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Abstract 

 
The main goal of the article is to explore two unusual numeral systems, which alter radically our ideas on 

the positional numeral systems. We are talking on the numeral systems with irrational bases. The first of 

them is the binary (0,1) numeral system with the irrational base  
1 5

2

+Φ =
 
(the golden ratio), 

proposed in 1957 by the 12-year American mathematician George Bergman, the second is the ternary 

mirror-symmetrical numeral system with the  base  
2 3 5

2

+Φ = , proposed by the author of the present 

article and published in 2002 in The Computer Journal (British Computer Society). Bergman’s system is 

the newest mathematical discovery in number theory and the greatest modern mathematical discovery in 

the field of positional numeral systems after Babylonian numeral system with the base 60, decimal and 

binary systems.   Bergman’s system can be considered as a new definition of real numbers and is a source 

of new unusual properties of natural numbers. Bergman’s system generates the ternary mirror-

symmetrical numeral system, having unique mathematical property of mirror symmetry, which can be 

used for effective detection of errors in all arithmetical operations. These numeral systems alter our ideas 

Original Research Article 



 

 

 

Stakhov; BJMCS, 18(3): 1-34, 2016; Article no.BJMCS.28262 

 

 

 

2 
 

about positional numeral systems and can affect on future development of mathematics and computer 

science. The ternary mirror-symmetrical numeral system is possibly the final stage in the long historical 

development of the concept of ternary numeral systems, because in the ternary mirror-symmetrical 

numeral system two scientific problems, the sign problem and representation of negative numbers and 

problem of error detection, based on the principle of mirror symmetry, are solving simultaneously. The 

famous American mathematician and expert in computer science Donald Knut evaluated highly the 

ternary mirror-symmetrical numeral system. The author is ready to offer consulting services for any 

electronic company with advanced technology, which can be interested in the technical implementation of 

the ternary mirror-symmetrical processors and computers on this basis. 

 

 

Keywords: Decimal system; binary system; ternary system; ternary logic; Brousentsov ternary principle; the 

golden ratio; Bergman’s system; the “golden” number theory; ternary mirror-symmetrical 

numeral system; ternary mirror-symmetrical summator; matrix ternary mirror-symmetrical 

summator. 

 

1 Introduction 

 
The  present article is development and continuation of author’s articles [1,2], published recently in British 

Journal of Mathematics and Computer Science and author’s book “The Mathematics of Harmony. From 

Euclid to Contemporary Mathematics and Computer Science (World Scientific, 2009) [3]. Publication 

of the articles [1,2] aroused the interest of readers and Editorial Board of BJMCS to the numeral systems 

with irrational bases. The Mathematics of Harmony [3] as new interdisciplinary direction of modern 

mathematics and computer science is fruitful source of new ideas in mathematics and computer science, in 

particular, of numeral systems with irrational bases, which alter our ideas about numeral systems. 

 

As shown in [1], the number of numeral systems with irrational bases, including Fibonacci p-codes and 

codes of the golden p-proportions, is theoretically infinite. But a special role in the development of 

mathematics and computer science could play two new numeral systems with irrational bases: Bergman's 

binary system with the base  
1 5

2

+Φ =  (the golden ratio) [4-6] and Stakhov’s ternary mirror-

symmetrical system with the base 2 3 5

2

+Φ =  [7]. 

 

As shown in [7], these numeral systems are closely linked. They may affect on the further development of 

both mathematics and computer science. Prof. Donald Knuth, who is recognized world expert in the field of 

computer science, has paid special attention to Stakhov’s article [7] and promised to include information 

about this article in the new edition of his best-selling book "The Art of Computer Programming" [8]. 

 

The article consists of two parts:  

 

Part I. Bergman’s binary numeral system with the base 
1 5

2

+Φ =  and its role for future development 

of mathematics. 

 

Part II. Stakhov’s ternary mirror-symmetrical numeral system with the base 2 3 5

2

+Φ =  and its role 

for future development of mathematics and computer science. 

 



Part I. Bergman’s binary numeral system with the base

its role for future development of mathematics

1 Evolution of Numeral Systems

 
1.1 The greatest mathematical discovery in mathematics history 
 
Everybody can agree with the statement that any child after graduation from the fourth grade of secondary 

school should know at least two useful things: the child can read and write on native language and use 

decimal system to perform elementary arithmetic

important achievements of human intellect. This numeral system is based on the "positional principle," 

introduced by Babylonians in their positional numeral system with the base of 60.

for us such simple and elementary, that it is difficult to agree with the statement that the decimal system is 

one of the greatest mathematical discoveries in the history of mathematics. 

 

To prove the validity of this statement let us turn to

 
Pierre-Simon Laplace (1749-1827), the 

sciences, an honourable foreign member of the Petersburg academy of sciences state:

 

"The idea of representation of al

form, another value by the place too,  seems  so simple what namely because of this simplicity it is 

difficult to understanding as this is surprising. As not easy to come to this method, w

example of the greatest geniuses of Greek science Archimedes and Apollonius, from whom this idea 

remained latent." 

 

(From Wikipedia, the free encyclopedia 
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1 Evolution of Numeral Systems 

1.1 The greatest mathematical discovery in mathematics history  

Everybody can agree with the statement that any child after graduation from the fourth grade of secondary 

school should know at least two useful things: the child can read and write on native language and use 

decimal system to perform elementary arithmetic operations. The decimal numeral system is one of the most 

important achievements of human intellect. This numeral system is based on the "positional principle," 

introduced by Babylonians in their positional numeral system with the base of 60. The decimal 

for us such simple and elementary, that it is difficult to agree with the statement that the decimal system is 

one of the greatest mathematical discoveries in the history of mathematics.  

To prove the validity of this statement let us turn to the opinion of the "authorities".  

1827), the famous French mathematician, member of the Parisian academy of 

sciences, an honourable foreign member of the Petersburg academy of sciences state: 

"The idea of representation of all numbers by using 9 marks, giving to them, apart from value by the 

form, another value by the place too,  seems  so simple what namely because of this simplicity it is 

difficult to understanding as this is surprising. As not easy to come to this method, w

example of the greatest geniuses of Greek science Archimedes and Apollonius, from whom this idea 

 
 

Fig. 1. Pierre-Simon Laplace 
From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Pierre-Simon_Laplace
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 and 

Everybody can agree with the statement that any child after graduation from the fourth grade of secondary 

school should know at least two useful things: the child can read and write on native language and use 

is one of the most 

important achievements of human intellect. This numeral system is based on the "positional principle," 

The decimal system seems 

for us such simple and elementary, that it is difficult to agree with the statement that the decimal system is 

French mathematician, member of the Parisian academy of 

l numbers by using 9 marks, giving to them, apart from value by the 

form, another value by the place too,  seems  so simple what namely because of this simplicity it is 

difficult to understanding as this is surprising. As not easy to come to this method, we see on the 

example of the greatest geniuses of Greek science Archimedes and Apollonius, from whom this idea 

Simon_Laplace) 
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M.V. Ostrogradsky (1801-1862), the famous Russian mathematician, a member of the Petersburg academy 

of sciences and many foreign academies: 

 

“It seems to us that after the invention of written language the largest discovery was the use by 

humanity of the so-called decimal numeral system. We want to say that the agreement, with the aid of 

which we can represent all useful numbers by twelve words and by their endings is one of the most 

remarkable creations of human genius... “ 

 

 
 

Fig. 2. M.V. Ostrogradsky 
(From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Mikhail_Ostrogradsky) 

 

Jules Tannery (1848-1910), the famous French mathematician, a member of the Parisian academy of 

sciences:  

 

"As to the present system of written numeration in which we use the nine significant numerals and a 

zero, and the relative value of numerals is defined by a special rule,  this system has been introduced  in 

India into the epoch which is not determined precisely, but, apparently, after the Christian era. The 

invention of this system is one of the most important events in history of science, and despite of a habit 

to use decimal numeration, we should be surprised by extraordinary simplicity of its mechanism". 

