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Abstract

The problem of closed frequent itemset discovery is aldorental issue of data mining, havipg

applications in numerous domains. Until now, the genewtrtic for incremental mining is using an

intermediate structure in order to update the structurenewes there is a variation in the data. As for
incremental mining closed itemsets, the intermediatgéctsire used is a concept lattice. The concept
lattice promotes the efficiency of the search procedsit [micostly to adjust the lattice when there is|an
addition or removal, as well as it is difficult in démging parallelization strategy. This article proposes
incremental algorithms to search all closed itemsétis anew intermediate structure which is a linear
list. To the best of our knowledge, this is the filgiosithm for incremental mining closed itemsets usjng
a linear list as an intermediate structure proposed st\faen comparing experimental results betwgen
using intermediate structure concept lattice and linearidigally show that the greater number pof
transactions and the number of closed itemsets obtained mitirey process, the more efficient the Uuse
of linear list promotes.

Keywords: Closed itemsets; concept lattice; data miningreimental mining; mining methods and
algorithms; new intermediate structure.
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1 Introduction

Frequent sets are sets of items, subsequences or stivssuappearing in a dataset with the frequency
which is greater or equal a user-defined threshold.

The formal definition of frequent set is as followsv&i |l = {iy, i, . . ., i} is the set of distinct items,
O ={o0, 05 . . ., 0} is the set of transactions on the transactional dagab& mining context is a triple
D=@0,I, R, forROO x| is a binary relation of transactions and items. Ea;h)(O R represents
transactioro 00 O containing item O 1.

A setk a, consisting ok elements front, is frequent ifa appears in transactional database not lessd@jn
times, for@is aminimal support thresholdefined by users (then calletnsup, and Q] is the total number
of transactions. The number of occurrenceg & called the support af (support@)).

We callL set of frequent item sets. 9dtcontainingmaximal frequent item seits D is defined as follows:
M={COL|AaC’OL,CcOC}

ForBOOandCOI:
f(B): 2° - 2
fB)={iO!1|0oOB, (0,i) OR}
g(C): 2 - 2°
g(C)={o00|TOC, (0,)) IR}
C Ol is closed set if and only if(C) = C, forh=fog

Closed sefC is called frequent if the support & in D is greater or equahinsup SetFC containing
frequent closed item seitsD is definedFC ={C O 1 | C = h(C) Osuppor{C) = minsug

SetMC containingmaximal frequent closed item s&tD is definedMC ={COFC |AC' OFC,COC'}

Incremental mining is the process that the only updated slabuld be exploited in order to discover
frequent sets. The main purpose of incremental minitigaisbecause data add continueously to the initial
transaction, hence the size of database becomes dangenining the entire database will take more time for
calculating, so it is better if the only updated dataiised. Thence, it supports the ability of executionefiast
than not incremental methods.

Formal definition of incremental mining is as follows:

D: data mining context

A: algorithm for mining frequent item sets,
L: set of frequent sets

D, A (minsup - L

{t}: updated data

For not incremental algorithm:
D'=Du {t}
D =D \({t}
D', A (minsup - L*
D, A(minsup - L~
For incremental algorithmA():

{t, AL L"
L: result of the previous period (frequent set)
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The article proposes incremental algorithms to findlaked sets with a new intermediate structure.

According to [22], set of all frequent closed sets isisigfit to determine a reduced set of association rules.
Then, it helps to solve another important problem:tiimgithe number of generated rules without data loss.
So, frequent closed sets might directly create reducédofsassociation rules without the need of
determining all frequent sets, hence reducing the costloblating algorithm. In addition, because of
thousands of hiding association rules, simplifying the nurobgenerated rules without data loss plays an
important role with obtained results.

In 2003, the workshop Frequent Iltem set Mining Implementatiormmhementing algorithms of mining
frequent sets was reported by Goethals and Zaki [8]. Midioged sets provides a valuable and important
alternation for the problem of mining frequent sets becduseerits the same strength of analysis but
creating a set of much smaller result.

2 Overview

First, the article is going to provide an overview of pamicaperspective on incremental mining. Almost
incremental mining algorithms are divided into two maitegaries: Apriori-based algorithms and tree-
based algorithms.

