author: E-mail: ahferoz@gmail.com;

Journal of Scientific Research & Reports
4(1): 60-67, 2015; Article no.JSRR.2015.009

ISSN: 2320–0227

SCIENCEDOMAIN international
 www.sciencedomain.org

An Efficient Compression Technique Using
Arithmetic Coding

Ahsan Habib1*and Debojyoty Chowdhury1

1Department of Computer Science and Engineering, Shahjalal University of Science and Technology,

Sylhet, Bangladesh.

 This work was carried out in collaboration between both authors. Author AH designed the study,
wrote the protocol, wrote the first draft of the manuscript and managed the experimental process.

Author DC managed the literature searches; analyses of the study performed the compression
analysis. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JSRR/2015/12846

Editor(s):
(1) Luigi Rodino, Faculty of Mathematical Analysis, Dipartimento di Matematica, Università di Torino, Italy.

Reviewers:
(1) H D Arora, Department of Mathematics, Amity Institute of Applied Sciences, Amity University, Noida – 201303, India.

(2) Garba S. Adamu, Department of Mathematics and Computer, Waziri Umaru Federal Polytechnic, Birnin Kebbi, Nigeria.
(3) Anonymous, Near East University, Cyprus.

(4) Anonymous, Technical College – Kirkuk, Iraq.
(5) Anonymous, Hanoi University of Science and Technology, Vietnam.

Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=689&id=22&aid=6327

Received 21 st July 2014
Accepted 16 th September 2014

Published 5 th October 2014

ABSTRACT

Data compression is a special kind of technique for representing various types of data such as text,
audio, video, images etc. Data compression is used to reduce the number of bits and to store data.
Different types of data compression mechanism are widely being used for compressing several
types of data. In the field of data compression Arithmetic Coding is one of the most important
technique which plays a vital role in lossless data compression. The main objective of this paper is
to develop an efficient encoding algorithm using Arithmetic Coding. This paper has some test cases
and found that the proposed technique is more efficient and effective than binary Huffman coding in
terms of both speed and memory usage.

Keywords: Arithmetic coding; huffman coding; text compression; data compression; encoding.

1. INTRODUCTION

Compression is one kind of process or technique
which has been used to reduce the amount of
data needed for storage or transmission of data

like text, audio, video, and image etc. Data
compression is used in a computer system to
store data that occupies less space than the
original form [1].

Original Research Article

Habib and Chowdhury; JSRR, 4(1): 60-67, 2015; Article no.JSRR.2015.009

61

There are two types of data compression
process in a computer system. One is lossless
and another one is lossy technique. In lossless
data compression there is no loss in the
information, and the data can be reconstructed
exactly same as the original. Lossless
compression is mostly used in text files. In lossy
compression some data in output is lost but not
detected by users. Lossy compression mostly
used in audio, video and image files [2]. In
modern time several types of data compression
techniques are used such as Huffman,
Arithmetic coding, LZW, Shannon-Fano, Run
length coding etc.

Among them Huffman and Arithmetic coding are
mostly used for text compression. In the
research [3], it shows the comparison between
Huffman and Arithmetic coding by using some
data. Huffman coding is an entropy encoding
algorithm used for lossless data compression in
computer science and information theory.
Huffman coding based on the frequency of a
data item [4]. Huffman coding is most commonly
used technique in data compression. Some
people use it as one step in a multistep
compression technique [5]. In Arithmetic coding,
a message is represented by an interval of real
numbers between 0 and 1. The performance of
Arithmetic coding is optimal without the need for
blocking of input data [6].

Arithmetic coding is a data compression
technique that encodes data (the data string) by
creating a code string which represents a
fractional value and differs considerably from the
more familiar compression coding techniques,
such as prefix (Huffman) codes. Also, it should
not be confused with error control coding [7].

In compression when we consider all different
entropy-coding methods and their possible
applications, arithmetic coding stands out in
terms of elegance, effectiveness and versatility.
Since it is able to work most efficiently in the
largest number of circumstances and purposes

[8]. Arithmetic Coding is superior in most
respects to the better-known Huffman [9]
method. It represents information at least as
compactly sometimes considerably more so [6].

Flexibility is most important advantage of
Arithmetic Coding. This advantage is significant
because large compression can be obtained only
through the use of sophisticated models of the
input data [10].