 
 

Fig. 3. Jules Tannery 
(From Wikipedia, the free encyclopedia  https://en.wikipedia.org/wiki/Jules_Tannery) 

 

1.2 A historical view on the positional numeral system 

 
Such a high evaluation of the decimal system in the works of the three famous mathematicians (Pierre-

Simon Laplace, M.V. Ostrogradsky and Jules Tannery), at first glance seems very strange. But we 

should not forget that these mathematicians were Great mathematicians-thinkers, who were well aware that 
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the first fundamental results in number theory have been obtained long before the ancient Greeks. These 

results were obtained for the first time in the theory of numeral systems. These include, first of all, the 

positional principle of number representation, embodied in the Babylonian positional numeral system with 

the base 60, and the doubling principle, which was used by ancient Egyptians in their non-positional 

decimal system to obtain the rules of multiplication and division of numbers. We should not forget that the 

positional principle of number representation is the basis of all known positional numeral systems, in 

particular, the decimal and binary, and that the Egyptian rule of multiplication and division of numbers are 

used in modern computer arithmetic, based on binary system. 

 

This historical view on the positional numeral system, which goes back to Babylonian and Egyptian 

mathematics, is used in the present article to assess the role of Bergman’s system [4-6] and Stakhov’s ternary 

mirror-symmetrical system [3,7], in future development of modern mathematics and computer science. 

 

1.3 The main stages in the development of numeral systems 
 
Creation of the first numeral systems is related to the period of origin of mathematics, when necessity 

counting of things, measuring of time, land and quantities of products resulted in development of basic rules 

of arithmetic for natural numbers. The famous Russian mathematician Andrey Kolmogorov (1903 - 1987) 

emphasizes in his book [9] that "written numeral systems and common rules of four basic arithmetic 

operations were gradually developed on the basis of existing oral numeral systems.” 

 

 
 

Fig. 4. Academician Andrey Kolmogorov 
(From Wikipedia, the free encyclopedia  https://en.wikipedia.org/wiki/Andrey_Kolmogorov} 

 

In the history of numeral systems we can identify several stages: initial stage of counting, stage of non-

positional numeral systems, alphabetic numeral systems, and positional numeral systems. Initially people 

used body parts, fingers, sticks, knots, etc. to represent the counting data. As is outlined in the article [10], 

"despite of extreme primitiveness of this method of number representation it had played an exclusive role in 

the development of concept of number". This statement confirms that numeral systems played a determining 

role in formation of concept of natural numbers, one of the fundamental concepts of mathematics. 

 

Unfortunately, historians of computer science, being charmed by advanced computer theory, sometimes 

forget on the role of numeral systems in the history of computers. In fact, the first computing devices 

(“abacus” and “calculators”), prototypes of modern computers, have been known long before the Boolean 

algebra and theory of algorithms. Numeral systems and rules for elementary arithmetical operations played 

the major role in the development of those primitive computing devices, and we should not forget about this 

when we try to predict future development of computer technology, especially, computer technology for 

“mission-critical applications”. 

 

Why in number theory there was not paid much attention to numeral systems in comparison to other 

directions of number theory? Possibly, the mathematical "tradition" had played here negative role. In the 



Greek mathematics, which had reached a h

mathematics into "higher” mathematics

"logistics", the applied science for 

measurements and constructions. 

 

Already since Plato's time, the "logistics" has been considered as applied discipline, which was not included 

in the educational scope of philosophers and scientists. The scornful attitude to the "school" arithmetic 

their problems, starting since Plato, and also an absence of any enough serious need for creation of new 

numeral systems in computing practice, which had been satisfied by 

and in the last decades by binary system

theory of numbers showed  a small attention  to the theory of numeral systems, and why in this part the 

number theory  remained at the level of the Babylonian or Hindi mathematics. 

 

However, an attitude to numeral systems sharply changed in the second half of the 20

occurrence of modern computers. In this area has a huge interest to methods of number representation and 

new computer arithmetic’s arose again.

 

Excepting usage of binary system (“von Neumann’s principles,” developed by famous mathematician an 

physicist John von Neumann (1903

have been undertaken to use in computers others num

ternary computer "Setun" designed by the Russian engineer 

bright example [11]. 

 

                               

Fig. 5. John von Neumann 
(From Wikipedia, the free encyclopedia 

https://en.wikipedia.org/wiki/John_von_Neumann 

         

During this period the numeral systems with the "exotic" titles and propert

residual classes, ternary symmetrical numeral systems

positional, factorial, binomial numeral systems

comparison with binary system and have been directed on improvement of those or other characteristics of 

computers; some of them became a basis for creation of new computer projects (the ternary computer 

"Setun" [11], the computer based on system for residual classes and so on
 

But there is also other interesting aspect of this problem. Four millennia after the invention by Babylonians 

of the “positional principle”, a period of peculiar "Renaissance" in the field of numeral systems arose. 

 

Due to efforts first of all of experts in the computer field, mathematics as though again had returned back to 

the period of its origin when the numeral systems had defined a subject and essence of mathematics. 
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Greek mathematics, which had reached a high level of development, for the first time arose a division of 

"higher” mathematics, which had included geometry and theory of numbers

, the applied science for arithmetic calculations (including "school" arithmetic

Already since Plato's time, the "logistics" has been considered as applied discipline, which was not included 

in the educational scope of philosophers and scientists. The scornful attitude to the "school" arithmetic 

their problems, starting since Plato, and also an absence of any enough serious need for creation of new 

numeral systems in computing practice, which had been satisfied by decimal system during last centuries, 

binary system (in computer science), can serve as an explanation of that fact, why 

theory of numbers showed  a small attention  to the theory of numeral systems, and why in this part the 

number theory  remained at the level of the Babylonian or Hindi mathematics.  

However, an attitude to numeral systems sharply changed in the second half of the 20
th

occurrence of modern computers. In this area has a huge interest to methods of number representation and 

new computer arithmetic’s arose again. 

