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ABSTRACT 
 

The automated analysis of facial expression is a long investigated subject in the computer vision 
community and has been boosted by applications in the field of human computer interaction (HCI). 
Besides mapping of facial expressions to basic emotion categories, what is often of limited use for 
HCI due to sparse occurrence of real emotions, other approaches have been proposed to 
transform facial expression to the two dimensional so-called valence arousal space. With these 
affective user state parameters available, the course of the interaction can basically be guided 
smarter, i.e. the computer can provide help to an apparently confused user. However, it has been 
shown that the valence arousal space transformation can be impaired due to inaccuracies in image 
based feature extraction. In this article we present an advanced method using image processing 
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and 3-D computer vision technology that on the one hand suppresses this problem through 
hierarchical analysis. Further, our concept enables the assignment of an intensity level of the 
affective state, which can be a valuable parameter for the interaction. In this paper we give details 
on the system concept with the different processing steps and respective results. By the application 
of our method we achieve improvement of facial expression recognition compared to other state-of-
the-art methods. In particular we can distinguish roughly 15 percent more classes while maintaining 
the high recognition rate. 
 

 
Keywords: Facial expression recognition; human computer interaction; pattern recognition; 

application. 
 

1. INTRODUCTION 
 
In order to create smart interfaces in state-of-the-
art Human Computer Interaction (HCI) 
applications the analysis and evaluation of facial 
expression is of increasing importance [1,2] as it 
may provide information about a person’s 
affective state. Prospectively, this information 
can be used for the control of the interaction. For 
instance, through observation of the user’s 
facially and also verbally expressed utterances 
related to emotion, stress and affect, the 
automated system can be enabled to support the 
user offering help. Additionally, a feedback of a 
satisfaction in wide activities can be measured 
through the facial analysis (the valence value). 
For example, we can improve the one-to-one 
tutoring by adapting it to the student performance 
through a cognitive process based on nonverbal 
behavior recognition [3]. A student engagement, 
which is considered as an important measure for 
a contemporary education, can be measured 
from the faces [4]. Nowadays, it is also used to 
measure the responses to advertisement [5]. 
 
Over the last few years, several approaches 
have been proposed to recognize facial 
expressions. As each expression is composed of 
several action units (AUs) simultaneously 
occurring with different intensities, many 
researchers build an expression recognizer on 
top of AUs detection [6], where each AU codes 
small visible changes in facial muscles [7]. Other 
approaches employ geometric- and appearance-
based features that are directly extracted from 
the face; clearly they implicitly incorporate the 
AUs.  Littlewort et al. [6] utilize a filter bank of 72 
Gabor filters of eight orientations and nine spatial 
frequencies to extract features used afterwards 
to detect the AUs using support vector machine 
classifiers (SVM).  On top of the classifiers 
output, they built a multivariate logistic regression 
classifier (MLR) to estimate the facial expression. 
With the help of 68 facial points manually labeled 
at the first frame and tracked over the image 
sequence, Lucey et al. [8] infer the facial 

expressions from the point displacement using 
SVM.  To provide a frame-based decision about 
the facial expression, Saeed et al. [9] use the 
relative location of 8 facial points with respect to 
the enclosing box returned by a face detector.  
Several approaches assign an expression to the 
face based on appearance features extracted 
from the entire face patch, such as local binary 
patterns (LBP) [10] or local phase quantisers 
(LPQ) [11]. To recognize the facial AUs and 
expressions from spatiotemporal features, 
Valstar et al. [12] utilize the motion history and 
Zhu et al. [13] the moment invariants. The main 
shortcoming across the aforementioned 
approaches is that they extract their features with 
respect to 2D images, with an assumption of 
near frontal face pose. This condition cannot be 
satisfied in real scenarios. To overcome this 
drawback, our geometric features are extracted 
with respect to the point location in the real world 
(3D).    
 