2. ARCHITECTURE

2.1 Huffman Coding

Huffman is a popular method of data
compression. In computer science Huffman
coding based on entropy encoding algorithm
used in lossless data compression. The Huffman
coding creates a variable-length codes that are
integral number of bits. It is not very different
from Shannon-Fano algorithm. The inventor of
Huffman coding algorithm is David Huffman, who
invented this technique whenever he was a
Ph.D. student at MIT [8]. Huffman coding uses a
specific method for choosing the representation
for each symbol, resulting in a prefix
code (sometimes called "prefix-free codes", that
is, the bit string representing some particular
symbol is never a prefix of the bit string
representing any other symbol) that expresses
the most common source symbols using shorter
strings of bits than are used for less common
source symbols. Huffman was able to design the
most efficient compression method [11]. The
statistical model of Huffman coding is shown in
the Fig. 1.

In the case of Huffman coding, the actual output
of the encoder is determined by a set of
probabilities. When using this type of coding, a
symbol that has a very high probability of
occurrence generates a code with very few bits.
A symbol with a low probability generates a code
with a larger number of bits.

Fig. 1. Statistical model of Huffman coding

Habib and Chowdhury; JSRR, 4(1): 60-67, 2015; Article no.JSRR.2015.009

62

A Huffman code [12] is generally done by
following a binary decoder tree.

i. First start with a list free node, where each

node corresponds to a symbol in the
alphabet.

ii. Select two free leaf nodes with the lowest
weight from the list.

iii. Construct a parent node for these two leaf
nodes, the weight of parent node is equal
to the sum of two child nodes.

iv. Remove the two child nodes from the list
and the parent node is added to the list of
free nodes.

v. Repeat the process starting from step-2
until only a single tree remains.

In Fig. 2, the binary Huffman tree processes the
substring “BOOMBOOM”. In Huffman encoding
the substring “BOOMBOOM” generate a bit
string 001101001101 that occupy 12 bits. The
Huffman generated code-word for some test
cases are shown in Table 1.

In data structure requires O (log n) time per
insertion, and a tree which have n leaves has
2n-1 nodes, this algorithm operates in time O
(n log n).

Fig. 2. Huffman binary tree

Table 1. Find bits in huffman encoding

Message Huffman Coding Bits
Cocacola 1011001101000001 16
Boomboom 001101001101 12
Data 001011 6
Book 001101 6
Lossless 01000110100111 14
Be a bee 0110010000010111 16

2.2 Arithmetic Coding

Arithmetic coding is important because it was
invented as an alternative of Huffman coding
after a gap of 25 years. It is superior in
performance to the Huffman coding when the
substring is fairly small or redundancy in a
alphabet. In 1948 this idea first comes from
Shannon’s observation that message may be
encoded by their cumulative probability. This can
also be seen in static Huffman coding where a
sequence of symbols is assigned on Huffman
code-word to achieve a better compression ratio.
Arithmetic coding is now the method of choice for
adaptive coding on multilevel symbol alphabets
because of:

• Its speed.
• Minimum storage requirements.
• Effectiveness of compression.

In Arithmetic coding successive symbols of the
text reduce the size of the interval. Likely
symbols reduce the range by less than the unlike
symbols and added fewer bits to the message
[6]. The range of the interval (0,1] denoting it half
open interval. Starting with the interval (0,1] then
every interval is divided in several subintervals.
The size of the interval is proportional to the
current probability of the corresponding symbol
of the alphabet. The subinterval from the coded
symbol is then taken as the interval of the next
symbol. Approximately the codeword length is
equal to -log2p(s), where p(s) is the probability of
the source sequences.

The basic idea of Arithmetic coding is to assign
short codeword to more probable events and
longer codeword to less probable events.
Arithmetic coding provides a special mechanism
for removing redundancy of the input data.

There is another thing in the Arithmetic coding is
that there is no problem which characters are
assigned in the interval range. As long as it is
done in the same manner by both the encoder
and the decoder. The three symbol set used here
in the message “DATA” would look like in the
Table 2.