(“von Neumann’s principles,” developed by famous mathematician an 

(1903-1957)), already at the initial stage of the “computer era", the attempts 

have been undertaken to use in computers others numeral systems, distinct from binary (in this respect, the 

ternary computer "Setun" designed by the Russian engineer Nikolay Brousentsov (1925-2014)

                                               
 

John von Neumann  
From Wikipedia, the free encyclopedia  

https://en.wikipedia.org/wiki/John_von_Neumann     

Fig. 6. Nikolay Brousentsov 
(From Wikipedia, the free encyclopedia

https://ru.wikipedia.org/wiki/%D0%91%D1%80%D1%83%D

1%81%D0%B5%D0%BD%D1%86%D0%BE%D0%B2,_%D0

%9D%D0%B8%D0%BA%D0%BE%D0%BB%D0%B0%D0%

B9_%D0%9F%D0%B5%D1%82%D1%80%D0%BE%D0%B

2%D0%B8%D1%87) 
 

During this period the numeral systems with the "exotic" titles and properties have appeared: 

ternary symmetrical numeral systems, numeral systems with the complex bases, nega

positional, factorial, binomial numeral systems, etc. [12]. All of them had those or other advantages in 

and have been directed on improvement of those or other characteristics of 

computers; some of them became a basis for creation of new computer projects (the ternary computer 

"Setun" [11], the computer based on system for residual classes and so on).  

But there is also other interesting aspect of this problem. Four millennia after the invention by Babylonians 

of the “positional principle”, a period of peculiar "Renaissance" in the field of numeral systems arose. 

Due to efforts first of all of experts in the computer field, mathematics as though again had returned back to 

the period of its origin when the numeral systems had defined a subject and essence of mathematics. 
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theory of numbers, and 

"school" arithmetic), geometric 

Already since Plato's time, the "logistics" has been considered as applied discipline, which was not included 

in the educational scope of philosophers and scientists. The scornful attitude to the "school" arithmetic and 

their problems, starting since Plato, and also an absence of any enough serious need for creation of new 
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in computer science), can serve as an explanation of that fact, why 

theory of numbers showed  a small attention  to the theory of numeral systems, and why in this part the 

th
 century after 

occurrence of modern computers. In this area has a huge interest to methods of number representation and 

(“von Neumann’s principles,” developed by famous mathematician an 

1957)), already at the initial stage of the “computer era", the attempts 

eral systems, distinct from binary (in this respect, the 

2014) is the most 

 
From Wikipedia, the free encyclopedia 

https://ru.wikipedia.org/wiki/%D0%91%D1%80%D1%83%D
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B9_%D0%9F%D0%B5%D1%82%D1%80%D0%BE%D0%B

ies have appeared: system for 

numeral systems with the complex bases, nega-

, etc. [12]. All of them had those or other advantages in 

and have been directed on improvement of those or other characteristics of 

computers; some of them became a basis for creation of new computer projects (the ternary computer 

But there is also other interesting aspect of this problem. Four millennia after the invention by Babylonians 

of the “positional principle”, a period of peculiar "Renaissance" in the field of numeral systems arose.  

Due to efforts first of all of experts in the computer field, mathematics as though again had returned back to 

the period of its origin when the numeral systems had defined a subject and essence of mathematics.  



In fact, in opinion of many historians of ma

of mathematics. During the period of origin of mathematics

numbers, was developed.  

 

But then we can put  the following question: possibly the mo

of computer needs, could affect on the development of the concept of number and number theory and in such 

way could influence not only on the development of computer science, but also of all mathematics.

 

2 A Role of Bergman’s System in Future Development of Mathematics

 
2.1 Definition and brief history

 
In 1957 the young American mathematician 

an irrational base in the authoritative journal 

Bergman’s system:  
 

,i
i

i

A a= Φ∑    

 

where A is any real number, ai is a binary numeral {0,1} of the 

of the i-th digit, and ( )1 5 2Φ = +
   

(

https://en.wikipedia.org/wiki/George_Bergman

 

We can get more detailed information about 

[13]: “George Mark Bergman was born on 22 July 1943 in Brooklyn, New York.

from Harvard in 1968, under the direction of

Professor of mathematics at the University of California, Berkeley

promoted to Associate Professor in 1974 and to Professor in 1978.

particular associative rings, universal algebra, category theory and the construction of counterexamples. 

Mathematical logic is an additional research area. Bergman officially retired in 2009, but is still teaching

 

It is interesting to note the following. The concept of 

modern scientific literature. The special article in Wikipedia [5] is dedicated to 

described briefly in WolframMathWor

outstanding book [8]. The special paragraph in author’s book [3] is dedicated to 

Computer Journal” (British Computer Society) published in 2002 author’s article [7]; this article is based on 

Bergman's system and is dedicated to the so

evaluated highly by Prof. Donald Knuth

other his mathematical works, published in adulthood.
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In fact, in opinion of many historians of mathematics, this period was extremely important for development 

period of origin of mathematics [9], the main concept of number theory, 

But then we can put  the following question: possibly the modern numeral systems, created for satisfaction 

of computer needs, could affect on the development of the concept of number and number theory and in such 

way could influence not only on the development of computer science, but also of all mathematics.

Role of Bergman’s System in Future Development of Mathematics

2.1 Definition and brief history 

In 1957 the young American mathematician George Bergman published the article A number system with 

in the authoritative journal Mathematics Magazine [4]. The following sum is called 

                                                                                     

is a binary numeral {0,1} of the i-th digit, i=0,±1,±2,±3,…, , Φ

1 5 2  is the base of the numeral system (1).  

 
 

Fig. 7. George Bergman 
(From Wikipedia, the free encyclopedia  

https://en.wikipedia.org/wiki/George_Bergman) 

can get more detailed information about George Bergman from Wikipedia article [13]. We can read in 

was born on 22 July 1943 in Brooklyn, New York. He … received his PhD 

from Harvard in 1968, under the direction of John Tate. The year before he had been appointed Assistant 

University of California, Berkeley, where he has taught ever since, being 

promoted to Associate Professor in 1974 and to Professor in 1978. His primary research area is algebra, in 

particular associative rings, universal algebra, category theory and the construction of counterexamples. 

Mathematical logic is an additional research area. Bergman officially retired in 2009, but is still teaching

It is interesting to note the following. The concept of Bergman's system has entered widely into Internet and 

modern scientific literature. The special article in Wikipedia [5] is dedicated to Bergman’s system

WolframMathWorld [6]. Donald Knuth refers to Bergman's article [4] in his 

outstanding book [8]. The special paragraph in author’s book [3] is dedicated to Bergman’s system

(British Computer Society) published in 2002 author’s article [7]; this article is based on 

Bergman's system and is dedicated to the so-called ternary mirror-symmetrical arithmetic

Donald Knuth. Thus, the article [7] has been glorified Bergman’s name more than 

other his mathematical works, published in adulthood. 
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thematics, this period was extremely important for development 

[9], the main concept of number theory, natural 

dern numeral systems, created for satisfaction 

of computer needs, could affect on the development of the concept of number and number theory and in such 

way could influence not only on the development of computer science, but also of all mathematics. 

Role of Bergman’s System in Future Development of Mathematics 

A number system with 

The following sum is called 

                                                                                   (1) 

Φi
 is the weight 

from Wikipedia article [13]. We can read in 

He … received his PhD 

. The year before he had been appointed Assistant 

, where he has taught ever since, being 

His primary research area is algebra, in 

particular associative rings, universal algebra, category theory and the construction of counterexamples. 