Second, the article is going to focus on the problem oémental mining (frequent) closed itemsets.
2.1 Incremental mining

2.1.1 Apriori-based algorithms

The algorithm FUP (Fast Update) [3] is the first altyori proposing incremental mining association rules. It
solves the issue of database with new added transgchioncannot solve the case of deleting transactions.
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Cheung et al. [4] proposed the algorithm BWich is the extension of the algorithm FUP. FUP updates
association rules in a database when new transactioasided into the database. Meanwhile, FUpdates
the existing association rules when transactions added tdedeteéd from database. FUB similar to FUP

in the case of adding new transactions, and is an additadgatithm for FUP in the case of deleting
transactions.

The algorithms DELI and ULI face the issue of determiigen updating current model. In order to decide
when to update, [17] proposed the algorithm DELI (Differenséintations for Large Itemsets), which
applies the method of getting statistical samples to mi@terwhen the current model becomes obsolete. ULI
(Update Large Itemsets) was proposed by [28]. ULI attemptedrease I/O requirement to update the set of
frequent itemsets by maintaining previous frequent itésresed negative borders [17] and their supports.

In [1], the algorithm UWEP (Update With Early Pruning) waspmsed, in which using updating technique
with early-pruning. The advantage of the algorithm UWERkExihe FUP-based algorithms in that it prunes
supersets of an initial frequent itemsetDras soon as it becomes infrequent in the updatedstead of
waiting until the iteratiork™.

The concept of negative borders [29] was used in [28] wrdwe the effect of FUP-based algorithms in
incremental mining. LeL be a set of frequent itemsets, negative borBgrd ) of L consists of minimal
frequent itemsetX € R but not inL, for R is the set of all items. In other words, negative bordensists of
all sets which generated candidates with insufficient stippo

Both algorithms MAAP (Maintaining Association rules wipriori Property) [40] and PELICAN [34] are
similar to the algorithm FUR yet their main objective is to maintain the maximadjfrent itemsets when the
database is updated. These algorithms do not considenarimal frequent itemsets, so they do not need to
calculate the supports of non-maximal frequent itemsetsdiffezence between the two algorithms is that
MAAP calculates maximal frequent itemsets by relyingAgriori while PELICAN bases on the vertical
data format andecomposing lattice.

Lee et al. [16] proposed the approach SWF (Sliding-Windowrlifige SWF divides database into many
partitions, and applies a filtering threshold on each partitiocreate candidate sets. [35] described the
algorithm ZigZag, usingidlist (list of transaction id) and calculating maximal frequdatnsets in the
updated database to avoid generating many unnecessualigates.

2.1.2 Tree-based algorithms

In [6], DB-tree and PotFp-tree were proposed for increnheniaing. The algorithm DB-treeDatabase
tree) stores all items in a FP-tree instead of only Inelet frequent itemsets in database. Additionally,
building a DB-tree is exactly as the same way as F&-kience, DB-tree might be seen as a FP-tree with the
minimal threshold = 0. Another algorithm proposed in [6] isFPdree Potential Frequent Pattern tr¢e
which only stores a few potential frequent items besidetheht frequent itemsets. A tolerance paranteter
is used to decide whether an item is frequent potentalhot.

The algorithm AFPIM Adjusting FP-tree for Incremental Mining13] updates FP-tree built previously by
only scanning the increment of database. This incremenbatsacontains new transactions affecting the
frequence of items. When items are ordered by descendiqgeincy based on the initial dataset, AFPIM re-
arranges items in the tree according to new value ofiérezy based on the increment dataset, using bubble-
sort sorting method by recursively swapping adjacent items

The tree-based algorithms EFPIMxtending FP-tree for Incremental Miningl9] and FUFP-treeRast
Updated Frequent Pattern tregll] as well as AFPIM, conduct incremental miningusing a compressed
data structure, mainly adjusting the structure FP-treeselapproaches still require two times of scanning
database for the initial part (in order to build the Fe-structure) and the increment part (in order to update
the tree structure).
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CATS-tree Compressed and Arranged Transaction Sequencg [fBgend DB-tree are the same because
both store all items without caring whether they are ®atjor not. This feature allows CATS-tree to avoid
re-scanning database when updates occur. However, the waydifidp@ATS-tree is different from FP-tree
and DB-tree. In more details, FP-tree is built based orotter of global supports of all frequent items
while CATS-tree is built based on the order of local suspafritems in their path.

In [18], a tree structure called CanTré&afonical Treg proposed in order to obtain content of transactional
database and arrange tree nodes in a canonical order.