Once character probabilities are known,
individual symbols need to be assigned a range
along a “probability line,” nominally 0 to 1. It
doesn’t matter which characters are assigned
which segment of the range, as long as it is done

Habib and Chowdhury; JSRR, 4(1): 60-67, 2015; Article no.JSRR.2015.009

63

in the same manner by both the encoder and the
decoder.

Here is the original encoding algorithm for
arithmetic coding.

Set low to 0.0
Set high to 1.0

While there are still input symbols do

get an input symbol
code_range = high - low.
high = low + range*high_range(symbol)
low = low + range*low_range(symbol)

 End of While output low

Table 2. Probability analysis using Arithmetic
coding

Character Probability Range
D 1/4 0.00 – 0.25
A 2/4 0.25 – 0.75
T 1/4 0.75 – 1.00

Following the encode process we can find the
message “DATA” as below:

Character Low value High Value
D 0.0 1.0
A 0.0 0.25
T 0.0625 0.1875
A 0.15625 0.1875
 0.171875 0.1875

So the final low value, 0.171875 which generates
6 bits (0.001011) of the message.

In Table 3 some substrings are taken and find
the number of bits for each of these substrings
according to Arithmetic coding.

Table 3. Find bits in arithmetic coding

Message Arithmetic coding Bits
Cocacola 001010100100001 15
Boomboom 1000111001 10
Data 10011 5
Book 101 3
Lossless 101100010111 12
Be a bee 011110001001 12

2.3 Experimental Design

The experimental design of the research is
shown in Fig. 3. After taking the raw text or
paragraph as input, the system will calculate the
probability of each symbol. The cumulative
probability can be calculated from the initial
probability. The proposed formula will be applied

in the probability and we will get a decimal
number as output. The decimal number will be
converted to binary number which is our encoded
data. Finally we will compare our performance
with most popular Huffman coding.

As we know Arithmetic coding work within an
interval of 0 and 1 then subdivide the substring
according to this process and find the final bit of
input string. We start with a current interval (L,H]
initialized (0,1]. For each symbol of the file, we
perform two steps that subdivide the current
intervals into subintervals, one for each possible
alphabet symbol. The size of a symbol
subinterval is proportional to the estimated
probability that the symbol will be the next
symbol in the text, according to the model of the
input. Select the subinterval corresponding to the
symbol that actually occurs next in the file, and
make it the new current interval. The final interval
will be that interval which matches with the input
text.

Finally the lowest decimal number of the interval
will be processed for binary data. Fig. 4 shows
the details of the calculations.

In Fig. 4 we look at the frequency for different
letters. And generate a string ‘SLOE’ according
to their frequency for the message of text
‘LOSSLESS’. We encode the string ‘SLOE’ by
dividing up the interval (0,1] and allocate each
letter as an interval whose size depends on the
probability. Our message of text starts with ‘L’, so
we take the ‘L’ interval first and divide it up again
in the same way. The interval between LS and
LL starts with the lower interval of ‘L’ 4/8. Then
the lower interval between LS and LL will be 4/8.
Then we find the higher interval by calculating
lower interval + (frequency of L / length of text *
frequency of S / length of text). So, we find
4/8+(2/8*4/8) = 40/64 as higher interval for LS.
Then for the next interval between LL and LO we
take the higher interval of the previous one LS as
our lower interval. So our lower interval for LL is
40/64. To find the higher interval between LS and
LL we use the previous calculation like lower
interval + (frequency of L/ length of text *
frequency of L/ length of text). By put the value
we get the higher interval as 40/64+(2/8 *2/8) =
44/64. In third step we see the next letter of the
message of text ‘O’ so now we subdivide the ‘O’
interval in the same way. After continuing this
process we get our desired message
‘LOSSLESS’ with lower and higher interval. Thus
we can represent the text message ‘LOSSLESS’
with these two intervals.

Habib and Chowdhury; JSRR, 4(1): 60-67, 2015; Article no.JSRR.2015.009

64

Fig. 3. Experimental design of arithmetic encoding

Fig. 4. The process of the proposed technique

Then we find out the binary number of these two
intervals and take the smaller one as our output.

Thus, after continuing the technique we
represent the message as any number in the
interval [11628544/ 16777216, 11629568/
16777216). Then we convert the two numbers as
a binary one to get our result.