Mathematical logic is an additional research area. Bergman officially retired in 2009, but is still teaching.” 

has entered widely into Internet and 

Bergman’s system. It is 

refers to Bergman's article [4] in his 

Bergman’s system. “The 

(British Computer Society) published in 2002 author’s article [7]; this article is based on 

symmetrical arithmetic, which was 

as been glorified Bergman’s name more than 
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2.2 What is the main distinction between Bergman’s system and binary system? 
 
On the face of it, there is not any distinction between the formula (1) for Bergman’s system and the formulas 

for the canonic positional numeral systems, in particular, binary system: 
 

( ) { }( )0, 1, 2, 3,... 0,1i

i i

i

A a i a= 2 = ± ± ± ∈∑ ,                                      (2) 

 

where the digit weights are connected by the following “arithmetical” relations: 
 

1 1 12 2 2 2 2i i i i− − −= + = × ,                                             (3) 
 

which underlie “binary arithmetic”.  
 

The principal distinction of the numeral system (1) from the binary system (2) is the fact that the irrational 

number ( )1 5 2Φ = +  (the golden ratio) is used as the base of the numeral system (1) and the digit 

weights are connected by the following relations: 

 
1 2 1i i i i− − −Φ = Φ + Φ = Φ ×Φ ,                                             (4)   

 

which underlie the “golden” arithmetic.                                                         
 

That is why; Bergman called his numeral system the numeral system with irrational base. Although 

Bergman’s article [7] is a fundamental result for number theory and computer science, mathematicians and 

engineers of that period were not able to appreciate the mathematical discovery of American wunderkind.  
 

2.3 Unusual mathematical properties of Bergman’s system 

 
2.3.1 The “extended” Fibonacci and Lucas numbers   
 

Bergman’s system (1) is connected closely with the so-called “extended” Fibonacci and Lucas numbers 

( ) and 0, 1, 2, 3,...ii
LF i = ± ± ± . Table 1 gives example of the “extended” Fibonacci numbers.  

 

 Table 1. The “extended” Fibonacci and Lucas numbers 
 

n 0 1 2 3 4 5 6 7 8 9 10 

Fn 0 1 1 2 3 5 8 13 21 34 55 

F-n 0 1 -1 2 -3 5 -8 13 -21 34 -55 

Ln 2 1 3 4 7 11 18 29 47 76 123 

L-n 2 -1 3 -4 7 -11 18 -29 47 -76 123 
 

From Table 1, there follow the following relations, which connect the “extended” Fibonacci and Lucas 

numbers: 
 

( ) 1
1

n

n n
F F

+

− = − ;  ( )1
n

n n
L L− = −                                                                        (5) 

 

2.3.2 Ф-, F- and L-codes  
 

Let us consider the representation of natural numbers in Bergman’s system, called Φ -code of natural 

number N: 
 

( )0, 1, 2, 3,...i

i

i

N a i= Φ = ± ± ±∑ .                                                         (6) 
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The abridged notation of the Φ -code (6) in the form 

 

( )1 1 0 1 2 1
... . ...n n kk

N a a a a a a a a− − − −− −
= .                                                                       (7) 

 

is called the “golden” representation of natural number N.  

 

The unusual mathematical properties of Bergman’s system arise at representation of natural numbers in the 

Φ -code (6). We formulate them in the form of the following theorems [2]. 

 

Theorem 1. All natural numbers can be represented in Φ -code (6) by using a finite number of binary 

numerals. 

 

Theorem 2 (Z-property). If we represent an arbitrary natural number N in the Φ -code (6) and then 

substitute the “extended” Fibonacci number ( )0, 1, 2, 3,...iF i = ± ± ±  instead of the golden ratio powers 

iΦ  in the expression (6), then the sum that appear as a result of such a substitution is equal to 0 identically, 

independently on the initial natural number N, that is,  

 

( ): 0 0, 1, 2, 3,...i i
i i i i

i i

For any N a after substitution F a F i= Φ → Φ ≡ = ± ± ±∑ ∑ .                   (8) 

 

Theorem 3 (D-property). If we represent an arbitrary natural number N in the Φ -code (6) and then 

substitute the Lucas number ( )0, 1, 2, 3,...iL i = ± ± ±  instead of the golden ratio powers iΦ  in the formula 

(6), then the sum that appears as a result of such a substitution is equal to 2N identically, independently of 

the initial natural number N, that is,  

 

( ): 2 0, 1, 2, 3,...i i
i i i i

i i

For any N a after substitution F a L N i= Φ → Φ ≡ = ± ± ±∑ ∑ .            (9) 

 

Theorem 4 (F-code). If we represent an arbitrary natural number N in the Φ -code (6) and then substitute 

the “extended” Fibonacci number ( )1 0, 1, 2, 3,...iF i+ = ± ± ±  instead of the golden ratio powers iΦ  in the 

expression (6), then the sum that appear as a result of such a substitution is equal to N identically, 

independently on the initial natural number N, that is,  
 

( )1 0, 1, 2, 3,... .i i

i

N a F i+= = ± ± ±∑                                                                       (10) 

 

The expression (10) is named the F-code of natural number N [2]. 
 

Theorem 5 (L-code). If we represent an arbitrary natural number N in the Φ -code (6) and then substitute 

the “extended” Lucas number ( )1 0, 1, 2, 3,...iL i+ = ± ± ±  instead of the golden ratio powers iΦ  in the 

expression (6), then the sum that appear as a result of such a substitution is equal to N identically, 

independently on the initial natural number N, that is, 

( )1 0, 1, 2, 3,... .i i

i

N a L i+= = ± ± ±∑                                                                       (11) 

 

The expression (11) is named the L-code of natural number N [2]. 
 



 

 

 

Stakhov; BJMCS, 18(3): 1-34, 2016; Article no.BJMCS.28262 

 

 

 

10 
 

As the binary numerals { }0,1ia ∈  in the expressions (6), (10) and (11) coincide, this  means that there are 

three different methods of positional representation of one and the same natural number N: Φ -code  (6), F-

code (10) and L-code (11).  
 

Let us consider the representation of the sums (6), (10) and (11) in the abridged form (7) called the “golden” 

representation of natural number N. It is clear that the Φ -code (6), F-code (10) and L-code (11) lead us to 

one and the same “golden” representation of natural number N in the form (7) because all the binary 

numerals { }0,1
i

a ∈  in the expressions (6), (10) and (11) coincide. 

 

2.3.3 A numerical example  
 

Once again let us consider the abridged representation (7). We can see that the “golden” representation (7) is 

divided by the comma into two parts, namely the left-hand part, which consists of the digits with non-

negative indices, and the right-hand part, which consists of the digits with negative indices. For example, we 

can consider the “golden” representation of the decimal number 10 in Bergman’s system: 

 

1010 10100.0101Φ=                                                                        (12) 

 

For the Φ -code (6) the “golden” representation (12) has the following numerical interpretation: 

 

10

4 2 2 410 − −= Φ +Φ +Φ +Φ                                                                       (13) 

 

By using the well-known formula 
5

2
i i iL F+Φ = , we can represent the sum (13) as follows: 

 

10

4 4 2 2 2 2 4 4 .
5 5 5 5

10
2 2 2 2

L F L F L F L F
- - - -

+ + + +
= + + +                            (14) 

 

If we take into consideration the relations (5), which connect the “extended” Fibonacci and Lucas numbers 

we can reduce the expression (14) to the following: 
 

 

 

Now, let us consider the interpretation of the “golden” representation (7) as the F- and L-codes: 

 

1010=F5+F3+F-1+F-3=5+2+1+2 (F-code); 

1010=L5+L3+L-1+L-3=11+4-1-4 (L-code) . 
 