However, in the past and in most state of the art 
methods discrete emotion categories are being 
used, which do not always allow an easy 
interpretation and inference for the interaction. 
For automated machine analysis some 
researchers have started implementing a 
dimensional description of human emotion, 
especially in combination with audio-visual data 
where an emotional state is characterized in 
terms of a set of latent dimensions [14]. Nicolaou 
et al. propose a multi-layer hybrid framework that 
derives symmetric spatio-temporal features [15]. 
These dimensions do mostly refer to the so-
called circumplex model of affect, introduced by 
Russel [16]. In that model two dimensions are 
considered sufficient for explaining most of the 
affective variability. In particular these are 
valence and arousal (V-A), which indicate, how 
negative or positive and active or inactive an 
emotional state is. Even though in some works 
the valence-arousal transformations have 
already been applied, it has shown that the               
V-A space mapping can be impaired due               
to inaccuracies in image based feature     
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extraction [17]. In this article we present a new 
method that on the one hand suppresses this 
problem through hierarchical analysis. Further, 
our new concept enables the assignment of an 
intensity level of the affective state, which is a 
valuable parameter. In this paper the major 
components and principles are explained along 
with the processing chain and results from the 
analysis of a 3-D database as well as online 
examples. The results show the improvement of 
our method over state-of-the-art techniques by 
distinction of roughly 15 percent more classes 
while maintaining the high recognition rate. 
 
2. SUGGESTED METHODS 
 
The major components of the suggested method 
involve extraction of geometric facial features, 
assignment of 2-D positions in the Circumplex 
plane with hierarchical temporal analysis and 
determination of the intensity level of the 
affective state. Feature extraction is based on 
face models, which are particularly used for face 
pose estimation and feature transformation. 
Further, camera parameters are being used 
along with image processing and computer vision 
techniques. Subsequently the important 
components of our method are explained briefly 
and the processing chain is introduced with 
insight to the applied dynamic temporal analysis. 
Extensive examples are showing the capabilities 
of our method.  
 

2.1 Face Model   
  
Throughout this work facial feature processing is 
based on a geometric 3-D face model, which 
utilizes the Facegen Photofit routine [18]. This is 
a morphable model that is adapted to a frontal 
face image, using facial landmarks. These are 
robustly found with the IntraFace detector by 
Xiong et al. [19] in conjunction with gradient data 
and the active contour model algorithm of Cootes 

[20] (Fig. 1a/b). In order to attain the correct size 
of the Facegen based model, we apply scaling in 
X- and Y-dimension using point cloud data 
derived from the depth image and the ICP-
algorithm of section 2.2 with scaling as free 
model parameters (Fig. 1c/d). 
 
For further processing we only need a rigid 3-D 
mesh description of the adapted Facegen model, 
which is denoted by M (2.1). 
 

{ } { }( ) ΝRvvvM ∈∈= www imn ,,,...,,,..., 3
11 (2.1) 

 
with vi as mesh vertices and w j as triangle 
indices. 
 
2.2 Facial Expression Features 
 
In the presented work we use geometric facial 
features to characterize the current expression at 
every image frame t. In particular we evaluate 
spatial distances and angles that are computed 
from a set of characteristic 3-D feature points. 
 
2.2.1 Facial expression related feature points   
  
In automated facial expression recognition, the 
evaluation of feature points is a common 
approach. Accordingly, in our work the choice of 
feature points has been motivated by the so-
called Facial Animation Parameter (FAP) system 
[21], which has been created for animation 
purposes in the context of the MPEG-4 standard. 
In the FAP 88 feature points are used for the 
controlled definition of facial expression. In our 
investigations we have found that a subset of 8 
key points (Fig. 2b) already performs excellent 
and robust for the recognition task. Specifically, 
we apply point set Pf (2.2). The computation of 
these feature points is done model based and 
requires the detection of corresponding image 
points beforehand. 

 

 
 

Fig. 1. Face model adaptation, (a) Frontal face gra dient image with landmark points detected 
using IntraFace and active contours, (b) Reconstruc ted 3-D model, (c) Depth image encoded in 

cyclic rainbow colors with scaled model at pose, (d ) Point cloud with scaled model 

(a) (b) (c) (d)
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3{p p p p p p p p } pf le re leb reb lm rm ul ll i, , , , , , , ,= ∈P R  (2.2) 

 
2.2.2 Extraction of image feature points  
   
For the determination of feature points, i.e. eyes, 
eyebrows and mouth, in the first step, a Haar-like 
feature (HLF) based Adaboost classifier [22] is 
utilized to find the subject’s face and to confine 
the search region in the image. Using the 
IntraFace detector [19] the complete set of image 
feature points If (2.3) is reliably found. 
 

2{i i i i i i i i } if le re leb reb lm rm ul ll i, , , , , , , , ,= ∈I R         (2.3) 

 
2.2.3 Definition of geometric features  
 
Basically, the evaluation of 3-D features has the 
advantage of invariance from the current pose, 
opposed to plain 2-D image features, which 
suffer from perspective distortions. The 
determination of geometric features derived from 
the 3-D feature point set Pf (2.2) makes use of 
this attribute. These raw features are combined 
to vector f (2.4), which is the starting point for the 
normalization and successive classification. 
 