CP-tree Compact Pattern trgewas proposed in [27]. This algorithm also builds prafee by conducting a
unigue scanning on database. [36] propasedified CP-tregconstructing a tree for entire database with
items arranged on the same order as their occurrencansadtions.

Lin et al. [20] proposed PreLarge-tree for incrementaimg association rules based on concept of pre-large
itemsets. A pre-large itemset is not actually latgg, maybe large with a high probability in the future. A
pre-large itemset is a itemset having frequency grethin lower support threshold defined by users and
less than upper support threshold defined by users.

SPO-tree $ingle Pass Ordered trgg14] orders items of a transaction by descending frequeihag-
constructs periodically the tree based on a paramelied Edit Distance The tree is re-organized once Edit
Distance of items in the order exceeding the pre-definediiold.

The algorithm BIT Batch Incremental Trge[30] was proposed for batch processing incrementally
increasing database in order to construct a canonical ordeee@anTree). The algorithm BIT merges two
FP-trees of two small adjacent periods to obtain a &®which equivalent to FP-tree obtained when entire
database is processed at the same time from the begirfrttmgfost period to the end of the second period.
In [31], the authors proposed applying the same princigd usthe algorithm BIT to build the equivalent
FP-tree but with the algorithm FP-Growth. That is thegsulsatch incremental mining to build FP-tree by
applying algorithm FP-Growth, and named BIT_FPGrowth.

Incremental mining based on the intermediate structuFPdree shows a weakness in the implementation
process because the FP-tree structure depends on the mriobeaity of supports of items in the database.
Therefore, when the data is updated, it will creaftuémce on the FP-tree structure, specifically in

situations: new items are frequent, or old items becorse flequent than new items. It is particularly

serious with the situation of old items become unfrequent.

To solve this problem, there are solutions such as updagirigdically the tree structures or basing on the
indicators to determine the time for updating. Especidigre is the solution of using the canonical order to
avoid having to depend on the global order of supports ofsittHowever, there are still problems as
described in detail in each of the study above.

A new research direction is to use an intermediatetsteiof concept lattice. The next section presents an
overview of mining incrementally closed sets with thesimtediate structure of concept lattice, and the
techniques of not incremental mining closed sets.

2.2 Incremental mining (frequent) closed itemsets

The approaches for mining (frequent) closed itemsets@nedivided into two groups: incremental mining
and not incremental mining.

Mining frequent closed itemsets was first proposed22y, with an algorithm based-on-Apriori, called A-
Close.

In series, the algorithms for mining closed itemsettusle CLOSET [23], CHARM [39], CLOSET+ [38],
FPClose [9] and AFOPT [21].
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The main challenge in mining frequent closed itemsdts éheck whether an itemset is closed or not. There
are two strategies to approach this problem: (1) keep ofa€lD list of an itemset and index the itemset by
hashing its TID values. This method is used by CHARKbse task of maintaining a TID list called a
diffset, and (2) maintain itemsets discovered in & wamilar to FP-tree. This method is exploited by
CLOSET +, AFOPT and FPClose.

The methods described above are the mining approaches which is neoteéntal. In the recent period,
researchers are focusing on the tendency to use contteaslao serve the purpose of incremental mining.
The concept lattice, widely used in mathematics [7thés hierarchical structure between concepts. Each
concept consists of three components: a set of objectd, d attributes and a relation between these sets.
Correspondingly, each concept can include a closed set, adiiansset and the relationship between these
two sets [26]. Methods for maintaining a concept latt@e be divided into 2 groups: (direct-update new
transactions are added separately to the lattice anthé®je-lattices constructing the lattice from new
transactions added and merging this with the original lattice.

The algorithms proposed in [12,33,10,25,24,37,15] belong to thet-dipelate group.
The methods of [32,2] belong to the merge-lattices group.

Until now, the general technic for incremental mining is usingntermediate structure in order to update
the structure whenever there is a variation in the dagafor incremental mining closed itemsets, the
intermediate structure used is a concept lattice. Tmeeapt lattice promotes the efficiency of the search
process, but it is costly to adjust the lattice wheere is an addition or removal, as well as it is difficalt i
developing parallelization strategy. This is evident whensthdies of incremental mining closed itemsets
by merging lattices have not been significantly develcgpece the 2007.

This article proposes incremental algorithms to sealictlosed itemsets with a new intermediate structure
which is a linear list. Experimental comparing results betwesing intermediate structure concept lattice

and linear list initially show: The greater number of teanti®ns as well as the number of closed itemsets is
obtained in the mining process, the more efficient the uBeeafr list promotes.