Also we can check the sum (14) according to the Z- and D-properties.  If we substitute in (14) the 

“extended” Fibonacci and Lucas numbers Fi and Li instead the powers 
iΦ , we obtain the following sums: 

 

F4+F2+F-2+F-4=3+1+(-1)+(-4)=0 (Z-property); 

L4+L2+L-2+L-4=7+3+3+7=20=2×10 (D-property). 
 

 

2.3.4 Shifting Ф-, F- and L-codes   
 

Once again, we note that the Ф-, F- and L-codes (6), (10), (11) have one and the same “golden” 

representation (7) of the given natural number N. However, a difference between them appears when we start 

to shift the “golden” representation (7) to the right or to the left. 

 

10
4 2

4 2 .
2( )

10 7 3
2

L L
L L

+= = + = +
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Let us denote by N(k) and N(-k) the results of shifting the “golden” representation (7) on the k digits to the left 

and to the right, respectively.  

 

If we interpret the “golden” representation (7) as the Ф-code of natural number N given by (6), then its 

shifting to the left (that is, to the side of the highest digits) by one digit corresponds to the multiplication of 

the number N by the base Ф (the golden ratio), and its shifting to the right (that is, to the side of the lowest 

digits) by one digit corresponds to the division of the number N by the base Ф (the golden ratio), that is,  

 

( )
1

1
i

i
i

N N a += ×Φ = Φ∑                                                           (15) 

 

( )
1 1

1
i

i
i

N N a− −
− = ×Φ = Φ∑ .                                                                      (16) 

 

It is clear that shifting the “golden” representation (7) on the k digits to the left corresponds to the 

multiplication of the number N by 
kΦ  and its shifting on the k digits to the right corresponds to the division 

by 
kΦ , that is, 

 

( )
k i k

ik
i

N N a += ×Φ = Φ∑                                                         (17) 

 

( )
k i k

ik
i

N N a− −
− = ×Φ = Φ∑ .                                                       (18) 

 

Consider shifting the “golden” representation (7) to the left and to the right when we interpret it as the F- or 

L-codes.  Results of these code transformations are given by the following theorems proved in [3].  

 
Theorem 6. Shifting the “golden” representation (7), which is interpreted as the F-code (10), on the k digits 

to the left (that is, to the side of the highest digits) corresponds to the multiplication of the number N by the 

“extended” Fibonacci number Fk+1; however, its shifting on the k digits to the right (that is, to the side of the 

lowest digits) corresponds to the multiplication of the number N by the “extended” Fibonacci number F-k+1, 

that is, 

 

1( ) 1 kik i k
i

F NN a F ++ + = ×=∑                                                          (19) 

 

( ) 1 1 .ik i k k
i

N a F F N− − + − += = ×∑                                                         (20) 

 

Theorem 7. Shifting the “golden” representation (7), which is interpreted as the L-code (11), on the k digits 

to the left (that is, to the side of the highest digits) corresponds to the multiplication of the number N by the 

“extended” Lucas number Lk+1; however, its shifting on the k digits to the right (that is, to the side of the 

lowest digits) corresponds to the multiplication of the number N by the “extended” Lucas number L-k+1, that 

is, 

 

1( ) 1 kik i k
i

L NN a L ++ + = ×=∑                                                          (21) 
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( ) 1 1 .ik i k k
i

N a L L N− − + − += = ×∑                                                         (22) 

 

Note that the proof of Theorems 6, 7 was made in [3] by using the following well-known identities:  

 

Fi+1+k=FkFi+Fk+1Fi+1                                                         (23) 

 

Li+k+1=LkFi+ Lk+1Fi+1                                                           (24) 

 

In conclusion, we note that Theorems 1-7 are true only for natural numbers. This means that Theorems 1-7 

express new fundamental properties of natural numbers. It is surprising for many mathematicians to know 

that the new mathematical properties of natural numbers were only discovered at the beginning of the 21
th 

 

century, that is, 2½ millennia after the beginning of their theoretical study. The golden ratio and the 

“extended” Fibonacci and Lucas numbers play a fundamental role in this discovery. This discovery connects 

together two outstanding mathematical concepts of Greek mathematics - natural numbers and golden ratio. 

This discovery is the confirmation of fundamental role of Bergman system (1) in development of the 

“golden” number theory, described in [2].  

 

2.4 Pythagorean MATHEM’s and historical role of Bergman’s system for future 

development of mathematics and computer science  
 
The famous American mathematician and thinker Prof. Donald Knuth, who is the best world expert in 

computer science, became possibly the first famous scientist in computer science, who evaluated Bergman’s 

system. He referred to Bergman’s 1957 article [7] in Volume 1 of his world bestseller Art of Computer 

Programming [8] and this fact by itself is high evaluation of the important role of Bergman's system for the 

development of computer science. 

 

But Bergman’s system is also of great importance for the future development of mathematics. To 

substantiate this claim, we turn to the history of Greek mathematics, starting from Pythagoras, Plato and 

Euclid. 

 

2.4.1 Pythagoreanism and Pythagorean MATHEM’s  

 
We begin from Pythagorean MATHEM’s. By studying the sources of mathematics, we inevitably come to 

Pythagoras and his doctrine, called Pythagoreanism [14]. As highlighted in [14], “Pythagoreanism was 

originated in the 6th century BCE, based on the teachings and beliefs held by Pythagoras and his followers, 

the Pythagoreans, who were considerably influenced by mathematics and mysticism. Later revivals of 

Pythagorean doctrines led to what is now called Neopythagoreanism or Neoplatonism. Pythagorean ideas 

exercised a marked influence on Aristotle, and Plato, and through them, all of Western philosophy”. 

 

According to tradition, Pythagoreans were divided into two separate schools of thought, the mathēmatikoi 

(mathematicians) and the akousmatikoi (listeners). Listeners developed religious and ritual aspects of 

Pythagoreanism, mathematicians studied four Pythagorean MATHEM’s: arithmetic, geometry, harmonics 

and spherics. These MATHEM’s, according to Pythagoras, were the main component parts of 

Mathematics. 

 

2.4.2 Platonic Solids, golden ratio and Plato’s cosmology  
 

Pythagorean philosophy had a huge impact on Plato’s studies. Of particular interest was the application of 

the Platonic Solids and golden ratio, borrowed by Plato from the Pythagorean geometry and number theory, 

in Plato’s cosmology. 
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The famous Russian thinker Alexey Losev (1893-1988), philosopher of the aesthetics of antiquity and the 

Renaissance, evaluates the main achievements of the ancient Greeks in this area as follows [15]: 
 

“From Plato’s point of view, and in general in terms of the entire ancient cosmology, the Universe is 

determined as a certain proportional whole that obeys the law of harmonic division - the golden section 

.... The ancient Greek system of cosmic proportions in the literature is often interpreted as a curious 

result of unrestrained and wild imagination. In such explanations we can see the unscientific 

helplessness of those who claim it. However, we can understand this historical and aesthetic 

phenomenon only in connection with a holistic understanding of history, that is, by using a dialectical 

view of culture and looking for the answer in the peculiarities of ancient social life." 
 