Generally, the appearance of faces reveals 
specific changes during facial expression, 
especially when compared to the neutral 
expression. In our approach the neutral facial 
expression fneutral is captured once per subject 
during initialization. The geometric features 
include seven Euclidean 3-D distances di within 
the face and four angular parameters αk in the 
mouth region (Fig. 2b, c). 
 

T 11
1 7 1 4(  ...   ... ) ,i kd d , d ,= α α α ∈ ∈f fR R    (2.4) 

 
Here the distances di are defined as 

d1 = || preb - pre ||, d2 = || p leb - p le ||,          
d3 = || pre - prm ||, d4 = || p le - p lm ||, 
d5 = || prm - p lm ||, d6 = || pul - p ll ||, 

 
and angles αk as follows 
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With 
 

v1 = prm - pul,  v2 = p ll - pul ,  v3 = p lm - pul, 
v4 = prm - p ll ,  v5 = p lm - p ll , 

3
i j, ∈v p R . 

 

 

The determination of the distances plus angles 
requires the computation of the 3-D facial points 
Pf and the present head orientation beforehand, 
what is explained in the following system concept 
section, where the complete processing chain is 
introduced. 
 

2.3 System Concept Processing Chain 
 
The processing chain of our system concept for 
the automated image based facial expression 
analysis contains five parts that are explained in 
the subsequent points.  
 

•  Capturing of color image and depth data, 
• Point cloud based pose estimation, 
• Feature normalization, 
•  Valence-arousal estimation,  
•  Dynamic integration and determination of 

intensity. 

 

 
 
Fig. 2. (a) Face model M with features, (b) Points p j and, distance features d i, and (c) Angles αk 

along the 3-D model’s mouth region 
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2.3.1 Capturing of color image and depth data  
 
In the presented approach we use the Kinect 
camera system for online experiments, which 
provides color images along with depth data, 
respectively 3-D world points for each pixel at 
30Hz in VGA resolution. The depth image 
information enables fast and accurate face pose 
estimation, which itself is a prerequisite for 
correct facial feature extraction. Facilitating the 
available intrinsic camera parameters K, the 
transformation of 3-D world points in camera 
system coordinates to image points can be 
described using so-called projective geometry 
[23]. For this purpose, in the following the 
projection of any world point w  in camera 
coordinates to the image coordinate i is referred 
to as function k. 
 

( )k ,=i w K  (2.7) 
 
with 32 , RwRi ∈∈  and camera model K. 
 
The inverse function 1−k  (2.8) creates a 3-D 
world point w  from an image point i. Since this 
transformation requires additional information for 
the third dimension. Here we use the scene 
depth d, which is the distance on the viewing ray 
from the camera’s image plane at coordinate i 
down to the facial surface. This is realized with 
face model M (2.1), which aligned to the current 
pose. The intersection is determined using ray 
casting [24]. 
 

1 ( )k ,d,−=w i K  (2.8) 

 
with 32 , RwRi ∈∈ , depth d and camera model 
K. 
 
2.3.2 ICP-based pose estimation using point 

cloud data  
 
Commonly, the works on pose estimation are 
based on the determination of rigid body motion 
with six degrees of freedom [25], i.e. translation 
plus rotation, what is subsequently referred to as 
pose vector t (2.9). 
 

( ) 6T

x y zt t t t t t ,ω ϕ κ= ∈t t R  (2.9) 

 
We realize the pose estimation with help of an 
Iterative Closest Point (ICP) algorithm variant, in 
which we approximate a person adapted ICP 
model to point cloud W gained from the 
processed depth map, while introducing a normal 

vector constraint (Fig. 3). The approach is 
explained in detail in [26]. The goal of the ICP 
algorithm is to iteratively reduce error measure 
e(t) while improving pose vector t (2.9). Besides 
translation and rotation angles, also model 
scaling can be estimated. 
 