11628544

16777216

 212 * 2839
 =
 224

Calculate the probability of each symbol of the text

Calculate the cumulative probability

Start with a current interval within the interval (0, 1]

Subdivide the current interval into subintervals

Select the subinterval corresponding to the event occurs in the text

Generate actual decimal number of the subinterval

Input Raw Data

Encode data

Performance Analysis

Habib and Chowdhury; JSRR, 4(1): 60-67, 2015; Article no.JSRR.2015.009

65

 = 0.101100010111 (Result)

 11629568

 16777216

 210 * 11357
 =
 224

 = 0.10110001011101

In these two intervals we chose the small binary
one as our desired result. The details of the
proposed technique are explained with the
following steps:

STEP 1: We have generated a new string or
text according to the frequency of original
message. We encode the text by dividing
up the interval (0, 1] and allocate each
letter or symbol in an interval range whose
size depends on the probability.

STEP 2: First of all we took the first symbol of
the original message or text as input and
thus the length of text will be two. Define
new lower interval which is found from step
one. Find out its next interval by multiplying
according to the frequency of these two
symbols separately. Finally add the sum of
the above multiplication with the lower
interval of the latest segment.

STEP 3: In this step we will take next symbol
of the text and its length will be three.
Define its new lower interval from step 2.
Finally the output will be the lower interval.

STEP 4: However, in the third step the length
of text will be four and as usually take the
input of a new symbol. Find out the new
lower interval for the current segment of
the step from step 2. Calculate the higher
interval for each segment of the existing
text length of four by multiplying all the
frequency of each symbol one another and
add them with the current lower interval.

STEP 5: Take a new symbol as input and
length of text will be increases to five. Then
set the new lower interval from step 4 for
this step. For every segment of the text
find out their next interval again with
multiplying the frequencies of all the five
symbols individually and finally add them
with lower interval. Thus we will find the
output of a lower interval.

3. IMPLEMENTATION

3.1 Arithmetic Coding

In the pseudo code we define two variables
called low and high for store lower and higher
interval accordingly. In line 4 we check the
redundancy of the Text symbols with a function
redundancy_check () and store it in an array
Red_msg[]. Then in line 5 a loop from 1 to length
of Text will work while another loop in line 7 from
1 to length of the array Red_msg[] will going on.
Then we store the value of j in a variable position
in line 8. While in line 9 we check if the value of i
is 1and the comparison of encoded string and
input Text is not equal i then a function
Store_interval () is used in line 11 to store some
value. In Store_interval () the parameters low,
high, string and position are used to pass several
data. Through this function we store the value of
lower and higher interval in two variables low,
high with the encoded string and position of the
value.

In line 14 we checks if the comparison between
the Text and string is minimum and equal to i
then Store_interval () function is used again to
store values finally and break the nested loop on
line 7. Thus continuing the process and find the
value of string as our input Text. Finally in line
17, 18 we convert the lower and higher interval of
the encoded Text with a function DecToBin () to
binary one and store them in two separate array
of variable called low and high.

3.2 Encoding Algorithm

Encoding ()

BEGIN

1 Input: Text
2 Output: Encoded bit stream
3 low = 0, high = 1;
4 Red_msg [] = redundancy_check (Text);
5 For i=1 to length of Text
6 low = high;
7 For j=1 to length of Red_msg []
8 position = j;
9 if (i ==1 AND compare not equal i)
10 string [] = Red_msg[j];
11 Store_interval (low, high, string,
 position);
12 elseif (i>1)
13 string [] = Text [i- 1]*Red_msg [j];
14 If (compare equal to i)
15 Store_interval (low, high, string,
 position);

Habib and Chowdhury; JSRR, 4(1): 60-67, 2015; Article no.JSRR.2015.009

66

16 break;
17 low [position] = DecToBin (low);
18 high [position] = DecToBin (high);
19 END
Store_interval (low, high, string, position)

{ if(position>1)
 String [position].low=high;
 else
 String [position].low=low;
 low = String [position].low;
 temp = 1;
 for k = 1 to length of string
 val = redundancy_check

(string[k]) / length of Text * temp;
 temp = val;
 String [position].high= temp;
 high = String [position].high;
 Encoding_string [position] = string; }

4. PERFORMANCE ANALYSIS

In this research authors show a new
implementation technique of Arithmetic coding.
The proposed data structure is array based and
simple to search. The proposed data structure
does not need any branch or pointer, thus is very
compact as compared with the existing schemes.
The complexity of the original arithmetic coding is
O(n) whereas the complexity of the proposed
technique is O(logn). The performance of
proposed technique is also better than a popular
algorithm for arithmetic coding implementation
proposed by [13]. The technique also compared
with a contemporary Huffman based
compression technique [14] and it is performed
better in terms of memory usage.