Here Losev formulates the "golden" paradigm of ancient cosmology, based on the golden ratio. It is based 

upon the most important ideas of ancient science that are sometimes treated in modern science as a "curious 

result of an unrestrained and wild imagination." First of all, we are talking about the Pythagorean Doctrine 

of the Numerical Harmony of the Universe and Plato’s cosmology based on the Platonic solids. By referring 

to the geometrical structure of the Cosmos and its arithmetical relations, expressing Cosmic Harmony, the 

Pythagoreans anticipated the modern mathematical basis of the natural sciences, which began to develop 

rapidly in the 20th century. Pythagoras’s and Plato's ideas about Cosmic Harmony has proven to be 

immortal. 
 

Johannes Kepler (1571-1630), the famous astronomer and author of Kepler's laws, expressed his 

admiration for the golden ratio in the following words (cited from [16]):  
 

"Geometry has two great treasures: one is the theorem of Pythagoras; the other the division of a line 

into extreme and mean ratio. The first we may compare to a measure of gold; the second we may name 

a precious jewel."  
 

You will recall that the ancient problem of the division in extreme and mean ratio (DEMR) was Euclid’s 

language for the golden ratio!  
 

                                             
 

Fig. 8. Johannes Kepler    
(From Wikipedia, the free encyclopedia  

https://en.wikipedia.org/wiki/Johannes_Kepler)   

           

Fig.  9. Alexey Losev 
(From Wikipedia, the free encyclopedia 

https://en.wikipedia.org/wiki/Aleksei_Losev) 

      

2.4.3 Euclid’s Elements and Proclus hypothesis  
 

As it is well-known, Euclid's Elements had an enormous influence on the development of not only geometry, 

but on the entire science in general. As it is emphasized in Wikipedia [17], “the Elements are still considered 

a masterpiece in the application of logic to mathematics. In historical context, it has proven enormously 

influential in many areas of science. Scientists Nicolaus Copernicus, Johannes Kepler, Galileo Galilei, and 

Sir Isaac Newton were all influenced by the Elements, and applied their knowledge of it to their work. 

Mathematicians and philosophers, such as Bertrand Russell, Alfred North Whitehead, and Baruch Spinoza, 

have attempted to create their own foundational "Elements" for their respective disciplines, by adopting the 

axiomatized deductive structures that Euclid's work introduced.” 
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Discussing Euclid’s Elements, we always ask the question: for what purpose Euclid wrote his Elements? At 

first glance, it seems that the answer to this question is very simple: The main purpose of Euclid was to set 

forth the main achievements of the Greek mathematics for 300 years prior to Euclid, by using the "axiomatic 

method." Indeed, Euclid’s Elements is the main work of ancient Greek science, devoted to the axiomatic 

description of geometry and mathematics, based on "axiomatic method." This view on the Elements is most 

common in mathematics.  

 

But, besides the "axiomatic" point of view, there is another point of view on the motives of Euclid at writing 

the Elements. For the first time, this point of view has been substantiated by Proclus Diadochus (412-485) 

[18], the Neoplatonic philosopher and mathematician, one of the first commentators of Euclid’s Elements. 

 

Detailed analysis of Proclus hypothesis is given in author’s article [19]. The following unexpected 

conclusion follows from Proclus hypothesis. Proclus says that the main goal of Euclid to write his Elements 

was creating complete theory of the five Platonic solids, which expressed the Universe Harmony in Plato’s 

cosmology. Euclid posted this theory in the XIII-th, that is, final Book of the Elements. For the construction 

of the geometric theory of the dodecahedron, whose faces are regular pentagons, Euclid described the 

golden ratio in the Book II (Proposition II.11). As it follows from Proclus hypothesis, in parallel with 

Classical Mathematics, another mathematical discipline, the Mathematics of Harmony, begun to develop in 

mathematics since Euclid’s Elements, which are the source for both directions.   

 

However, the Classical Mathematics borrowed the axiomatic approach and other ancient mathematical 

achievements (number theory, theory of irrationalities and so on), while the Mathematics of Harmony 

borrowed the golden ratio (Proposition II.11) and Platonic Solids, described in Book XIII of Euclid’s 

Elements.  
 

By returning again to the Pythagorean mathematics, it should be noted that all parts of mathematics 

(arithmetics, geometry, harmonics and spherics) presented in Euclid's Elements. 
 

It should be noted two important conclusions arising from Proclus hypothesis: 
 

1.  Unfortunately, in the process of historical development, one important part of mathematics – 

harmonics, which in the interpretation of Pythagoras, Plato and Euclid was connected with 

Platonic solids and golden ratio, disappeared from mathematics. Possibly, author’s book 

"Mathematics of Harmony" [3] is the first attempt in modern mathematics to regenerate this 

important Pythagorean MATEM in mathematics. 

2.  The idea of the Universe Harmony on the basis of the Platonic solids and golden ratio, begins to 

revive actively in modern theoretical natural sciences. This is confirmed by the latest outstanding 

discoveries in chemistry, crystallography, botany and other sciences, in particular, by fullerenes 

(Nobel Prize - 1996) [20] and quasi-crystals (Nobel Prize - 2011) [21], whose symmetry is related 

to Platonic solids, and also by new geometrical theory of phyllotaxis ("Bodnar’s geometry") [22, 

23], based on the golden ratio and the "golden" recursive hyperbolic functions [24]. These 

examples show that the great predictions by Pythagoras, Plato and Euclid are true for modern 

theoretical natural sciences. However, many modern mathematicians continue to consider 

“harmonic ideas" by Pythagoras, Plato and Euclid as “curious result of unrestrained and wild 

imagination” (Alexey Losev).  
 

Modern historians of mathematics refer to Proclus hypothesis sufficiently cautiously and sometimes simply 

ignore it [9]. This is not consistent with the opinion of other historians of mathematics [25-28]. For example, 

in comments to Euclid’s Elements [28], Prof. D.D. Mordukhai-Boltovskii (1876-192), the authoritative 

Russian historian of mathematics and translator of Euclid's Elements into Russian [28]) writes the following: 

 

“After the careful analysis of Euclid’s Elements, I have been convinced firmly that the construction of 

regular polyhedra, and even more - the proof of the existence of five and only five regular polyhedra - 

represented the ultimate goal of the work, which led to the origin of the  Elements." 
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If we accept this hypothesis, then our views on Euclid's Elements and the entire history of 

mathematics, starting since Euclid, completely can be changed what can affect on the structure of 

mathematics, including mathematical education. 

 
In addition, it follows from Proclus hypothesis that Euclid’s Elements are the first in mathematics history 

Mathematical theory of the Universe Harmony, based on Platonic solids. The modern Mathematics of 

Harmony [3] should be recognized as an important part of mathematics, which revives the Pythagorean 

MATEM of harmonics, lost in the process of historical development of mathematics. 
 