( ) ( )( ) ( ) ( )( )2

j j j i j
j

e d min, dt t t a t p b= → = − ⋅∑  
 

(2.1) 

 
with 6 3

j j i j, , , , dt a b p∈ ∈ ∈R R R  
 

 
 

Fig. 3. Pose estimation minimization 
principle. Orthogonal model-point cloud 

distance d j constraint. Point cloud W, face 
mesh model vertex a j, normal b j 

 
2.3.3 Feature normalization  
 
Based on the geometric model at the current 
pose, every image feature point in If (2.3) is 
transformed to a 3-D coordinate through 
application of function k-1 (2.8), yielding in point 
set Pf (2.2). On that basis feature vectors can be 
computed according to (2.4). When inspecting 
the facial features, large deviations become 
obvious between different persons and different 
facial expressions. Thus, in order to enable 
classification, additional steps are required, i.e. 
building ratios and normalization. Here, the facial 
feature vector fneutral is computed for the face with 
neutral expression in the initial registration step. 
Examination of the current image frame t leads to 
feature vector f(t). Next, we compute the ratios 
between all components of fneutral and f(t) what 
leads to fratio(t) (2.12). For this task we introduce 
the operator # (2.11) to retrieve the component 
wise ratio between two feature vectors. 
 

11
1 1 2 2 11 11( )# / / ... /= ∈a b a b a b a b R  (2.11) 

 
11

neutral( ) ( ) ( ) ( )ratio ratio neutralt t # , t , t ,= ∈f f f f f f R  (2.12) 

 
For every element of vector fratio, statistical 
parameters were evaluated in an examination of 
many persons and facial expressions. In addition 
to vectors for mean µ and standard deviation σ 
these are the minimum and maximum values cmin 
and cmax (2.13), which have been computed for 
all feature distributions in the training data set. 
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11

2

2

min min

max max

,

,

= µ − σ ∈

= µ + σ ∈

c c

c c

R

R

 
 
(2.13) 

 
Then, the resulting feature vector fgeo(t) (2.14) is 
achieved through normalization of the ratio 
vector fratio. Subsequently, the facial feature 
vector is used for valence and arousal 
estimation. 
 

11

( ) ( ( ) ) ( )

( ( ) ) 4 ( )

geo ratio min max min

ratio min geo

t t #

t # , t

= − −

= − σ ∈

f f c c c

f c f R

 
 
(2.14) 

 
2.3.4 Valence-arousal estimation  
 
In literature most facial expression analysis 
approaches apply discrete emotion categories for 
classification which is not always optimal. The 
model we apply is influenced by the observation 
that the model’s labels valence and arousal lead 
to robust emotion state representation that is 
continuous in principle. Thus, unlike conventional 
methods we use the mapping fmap(fgeo(t)) (2.16) 
of the 11-dimensional feature vector fgeo to the 

2-D plane of the Circumplex model of affect           
(Fig. 4). 
 

In particular, we use a technical realization of the 
famous model from psychology. In our 
implementation the Circumplex model plane is 
defined by six different positions in polar 
coordinates PC (2.15) of discrete emotion 
categories plus neutral (Fig. 5). This definition 
represents the results of Russel [16]. 
 

( ) 0
; , 0.7,

0 10 85 170 200 125 240i i i iC c c c

l l l l l l
P r l

 ∈ = 
 

ϕ ϕ

(2.15) 
 

with classes Ci ∈ {Neutral, Happy, Surprise, 
Anger, Disgust, Fear, Sad}.The radius was 
empirically set to l=0.7. 
 
For the transformation fmap(fgeo(t)) (2.16) of 
feature vectors at frame t an artificial neural 
network is used, i.e. a so-called Multi-Layer 
Perceptron (MLP) [28], parameterized with a 
sigmoid transfer function and a training algorithm 
utilizing backpropagation. 

 

 
 

Fig. 4. Valence-Arousal space transformation; (a) D epth image with inferred pose and overlaid 
point detection, (b) 3-D features in blue, (c) Feat ure plot, (d) Artificial Neural Network used for 
transformation fmap(fgeo(t)) (2.16) of the 11-dimensional feature vector to t he valence arousal 

space position 
 

 
 

Fig. 5. (a) Circumplex model of affect wrt. Russel (image source [27]), (b) Technical 
implementation of the Circumplex model with applied  polar coordinates (2.15) for each class 

that define the 2-D model plane 
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11 2: ( ) MLP
map geo

V
f t

A

 ∈ → ∈ 
 

f R R  
 
(2.16) 

 
with valence V and arousal A. 
 