3 Proposal Work
3.1 Constructing the intermediate structure

m
LetB ={0, 1}, B is the space afttuple bit chains, whose elements areslsz...sm, SEB,i=1,..m

Definition 1. Given two bit-chains with the same lengtm = a&&...an, b = bib,...b,.
a is said tocoverb or b is covered by — denotech G b — if pogb) O podqa) for pogs) ={i | s = 1}. To be
negative, the operator ! is used, particularlys b.

Definition 2:

+ Letu be a bit-chaink is a natural number, we call;[k] a sample

+ Let Sbe set oim-tuple bit-chains (bit-chain with the length mfbits), u is am-+uple bit-chain. If there are
at leask bit-chains inS coveringu, we sayu is aform of Swith the frequency ok; and [J; K] is a sample of

S—denotedy; K] _s.

Example T S={1110, 0111, 0110, 0010, 0101} andé 0110. We say is a form with the frequency of 2 in
S hence [0110; 2]s.
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+ A sample {J; K] of S calledmaximal sample- denotedy; K] max.s — if and only if it does not exi®t that
[u; K'] _sandk’ > k. For the above example, [0110;,3].s

Definition 3 (operations and binary relation):

+ Two m-tuple bit-chainsa andb are called equal- denotad= b — if and only ifsy = by Oi O {1, ... , m},
vice versaa # b.

+ Given two samplesuf; pi] and [u,; p2]. [uy; pa] is said tobe containedn [u; po] — denoted fi;; p;] O [uy;
p2] — if and only ifu; = u, andp; < p,, vice versali; pi O [uy; p2]-

+ Given twom-uple bit-chainsa andb. A m-uple bit-chain z is calledminimal sequencef a andb —
denotedz =a Ob — if and only ifz, = min(ay, b) Ok O {1, ... , m}.

+ Minimal sampleof two samplesu;; p.] and [u,; p,] is a sampleld’; p’] — denoted {i’; p’] = [uy; pa] 0 [uy;
po] — foru’ =u; Dup; andp’ = py + pe.

Definition 4: P is a representative satf SwhenP = {[U; plmax.s | 2[V; Qmax.sZ [U; p] : (v S uandg> p)}.
Each of elements ¢ is calleda representative samptg S,

The rationale for constructing the set P:

Representative sét is the set of closed sets 8f(according to the definition from [22]). Oneeinsupis
established, we can obtain closed frequent sefs of

Theoretical bases for constructing Bedre as follows:
The definition of closed set from [22]:

A context of mining dataset is a trifle= (O, I, R). O andl are sets of finite transactions and iteR&] O x
| is a binary relatiomf transactions and items. Each pairif 00 R shows that transactian] O containing
itemi O,

ForBOOandCUOI:
f(B): 2° - 2
fB)={iOI|0o0OB, (0,i)OR
g(C): 2 - 2°
gC)={o00|0OC, (0,i) R}
C Ol is closed set if and only if(C) =C, forh=fog

With C a closed set, we have two following affirmations:

* In case of adding new items @ becomingC" (C O C") and ifC" is a closed set(C") has to have the
strictly smaller number of elements thg(€) (g(C") O g(C)). Indeed:

- If g(C") =g(C), for f(g(C")) = C" hencef(g(C)) = C", conflicting with the definition of that is a
closed set.

- If g(C") O g(C), it conflicts with the definition 0§(C) = {o D O |0i O C, (o, i) OR} (find al 0 O
O so that eacb contains all O C, so why there are’ 0 g(C") containing ali O C).

* In case of withdrawing items out &, becomingC™ (C" 0 C) and ifC is a closed seg(C") has to have
the strictly greater number of elements tgé@) (g(C") O g(C)). Indeed:
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- Ifg(C) =9g(C), f(g(C)) =1(g(C)) = C, conflicting with the definition of thal is a closed set.
- If g(C) O g(C), it conflicts with the definition 0§(C) ={o 0O |i OC, (o,i) OR} (find al o O
O so that eacb contains all O C7, so why there are’' [0 g(C) containing ali 0 C).

Remark 1:Without loss of generality, an arbitrary closed set of tesi differents from (does not cover or
is not covered by) other closed sets or if strictly containeal ¢iosed sety, its frequency has to be greater
than the frequency af.