Part II. Stakhov’s Ternary Mirror-symmetrical Numeral System with 

the Base 2 3 5

2

+
Φ =  and Its Role for Future Development of Mathematics 

and Computer Science 
 
Despite the fact that the ternary mirror-symmetrical numeral system has been described by the author in the 

article [7], the author considers it appropriate to give brief description of this unusual positional numeral 

system. In the present article, the author emphasizes fundamental relationship of the ternary mirror-

symmetrical numeral system with Bergman's system and considers it as an important part of the "golden" 

number theory [2]. Also the author draws attention to new technical solutions in this field, which may be of 

interest for many computer experts. 

 

1 Ternary Numeral Systems and Ternary Principle of Nikolay 

Brousentsov 

 
1.1 Preliminary information  
 
As is well known, computer process design begins with the choice of numeral system that determines many 

technical characteristics of computers. At the beginning of the computer era, the problem of choosing the 

“optimal” number system for electronic computers was brilliantly solved by the American physicist and 

mathematician John von Neumann, who forcefully argued his preference for the binary system in electronic 

computers. The famous John von Neumann Principles include three basic ideas for electronic computer 

design: the Binary System, Binary (Boolean) Logic, and the Binary Memory Element (“Flip-Flop). 

 

Even though the binary system is the most popular in contemporary computers, the studies and 

developments of new numeral systems is continuing. The desire to overcome a number of significant 

shortcomings of the classical binary system is the primary motivation for these ongoing studies. Two 

shortcomings of the binary system are certainly well known. The first of them involves the fact that it is 

impossible to represent negative numbers (the sign problem) and perform arithmetical operations on them in 

“direct” binary code what complicates arithmetical computer structures.  

 

The problem of “zero” redundancy is the second shortcoming of the binary system. The fact, that all binary 

combinations are allowed, is the reason why errors can not be detected at information transmission, 

processing, and storage. 

 

The initial attempt to overcome the sign problem was made in the Soviet Union during the very dawn of the 

computer era. The original computer project – the ternary computer “Setun” [11] – was designed in 1958 at 

Moscow University, and became a brilliant example for the “optimal” solution of the sign problem. A new 

principle of construction for computers was implemented in the ternary computer “Setun.” This principle 

was based on the concepts of ternary logic, ternary symmetrical numeral system, and ternary memory 

element (“flip-flap-flop”). This principle is called Brousentsov’s ternary principle [7] in honor of the Soviet 

scientist Nikolay Brousentsov (1925-2014), the principal designer of the “Setun” computer. 
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1.2 Ternary-symmetrical numeral system and ternary logic 
 
1.2.1 Ternary-symmetrical numeral system  

 
The ternary symmetrical numeral system is the key idea of  Brousentsov’s ternary principle: 

 

∑
=

−=
n

i

i
ibN

1

13 ,                                                         (25) 

 

where bi (i = 1, 2, …, n) is the ternary numeral { }1,0,1
 
of the i-th digit; 3

i-1
 is the "weight" of the i-th digit; 

the number 3 is the base of the numeral system.  

 

The basic advantage of the numeral system (25) in the comparison to the classical binary system with the 

numerals 0 and 1 is a graceful solution of the “sign problem”. A sign of the number is determined by the 

highest significant numeral of the ternary symmetric representation (25). For example, the number N1 = 01 

1 1 01 is negative but the number N2 = 11 01 0 0 1 is positive. Both positive and negative numbers are 

represented in the "direct" code and all arithmetical operations are fulfilled in the "direct" code. It is easy to 

get the representation of the negative number (-N) from the ternary representation of the positive number N 

using the rule of ternary inversion: 

 

1 →1,   0 → 0, 1→ 1.                                                                 (26) 

 

1.2.2 The basic functions of the ternary logic  

 
The ternary logic is a special case of the so-called k-valued logic (k=2, 3, 4, 5, …) for the case k=3. For the 

coordination with the ternary symmetrical numeral system we will assume that the ternary logical variables 

take their values from the set {1 , 0, 1}. 

 

Then the basic logical functions of one ternary variable ν are determined in the following manner:  

 

Inversion function Cyclic negation 

f(v) v

 with   v

  with  v

  with  v

= =

=

=

=









1 1

0 0

1 1

 f(v) v

  with  v

 with  v

 with   v

= =

=

=

=









≈
1 0

0 1

1 1

 

   

Consider the following important functions of two ternary variables: 
 

(1) Ternary conjunction f(v , v ) (v ,v ) v v  1 2 1 2 1 2= = ∧min  

 

∧ 1  0 1 

1  1  1  1  

0 1  0 0 

1 1  0 1 
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(2) Ternary disjunction f(v , v ) (v ,v ) v v  1 2 1 2 1 2= = ∨max  

 

∨ 1 0 1 

1 1 0 1 

0 0 0 1 

1 1 1 1 

 

 (3) Addition by modulo 3  f(v , v ) v v  (  )1 2 1 2 3= ⊕ mod  

 

⊕ 1  0 1 

1  1 1  0 

0 1  0 1 

1 0 1 1  

 

(4) Multiplication by modulo 3 f(v , v ) v v  (  )1 2 1 2 3= ⊗ mod  

 

⊗ 1  0 1 

1  1 0 1  

0 0 0 0 

1 1  0 1 

   

1.2.3 The binary realization of the ternary logical elements  

 
For the micro-electronic realization by using VLSI we can use the following binary coding of the ternary 

variables as is shown in Table 2. 

 

Table 2. Binary coding ( x1
, x 2

) of the ternary numerals v 

 

v x1
 x2

 

1  1 0 

0 0 0 

1 0 1 

 

Using Table 2 each ternary element can be represented by means of VLSI with the binary inputs and outputs. 

Then the problem of designing ternary elements is reduced to designing binary VLSI.      

 

Note that some ternary functions are realized very simply in this manner. For example the logical element of 

the “ternary inversion” f(ν) =ν  (ν =x1x2 andν = x2x1 ) is realized as shown in Fig. 10. 

         

                                                                 x1                                                  x2  

   

                                                                 x2                                      x1 

 

Fig. 10. The binary realization of the ternary inversion  
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Flip-flap-flop 

 

The same “binary approach” can be used for designing the ternary memory element called flip-flap-flop. As 

is well known, the classical binary flip-flop is based on the logical elements 1 and 2 of the kind OR-NOT 

(Fig. 11-a), which are connected by the back logical connections.  

 

a)
1

1
1

2

A B

S R

b)
1

1
1

2

A B

S R

1
3

C

I
 

 

Fig. 11. “Flip-flop” (a) and “flip-flap-flop” (b) 

 

Consider now the logical circuit, which consists of the three logical elements 1, 2, 3 of the kind OR-NOT 

(Fig. 11-b). Suppose that the logical elements 2 and 3 are adjacent to the logical element 1, the logical 

elements 3 and 1 are adjacent to the logical element 2, and the logical elements 1 and 2 are adjacent to the 

logical element 3. Each logical element OR-NOT is connected with its adjacent logical elements by the back 

logical connections. This is a cause of the three stable states of the logical circuit in Fig. 11-b. In fact, 

suppose that we have the logical 1 on the input C of the logical element 2. This logical 1 enters the inputs of 

the adjacent logical elements 2 and 3 and supports the logical 0 on their outputs A and B. These logical 0’s 

enter the inputs of the logical element 2 and support the logical 1 on its output C. Hence, this state of the 

circuit in Fig. 11-b is the first stable state. This stable state corresponds to the code combination 0 1 0 on the 

outputs A, C, B. One may show that the circuit has one more two stable states corresponding to the code 

combinations 1 0 0 and 0 0 1 on the outputs A, C, B. In fact, it is easy to show that the logical 1 on the output 

A is a cause of the second stable state 100 of the logical circuit in Fig. 11-b. At least, the logical 1 on the 

output B is a cause of the third stable state of the logical circuit in Fig. 11-b. We can use the above-

mentioned stable states of the circuit in Fig. 11-b for the binary coding of the ternary numerals according to 

the following table:  

0 = 0 1 0 

1 = 0 0 1 

1= 1 0 0 

 

If we eliminate the middle output C we will get the binary outputs A and B, which correspond to the binary 

coding of the ternary variables according to Table 2. 