The applied network has eleven input and two 
output neurons with two hidden layers that 
contain six neurons each. The working 
assumption is that, based on the training data, 
we can deduce the 11-D to 2-D transformation in 
terms of the neural network’s adapted weights. 
Throughout the supervised training all samples 
have been assigned to the polar coordinate of 
their respective class in the circumplex plane. 
Accordingly, in the classification step, each input 
vector leads to a position in the output plane, 
which is supposed to be at a place that reflects 
the presented emotion. 
 
2.3.5 Dynamic integration, determination of 

intensity  
 
The determination of the current V-A state z(t) 
can be regarded as an inverse problem. That 
means, in the first step, the state results from 
feature processing and mapping to the 2-D 
valence-arousal plane, expressed as fmap(fgeo(t)). 
Next, the task is finding the unknown state, which 
is expressed by variable z(t). From a 
mathematical point of view, in Hadamard's sense 
this problem is ill-posed because the 
reconstruction is likely to be sensitive to noise 
and ambiguous. The solution is expected to be in 
range of the observations, as measured by the 
square norm of (2.17). 
 

( ) ( ) 2
( )data map geoE z t f t= − f  

 

(2.17) 

 
In addition, we constrain the potential solution by 
utilizing a constraint operator P(z) to 
simultaneously impose a smoothness property 
upon the solution. The smoothness property is 
realized through the 1st order derivative of the 
desired solution, i.e. ( )=P z z& ,1 which is scaled by 
a weighting constant λ, also called regularization 
parameter. In combination, the resulting energy 
measure is defined as the weighted sum of the 
data and the smoothness term defined above as 
 

( ) ( ) ( ) 2
2( ) ( ) mindata map geoE z z t f t z t dt= − + ⋅ →∫ f &λ  (2.18) 

 
For the minimization of (2.18) we apply the Euler-
Lagrange equation to solve the partial differential 
system of equations, what leads to state variable 

z(t). The intensity level r (2.19) of the current 
emotion quantity is inferred from the state 
variable, while the user state is traced over a 
temporal period and integrated over time. 
 

( ) ( )r
z t t

β
 =  
   

 
 
(2.19) 

 

with 2 2( )r t a v= + , ( )1( ) tan /t v aβ −= , where a 

and v are the scalar activations along the 
cardinal dimensions of arousal and valence, 
respectively. 
 
3. RESULTS AND DISCUSSION 
 
The different modules of the proposed method 
have been processed with various training and 
test samples, taken from the BU-4DFE database 
[29] and exemplary online recordings using the 
Kinect camera. In particular, from the BU 
database about 9.000 samples from seven 
classes (neutral, happy, surprise, anger, disgust, 
fear, sad) of the database have been used to 
train the neural network. For testing another 
9.000 samples were used. Each sample consists 
of a high quality texture image and a 3-D depth 
map. 
 
Our point cloud based pose estimation method 
has been adapted to process the temporal 3-D 
samples of the BU database. In order to enable 
the required 2-D/3-D transformations, video and 
3-D depth data have been generated using a 
virtual camera with defined parameters (Fig. 6). 
For this purpose the database raw data has been 
rendered in OpenGL as textured mesh, whereas 
the color image and depth buffers serve as input 
for our method. Analysis has been carried out by 
applying feature extraction and valence-arousal 
transformation to the preprocessed BU-4DFE 
data (Fig. 7). 
 
Even though the motivation of this work is to 
over-come thinking in fixed categories for 
recognition purposes; for the evaluation of the 
method, the basic emotion categories are 
suitable for testing the V-A space transformation 
of the samples and comparison with the state-of-
the-art recognition. In order to gain a qualitative 
statement about the recognition results, we 
analyzed the angle µ(t) (3.1), which reflects the 
displacement between the computed angle β(t) 
(2.19) and the a-priori given sample’s class 
orientation φCi (2.15) in the V-A space of the 

1We use the dot notation to refer to temporal derivatives of the function with time as the independent variable. 
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Fig. 6. Preprocessing of BU-4DFE data. (a) 3-D mesh  and high resolution texture image,  
(b) Textured mesh in 3-D view, (c) Rendered color a nd cyclic rainbow depth image with defined 

camera parameters 
 

 
 

Fig. 7. Feature processing of a BU-4DFE sample. (a)  Depth and (b) Color image with pose as 
RGB coordinate system, further face model M (1) is shown as blue triangle mesh and the 

extracted facial features as white lines. (c) Shows  the projected 3-D facial features as blue 
lines in two different views along with the face po se, the black lines represent the image 

processing result after 3-D transformation 
 
Circumplex model (Fig. 8a). Also, in this way we 
can easily compare the achieved recognition 
results over other state-of-the-art approaches 
that evaluate that particular database. 
 