Basing on this basis to construct theRet {[U; plmax_s | Z[V; Qlmax.sZ [U; p] : (v G uandg> p)}.

In more details, the s€&will have:

Non-existing cases Existing cases
v G uandg, > p, viGuorqg, <py
e v=uandg, =p, (not actual) e v!Guandg,>py
+ v=uandg, > p, (not actual) -v#Zu (u!Gv)and g, > py
+ vstrictly coversu and g, = p, - u strictly coversv and g, > py (not =)
e vdtrictly coversu and g, > py  v!Guandg, <py

-vZu (u!Gv)and g, <py,
- u strictly coversy andq, < p, (discard, because of
returning the non-existing cases, left column)
e vGuandg, <p,
- vdtrictly coversu and g, < p,
- v=uandgq, < p, (not actual)

The property of the set P:

We are able to show a set of transactions as th& séthit-chains. For a bit-chain i, the i bit is
established as 1 when tifeitem is purchased and vice versa.

When an arbitrary minimal support threshohinsupis established, the representative Rewill give all
closed frequent seesndmaximal frequent setsf S

Indeed:
Firstly, we repeat the definitions of closed frequentitasidd maximal frequent set.

A setais aclosed frequent sein dataseD if a is frequent orD and there is not any strict supergaif o
andsupporfa) = suppor{) onD.

A setais amaximal frequent seinD if a is frequent, and there is not any strict supefidet a 00 S andf
is frequent orD.

Therefore, a maximal frequent set is a special closspiént set. More specific, according to the definition,
a maximal frequent set is definitely a closed frequehtas@ support equaling its frequency and it is the
closed frequent set which is not able to be contained pther closed frequent sets.

With the definitionP = {Ju; plmax.s | 2[V; Amax.s Z [U; P] : (v G u andq > p)}, considering an arbitrary
element {1; p] O P, oncep > minsup(that is,u shows a frequent setwith supportp). Then, according to the
definition of setP, there is not any bit-chawn(showing a seff) which is able to coveun with the frequency

of g = p. That means, at the support valuef the frequent setr, it does not exist a strictly larger @t

having the same support @fSince, {J; p] is a closed frequent set.
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Hence, the sé® contains all closed frequent setsSpinferringP also contains all maximal frequent sets of
S

We may easily calculate closed frequents set bas@&d on

So, the major issue is concentrated on re-construttiagrepresentative sét wheneverS is modified
(adding, deleting elements).

3.2 Theincremental algorithm for adding a new transaction

Let S be a set ofh m-tuple bit-chains with the representative &etin this part, we will consider the
algorithm for rebuilding se®? when a new bit-chain is addedSo

The algorithm NewRepresentative:

Input: P is the representative & zis a bit-chain added 18
Output: The new representative Betf SO {z}
For eachx O P:
» Using the operation in order to find the smaller closed sexand its frequency is
greater thax 1 unit. (relying orRemark )
e Consideringz as a new closed setBf (Now, P has two group of element: previous
elements and new elements created by the ope@tion
» Verifying to discard invalid elements Bf(in order to ensure the propertyRjft
- Discarding previous elements are contained by new elements
- Discarding new elements contain mutually
Output the se

3.3 Theincremental algorithm for deleting a transaction

Definition 5:

Let S be a set of bit-chains ar®lbe the representative set ®fP is obtained by applying the algorithm
NewRepresentativ® S Let [p; k] O P, ands,, s, ... ,s O Sber (r < K) bit-chains taking part in forming,
denotedp_crd:s;, S, ... , S, Vice versa, denoteg: crd: ks, !s,, ..., Is.

Example 2 In Example 1we have bit-chains 1110 and 0111 are 2 of 3 bit-chain<ipating in forming
[0110; 3]. Lets; = 1110,s, = 0111 ang = 0110, we havep_crd =sy, S,. Let s3 = 0101 not participating in
forming [0110; 4], sop_crd = k.