In these following case examples in Table 4
shown that the Huffman algorithm takes more
bits stream than our proposed algorithm using
Arithmetic coding. So, we can assure that our
proposed technique using Arithmetic coding
takes less bits than Huffman coding in text
compression.

Table 4. Comparison between bit streams of
Huffman and proposed Arithmetic Algorithm

Message Bits in

huffman
Bits in
proposed
arithmetic
coding

Cocacola 16 16
Boomboom 12 11
Data 6 6
Book 6 5
Be a bee 16 14

In the Table 4, it has been shown that the
proposed technique always performs better than
the Huffman technique for most test cases.
Though the technique is compared with some
sample data in the above Fig., but the algorithm
is applicable for any size of text or paragraph
data.

4. CONCLUSION

The main contribution of this research is to
develop a new encoding algorithm by using the
principle of arithmetic coding. In the research we
have also compare the performance of Huffman
encoding algorithm with our developed algorithm.
We have shown that proposed techniques
significantly better than Huffman Coding
techniques in terms of memory requirements.
The proposed technique is tested for Computer
devices, however it may be implementing for
mobile devices also. In future an efficient
algorithm may be designed for decode the
encoded bit stream.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Jacob N, Somvanshi P, Tornekar R.

Comparative Analysis of Lossless Text
Compression Techniques. International
Journal of Computer Applications (0975-
8887). 2012;56(3):17-21.

2. Shanmugasundaram S, Lourdusamy R. A
Comparative Study of Text Compression
Algorithms. International Journal of
Wisdom Based Computing. 2011;1(3):68-
76.

3. Porwal S, Chaudhary Y, Joshi J, Jain M.
Data Compression Methodologies for
Lossless Data and Comparison between
Algorithms. International Journal of
Engineering Science and Innovative
Technology (IJESIT). 2013;2:142-147.

4. Sharma M. Compression Using Huffman
Coding. IJCSNS International Journal of
Computer Science and Network Security.
2010;10:133-141.

5. Srinivasa OR, Setty SP. Comparative
Study of Arithmetic and Huffman Data
Compression Techniques for Koblitz Curve
Cryptography. International Journal of

Habib and Chowdhury; JSRR, 4(1): 60-67, 2015; Article no.JSRR.2015.009

67

Computer Applications (0975–8887).
2011;14:45-49.

6. WittenIH, Neal RM, Cleary JG. Arithmetic
Coding For Data Compression.
Communications of the ACM.
1987;30:520-540.

7. Langdon GG. Jr, Compression Using
Huffman Coding. IBM Journal of Research
and Development. 1984;28:135-149.

8. Said A. Jr, Introduction to Arithmetic
Coding-Theory and Practice. Imaging
Systems Laboratory, HP Laboratories Palo
Alto, HPL- 2004-76; 2004.

9. Huffman DA. A Method for the
Construction of Minimum Redundancy
Codes. Proceedings of the I.R.E.
1952;40:1098-1101.

10. Howard PG, Vitter JS. Practical
implementations of arithmetic coding.
Springer US; 1992:85-112.

11. Huffman coding, Access at
Available:http://en.wikipedia.org/wiki/Huffm
an_coding, last access at; 2013.

12. Suri PR, Goel M. Ternary Tree and
Clustering Based Huffman Coding
Algorithm. International Journal of
Computer Science Issues. 2010;7(5):394-
398.

13. Hashempour H. Application of arithmetic
coding to compression of VLSI test data.
Computers, IEEE Transactions.
2005;54:1166-1177.

14. Habib A, Hoque ASM, Hussain MR. H-
HIBASE: Compression Enhancement of
HIBASE Technique Using Huffman
Coding, JOURNAL OF COMPUTERS.
2013;8(5).

© 2015 Habib and Chowdhury; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sciencedomain.org/review-history.php?iid=689&id=22&aid=6327