( ) ( ) Cit tµ β ϕ= − ∈R , see (2.15), (2.19) (3.1) 

 
The neutral class is handled in a different way, 
i.e. in the recognition step a sample is rated as 
neutral, if r(t)<minr, according to (2.19). The 
threshold has been set empirically to minr=0.25. 
The ground truth data for the neutral facial 
expression class C1 were extracted from the first 
frames of all database sample sequences, where 
there is neutral facial expression. 
 
In the evaluation we have randomly separated 
the database into training and test samples, such 
that all classes are equally represented (about 
1.400 samples per class) and no training sample 
is contained in the test data. For testing we 
consider a sample to be correctly classified, if the 
angle µ is below threshold tµ. If not then it is 
considered to be belonging to the closest 
adjacent class in the Circumplex model plane in 
terms of its angular value. The following Tables 
1, 2 show the resulting confusion matrices for 

two empirical values of threshold tµ, i.e. tµ=30 
and 60 degrees. 
 
The tables further show that the recognition 
results are highest for the classes with the 
greatest feature distinction, thus, surprise and 
happy, while confusion rather occurs for the 
other classes. The average recognition rates are 
70.2 and 79.7 percent for tµ =30 and 60 
respectively. This is better, or at least in 
accordance with solely category based state-of-
the-art recognition techniques, especially with 
that particular database [30,31]. However, apart 
from the other authors, we also consider the 
neutral class, which is commonly neglected in 
literature. This shows an obvious advantage of 
our method which also deals with this 
challenging class. Hence, in numbers, our 
method deals with roughly 15 percent more 
classes, while maintaining the recognition rate. 
 
Further, thorough inspection of the image 
material shows that sometimes, the presented 
facial expressions are not easy to recognize, 
even for humans. Here the continuous 
description of the user’s emotional state in the V-
A space offers more opportunities for further 
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evaluation and action, compared to previous 
category based classification. 
 

 
 

Fig. 8. The method’s accuracy for a sample 
fgeo(t) is determined using angle µ(t), which 

reflects the displacement of function z(t) and 
the a-priori given sample’s class Ci angle φCi 

in V-A space 
 

Fig. 9 shows the mapping of the BU-4DFE 
testing samples, which were not used for model 
training. Also here one can see overlapping of 

samples from the classes disgust and anger, as 
well as sad and surprise and fear. Further 
empirical tests have been carried out with 
samples that were taken with the Kinect camera 
(Fig. 10) with a focus on the evaluation of 
emotion intensity and the temporal constraint. 
The processing speed is about 20 frames per 
second at VGA resolution. Example sequences 
with presented basic emotions are given in Fig. 
11, i.e. the 3-D facial expression model is shown 
with extracted features, and the projections to the 
2-D valence arousal space over time. The graphs 
show the evolution of function z(t) (2.19), starting 
from the center, which represents the neutral 
state. The samples show that the various facial 
expressions are clearly separated, what makes it 
possible to perform an assessment with respect 
to the emotion model’s parameters valence and 
arousal. 
 
An example of the smoothing effect of the 
dynamic temporal constraint can be seen in                
Fig. 12 (corresponds to first plot of Fig. 11a), as 
well as the respective temporal feature 
sequence, together with a conventional basic 
emotion classification and a subset of the high 
dimensional feature space. In that example the 
categorized basic emotion is just another 
perspective of the V-A transformation result, due 
to the facial expression of a smile. 

 

 
 

Fig. 9. Projection of test set from BU-4DFE databas e in light color with centroid and principal 
axes for each class. Samples with r(t)<min r are considered neutral according to (2.19) due to 

low expression intensity 
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Table 1. Confusion matrix in percent, tµ=30 
 

Class  P(C1) P(C2) P(C3) P(C4) P(C5) P(C6) P(C7) 
C1 Neutral 89.1 0 0.1 0.4 10 0.1 0.3 
C2  Happy 3.1 82.2 13.3 0 0 1.4 0 
C3  Surprise 1.4 0 93.1 0.1 0.1 5.3 0 
C4 Anger 0.8 0.5 0 64.5 31.6 1.2 1.4 
C5  Disgust 6.2 1.6 0.2 37.8 50.4 3.5 0.3 
C6  Fear 4.7 5 14.4 7.3 5.9 62.6 0.1 
C7  Sad 8.9 0 1.8 6.5 29.5 0.1 53.2 