The following is the algorithm to find the new represémaset ofSwhen a bit-chain is deleted frogn

The algorithm NewRepresentative_Delete:

Input: P is the representative set9fzis the deleted transaction
Output: the new representative Bedf S\ {Z}
For eackx O P
If z G the form ofx (i.e. x.form_crd =2)
Decreasing the frequency »f unit
If the frequency ok = 0 then removing from P
Verifying to discard if x is contained by an elementin(in order to ensure the
property ofP)
End if
End for
Output the seP
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4 Experiment for Verifying Results

The algorithm proposed by [12] has been one of the first appoachmiild the lattice of closed sets. This
algorithm builds a lattice containing all closed setshefdriginal dataset and allows incremental mining by
the direct-update method when a transaction is added. Theasbtasults (including the quantity, meaning
and purpose) of this algorithm are completely accuratdeasesults of the algorithiNewRepresentative
Therefore, the comparative experiment is conducted Wwithatgorithm of [12].

* Infrastructure: one computer with the configuration as follows:

- CPU: Intel(R) Core(TM) i3-2100 (4 CPUs), ~3.1GHz

- RAM: 8192MB

- Operation Systems: Windows 7 Ultimate 64-bit (6.1i)du601) Service Pack 1
- Programming language: C#NET

* Experimental datasets. got fromhttp://fimi.ua.ac.be/data/

* T1014D100K

Number of transactions on the database: 100,000
Maximal number of items on each transaction: 29
Maximal items on the dataset: 1,000

Table 1. Compar ative figures between 2 algorithmsfor T1014D100K

No. NewRepresentative Lattice

transactions  Thetimefor  Total time No. Thetimefor Total time No. closed
adding 1 (second) closed adding 1 (second) sets
transaction sets transaction
(second) (second)

1,000 0.003 1.65 7,311 0.06 19.26 7,311

2,000 0.02 9.66 18,213 0.64 147.79 18,213

3,000 0.04 35.58 31,022 0.81 536.50 31,022

4,000 0.06 85.91 44,528 0.47 1,288.87 44,528

5,000 0.19 166.26 59,279 2.31 2,628.95 59,279

6,000 0.11 271.86 74,006 1.40 4,622.61 74,006

7,000 0.20 418.83 89,830 3.99 7,546.51 89,830

8,00( 0.2t 604.8¢ 105,54« 6.2¢ 11,362.5! 105,54«

9,000 0.09 815.71 121,166 1.47 16,307.64 121,166

10,000 0.33 1,089.89 139,491 7.71 23,455.05 139,49

11,00(¢ 0.52 1,415.7( 158,13t

12,000 0.33 1,806.82 176,766

13,000 0.30 2,253.67 195,557

14,00( 0.6¢ 2,769.9! 215,06t

15,000 0.75 3,362.96 235,747

16,000 2.09 4,021.19 255,604

17,000 0.81 4,667.43 275,385

18,000 1.26 5,417.64 295,607

19,000 0.45 6,202.65 315,910

20,000 0.25 7,083.47 336,109

21,000 0.20 8,043.19 355,853

22,000 2.32 9,088.06 376,549

23,000 2.29 10,251.07 396,845

24,00( 1.2C 11,507.0! 417,75t

25,000 0.92 12,926.93 440,785

26,000 0.55 14,404.83 461,495

10
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No. NewRepresentative Lattice
transactions  Thetimefor  Total time No. Thetimefor Total time No. closed
adding 1 (second) closed adding 1 (second) sets
transaction sets transaction
(second) (second)
27,000 0.87 15,897.83 483,930
28,000 0.19 17,470.77 506,176
29,000 1.30 19,169.08 529,346
30,000 2.31 20,925.02 552,617
31,000 0.66 22,815.77 573,595
32,000 0.36 24,446.15 595,934
33,000 2.68 26,050.77 619,655
34,000 0.67 27,727.44 643,210
35,000 2.64 29,567.60 667,597
36,000 2.47 31,484.93 691,155
37,000 1.20 33,543.99 713,641
38,000 0.98 35,563.43 736,338
39,000 2.73 37,631.26 760,625
40,000 1.53 39,772.44 783,805
T1014D100K
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0
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Fig. 1. Compar ative chart between 2 algorithms for T1014D100K

With the experimental datas€1014D100K the algorithm of [12]l(attice for short) has the phenomenon of
memory overflow when the number of transactions is abduO0D. Meanwhile, the algorithm
NewRepresentativeverflows when the number of transactions is about 40,000.

The following part is a comparison chart of the two alpons on implementing time at each landmark of
the number of transactions. The vertical column repregbatsime in millisecond, and the horizontal bar
represents landmarks of the number of transactions.

With the following experimental datasetefail, mushroom connect pumsb_star pumsb, results of
comparison tables and graphs are presented exactly agdeatation of the dataset014D100K

* retail:
Number of transactions on database: 88,162
Maximal number of items on each transaction: 76
Maximal items on dataset: 16,469

11
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Table 2. Compar ative figures between 2 algorithmsfor retail

No. NewRepresentative Lattice

transactions Thetimefor Total time  No. Thetimefor Total time No.
adding 1 (second) closed adding 1 (second) closed
transaction sets transaction sets
(second) (second)

1,000 0.001 1.27 4,410 0.006 1.01 4,410

2,000 0.01 7.72 11,907 0.03 50.50 11,907

3,000 0.01 31.96 25,848 0.22 333.47 25,848

4,000 0.02 76.16 40,364 1.18 1,162.11 40,364

5,000 0.07 136.55 51,877 2.58 2,254.10 51,877

6,000 0.02 238.31 69,172 0.12 4,349.16 69,172

7,000 0.08 377.10 86,722 2.62 7,804.74 86,722

8,000 0.08 513.15 97,736 1.79 10,393.21 97,736

9,000 0.26 684.84 112,927 7.22 14,312.75 112,927

10,00(¢ 0.17 929.07% 132,47. 0.5¢4 21,685.9. 132,47.

11,000 0.19 1,176.73 145,805 2.01 28,084.02 145,805

12,000 0.37 1,433.72 157,027 9.00 33,623.61 157,027

13,00(¢ 0.1z 1,765.6( 171,74¢ 0.8: 42,301.6 171,74¢

14,000 0.13 2,250.50 193,093 10.05 69,322.26 183,09

15,000 0.23 2,651.00 206,187 5.18 84,387.09 206,187

16,000 0.42 3,064.94 218,447

17,000 0.17 3,557.91 238,302

18,000 1.64 4,182.06 267,375

19,000 0.51 4,652.33 282,995

20,000 0.09 5,175.34 298,866

21,000 1.07 5,902.65 326,976

22,000 1.12 6,728.45 355,411

23,00( 0.34 7,289.1 369,84t

24,000 0.58 8,003.51 389,871

25,000 0.19 8,975.41 418,421

26,00( 0.2¢ 9,797.5! 432,47¢

27,000 0.63 10,656.31 447,936

28,000 0.27 11,886.16 476,058

29,000 0.64 12,984.84 495,801

30,000 0.62 13,906.40 510,335

31,000 0.55 14,918.17 530,243

32,000 0.59 16,277.79 562,342

33,000 0.41 17,294.59 580,406

34,000 0.99 18,362.52 597,965

35,000 0.45 19,516.55 620,735

36,000 0.98 21,312.59 657,313

37,000 0.28 22,867.05 677,236

38,000 0.36 24,427.39 697,467

39,00( 2.2z 26,054.3 726,16¢

40,000 0.47 27,745.88 753,244

41,000 0.72 28,954.68 766,170

42,00( 0.81 30,362.6: 783,85¢

43,000 4.44 32,254.40 811,294

44,000 0.24 34,402.17 841,938

45,000 0.78 36,108.94 858,093

46,000 11.28 37,986.32 879,523

47,000 1.81 40,052.93 908,826

48,000 0.53 42,130.18 940,774

49,000 0.47 43,798.43 957,926

50,000 0.67 45,403.28 974,458

12
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Fig. 2. Comparative chart between 2 algorithmsfor retail

* mushroom
Number of transactions on database: 8,124
Maximal number of items on each transaction: 23
Maximal items on dataset: 119
Table 3. Compar ative figures between 2 algorithms for mushroom
No. NewRepresentative Lattice
transactions Thetimefor adding Total time No. Thetimefor addingl Total time No.
1transaction (second) closed transaction (second)  (second) closed
(second) sets sets
1,000 0.58 364.04 32,513 154.97 47,893.60 32,513
2,000 2.40 2,036.38 58,982
3,000 3.26 5,019.46 80,901
4,000 1.89 8,290.29 104,104
5,000 4.03 11,954.85 136,401
6,000 3.99 19,552.01 156,573
7,000 8.33 30,003.14 214,950
8,000 11.60 41,696.58 237,874
8,124 12.10 43,140.48 238,709

mushroom

180000
160000 i
140000
120000
100000
80000
60000
40000

20000
0 Oy 4‘2.._-0——.—‘

1000 2000 3000 4000 5000 6000 7000 8000 8124

—&-NewRepresentative == Lattice

Fig. 3. Comparative chart between 2 algorithms for mushroom
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* connect