 

Table 2. Confusion matrix in percent, tµ=60 
 

Class  P(C1) P(C2) P(C3) P(C4) P(C5) P(C6) P(C7) 
C1 Neutral 89.1 0 0.1 0.4 10 0.1 0.3 
C2  Happy 3.0 89 6.6 0 0 1.4 0 
C3  Surprise 1.4 0 98.4 0.1 0.1 0 0 
C4 Anger 0.8 0.5 0 65.7 31.6 0 1.4 
C5  Disgust 6.2 1.6 0.2 37.8 50.7 3.5 0 
C6  Fear 4.7 5.0 1.4 0 5.9 83 0 
C7  Sad 8.9 0 1.8 6.5 0 0.1 82.8 

 

 
 

Fig. 10. Evaluation example. Online feature process ing with (a) Depth and (b) Color image, 
 (c) Extracted features 

 

 
 
Fig. 11. (a) 3-D Facial expression model with featu res in blue. (b) Shows the projections of the 
presented classic basic emotion expressions to the V-A space over time using the temporal 

constraint 
 
A further exemplary sequence with different 
expressiveness of a presented emotion is shown 
in the plots of Fig. 14, along with the 
corresponding category based classification. This 
example shows clearly the benefit of the emotion 

mapping, which provides the intensity 
information, that cannot be inferred from the 
category based recognition. Also here the 
smoothing effect of the dynamic temporal 
constraint becomes obvious. 
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Fig. 12. Valence-Arousal space mapping example. (a)  Without and (b) With dynamic temporal 
constraint 

 

 
 

Fig. 13. Facial feature evaluation example. (a) Sho ws the feature vector over time with category 
based SVM classification with probability estimatio n through pairwise coupling [32], and  

(b) Visualizes the training data feature subspace (f eatures d1, d2, d3) 
 

 
 

Fig. 14. Intensity example: Emotions have been pres ented with different expressiveness.  
(a) Shows the category based classification that do es not provide any hint about intensity 

information, (b) Reveals the intensity through func tion r(t) (2.19), while (c) Shows the 
corresponding angle information β(t) 
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4. CONCLUSION AND OUTLOOK 
 
In this work we propose a complete system 
concept for facial expression analysis with 
inference of valence-arousal (V-A) information 
from 3-D and image data. In particular, we apply 
point cloud based pose estimation, feature 
normalization, V-A estimation and dynamic 
integration plus determination of the intensity 
level. The achieved results provide more 
information about the affective user state 
compared to the usual category based emotion 
classification, which is constricted due to 
ambiguities on the one hand and rare incidence 
of basic emotions in authentic, real interaction on 
the other hand. However, the comparison with 
sole category based state-of-the-art recognition 
techniques shows an improvement of our method 
by roughly 15 percent, in the way that also the 
neutral class can be regarded, while maintaining 
the same competitive recognition rate like other 
methods, e.g. in [30]. 
 
Even though overlap of categories does also 
exist after V-A transformation, this is not 
necessarily a bad property; it is simply due to the 
fact that in the emotion model, certain states are 
nearby. Thus, the V-A space provides a 
tendency of the user state, like “negative / 
positive / aroused or not”, rather than one special 
discrete emotion, which is unlikely to happen. For 
a HCI system this information can be much more 
valuable. Thus, the presented methods have 
fundamentally a reasonable impact on the 
usability of new human computer interfaces. 
 
In future work we want to explore several 
modifications in the presented concept. First, in 
order to ease applicability, we want to generalize 
and automate the adaptation of the different 
person specific models that are applied 
throughout analysis. Also, we will increase the 
machine's perceptive abilities through the 
application of advanced sensor technology, like 
near infrared (NIR) and high speed cameras, 
what is supposed to provide new features and to 
increase the application range. Also we want to 
apply new detection algorithms, like the one of 
Ren et al. [33], which can robustly and quickly 
deliver a greater number of image features. 
 
Moreover, we also intend to adapt our method to 
new application domains. In particular, at the 
moment, we do not use the lower right part of the 
valence-arousal plane. However, this part 
includes states such as sleepiness and 
calmness. In future work we also want to use this 

quadrant, because it may enable the analysis of 
vigilance in medical projects and sleep detection 
in automotive applications. 
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