Number of transaction on database:
Maximal number of items on each transaction:
Maximal items on dataset:

67,557

43
129

Table 4. Compar ative figures between 2 algorithms for connect

No. NewRepresentative Lattice
transactions Thetimefor Total time No. Thetimefor Total time No.
adding 1 (second) closed adding 1 (second) closed
transaction sets transaction sets
(second) (second)
100 0.54 14.44 13,406 22.39 533.41 13,406
200 10.81 485.31 63,360 1,217.30 43,131.84 63,360
300 62.52 3,738.96 149,393
400 62.71 12,867.77 232,526
500 370.23 35,284.15 445,676
connect
1400000
1200000
1000000 /’
800000 /
600000 /
400000
200000 / /
0 e ———r
100 200 300 400 500
—4¢—NewRepresentative == Lattice
Fig. 4. Comparative chart between 2 algorithmsfor connect
* pumsb_star
Number of transaction on database: 49,046
Maximal number of items on each transaction: 63
Maximal items on dataset: 7,116
Table 5. Compar ative figures between 2 algorithms for pumsb_star
No. NewRepresentative Lattice
transactions  Thetimefor  Total time No. Thetimefor Total time No.
adding 1 (second) closed adding 1 (second) closed
transaction sets transaction sets
(second) (second)
10 0 0.008 189 0.002 0.16 189
20 0.01 0.15 1,301 0.06 0.35 1,301
30 0.02 0.37 4,465 1.22 5.15 4,465
40 0.07 0.86 8,974 5.12 35.58 8,974
50 0.31 2.57 17,425 15.79 170.86 17,425
60 0.3t 6.31 25,43: 70.2( 500.9: 25,43
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No. NewRepresentative Lattice
transactions  Thetimefor Totaltime  No. Thetimefor Total time No.
adding 1 (second) closed adding 1 (second) closed
transaction sets transaction sets
(second) (second)
70 2.74 17.63 38,305 100.68 1,605.28 38,305
80 0.68 44.46 48,875 58.84 3,055.21 48,875
90 4.0z 78.72 62,21: 510.07 5,631.9: 62,21:
100 10.72 139.11 84,907 395.72 11,918.65 84,907
110 8.97 249.70 101,179
12C 36.2: 408.7( 130,14«
130 26.41 583.24 145,829
140 4.59 768.99 168,617
15C 5.9¢ 1,278.0( 205,42:
160 141.07 1,856.49 225,118
170 156.66 2,742.11 246,286
180 76.11 3,403.82 277,220
190 227.07 4,408.26 309,147
200 160.48 5,423.01 354,489
pumsb_star
600000
500000 h
400000
300000 I
200000 I
100000 I
0 I-I-I-M
SR8928R28882883988R888
™ 1 N
== NewRepresentative =ill=Lattice
Fig. 5. Compar ative chart between 2 algorithms for pumsb_star
* pumsb
Number of transaction on database: 49,046
Maximal number of items on each transaction: 74
Maximal number of items on dataset: 7,116
Table 6. Compar ative figures between 2 algorithmsfor pumsb
No. NewRepresentative Lattice
transactions Thetimefor adding Total time No.closed Thetimefor adding Total time No.
1transaction (second) sets 1 transaction (second) closed
(second) (second) sets
10 0.006 0.02 240 0.004 0.13 240
20 0.05 0.21 1,873 0.14 0.66 1,873
30 0.28 1.44 10,108 14.37 37.32 10,108
40 2.33 8.44 26,544 86.66 495.26 26,544
50 4.17 102.08 99,575 1,725.10 6,261.31 99,575
60 342.14 977.71 252,113
70 1,237.60 7,575.90 406,906
80 840.42 18,507.95 864,979
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pumsb
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Fig. 6. Compar ative chart between 2 algorithms for pumsb
5 Conclusion

This article proposes incremental algorithms to searcti@ked itemsets with a new intermediate structure
which is a linear list. To the best of our knowledge, ihithe first algorithm for incremental mining closed
itemsets using a linear list as an intermediate stregiwoposed so far. Experimental comparing results
between using intermediate structure concept lattice andr lirgt initially show: The greater number of
transactions as well as the number of closed itensetstained in the mining process, the more efficient the
use of linear list promotes.

In the near future, we will research on parallelizagtgorithms to reduce implementing time and improve
the performance.
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