 

Hence, the logical circuit in Fig. 11-b can be considered as the ternary-binary memory element called flip-

flap-flop. Consider now the functioning the “flip-flap-flop” in Fig. 11-b. It has three stable states 1 , 0 and 1. 

Let the “flip-flap-flop” in Fig. 11-b be in the state Q = 0. This means that the output C = 1, and other outputs 

A = B = 0. If we need to set the “flip-flap-flop” into the state Q = 1 (0 0 1) we have to send to the “flip-flap-

flop” inputs S, I, R the following adjusting signals S = 1, I = 1, R = 0. The signals S = 1 and I = 1 cause the 

appearance of the logical 0’s on the outputs A and C. These logical 0’s enter the inputs of the logical element 

3 and together with the logical signal R = 0 cause an appearance of the logical 1 on the output B. 

 

By analogy one may show that the adjusting signals S = 0, I = 1, R = 1 turn the “flip-flap-flop” in Fig. 11-b 

into the state1 (100). 
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2 Ternary Mirror-symmetrical Numeral System 

 
2.1 Conversion of the binary “golden” representation to the ternary “golden” 

representation 

 
We start from the binary Ф-code (6). We will use the MINIMAL FORM of the Ф-code (6). This means that 

each binary unit ak = 1 in the binary “golden” representation (7) would be "enclosed" by the two next binary 

zeros ak-1 = ak+1 = 0.  

 

Consider now the following identity for the powers of the golden ratio: 

 
1 1k k k+ −Φ = Φ −Φ .                                                                       (27) 

 

The identity (24) has the following code interpretation: 

 

1 1 1 1

0 1 0 1 0 1

k k k k k k+ − − −

=                                           (28) 

where 1  is the negative unit, that is, 1 1= − . It follows from (25) that the positive binary 1 of the k
th

 digit is 

transformed into two 1’s, the positive unit 1 of the (k+1)
th

 digit and the negative unit 1  of the (k-1)
th

 digit. 

 

The code transformation (28) can be used for the conversion of the MINIMAL FORM of the binary 

“golden” representation (7) of the number N into the ternary “golden” representation of the same integer N.  

 

As a result of such conversion we get the following sum: 

 

2iN c
ii

= Φ∑ ,                                                          (29) 

 

where ci  is the ternary numeral of the i
th

  digit; 2iΦ  is the weight of the i
th

 digit; 2Φ  is the base of the 

numeral system (29).  

 

The sum (26) is called ternary Ф-code of natural number N.  The abridged notation  of the ternary Ф-code 

of natural number N has the following form: 

 

( )2 1 0 1 21 1
... ...

k k kk
N c c c c c c c c c− −− −− −

= ,                                              (30) 

 

where { }( )1,0,1 0, 1, 2, 3,...ic i∈ = ± ± ±  is ternary numeral (treat) of i-th digit.  

  

The notation (30) is called the ternary “golden” representation of natural number N. 

 

Note that the ternary “golden” representation (30) consists of two parts separated by 0-th digit 
0c : The left 

part 
2 11

...
k k

c c c c−  and the right part 
1 2 1

...
kk

c c c c
 
 
 

− − −− −
. 
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2.2 The ternary F- and L-codes 

 
2.2.1 Definition  

 
Above we have introduced the so-called binary F- and L-codes (10) and (11). Recall that these unusual 

codes are equivalent of the Ф-code (6) of the same natural number N. Using the ternary Ф-code of natural 

number N (29), by analogy we can introduce the ternary F- and L-codes of the same natural number N in the 

following forms: 

 

∑ +=
i i

FicN
12

                                                         (31) 

∑ +=
i i

LicN
12

.                                                         (32) 

 

Note that the values of the ternary digits in the codes (29), (31), (32) coincide.  

 

2.2.2 Property of “mirror symmetry”  

 
Table 3 demonstrates examples of the “golden” ternary representations of integers from 0 to 10.   

 

By studying Table 3, we find unexpected fundamental property for all the “golden” ternary representations, 

represented in Table 3: The left part of the golden” ternary representation of the given integer N relatively 

to 0th digit is mirror-symmetrical to its right part. This property is called the property of mirror symmetry.   

 

Table 3. “Golden” ternary representations 
 

i 3 2 1 0 -1 -2 -3 

Φ 2i
 Φ 6

 Φ 4
 Φ 2

 Φ 0
 Φ  

-2
 Φ  

-4
 Φ  

-6
 

F2i+1 13 5 2 1 1 2 5 

L2i+1 29 11 4 1 -1 -4 -11 

N        
0 0 0 0 0, 0 0 0 

1 0 0 0 1, 0 0 0 

2 0 0 1 1 , 1 0 0 

3 0 0 1 0, 1 0 0 

4 0 0 1 1, 1 0 0 

5 0 1 1  1, 1  1 0 

6 0 1 0 1 , 0 1 0 

7 0 1 0 0, 0 1 0 

8 0 1 0 1, 0 1 0 

9 0 1 1 1 , 1 1 0 

10 0 1 1 0, 1 1 0 

 

For the case (30), the property of mirror symmetry looks as follows: 

 

( ) 2 2 1 11 1
; ;...; ;

k k k k
c c c c c c c c− −− − − −

= = = = .                                         (33) 

 

The violation of at least one equality in (33) is an indication of errors in the ternary “golden” representation 

of natural number N. 
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Thus, thanks to this simple consideration, we have discovered one more fundamental property of integers 

called “mirror-symmetrical property of natural numbers. Basing on this fundamental property, the "ternary 

numeral system" given by (29) is called a ternary mirror-symmetric numeral system [7]. 

 

2.2.3 The base of the ternary mirror-symmetric numeral system  

 
It follows from (29) that the base of this numeral system (26) is the square of the golden ratio, that is,  

 

2 2.618
3 5

2
≈+Φ = .                                                                                    (34) 

 

This means that the numeral system (29) is a numeral system with irrational base. 

 

The base of the numeral system (29) has the following traditional representation: 

 

Ф
2
 = 10. 

 

2.2.4 Representation of negative numbers  

 
The ternary mirror-symmetrical numeral system (29) is similar to the classical ternary-symmetrical numeral 

system (25) and save the most important advantage of the numeral system (25), which consists in possibility 

representing both positive and negative numbers in the “direct” code and to perform all arithmetical 

operations in the “direct” code. The “golden” ternary representation of the negative number (-N) can be 

obtained from the “golden” ternary representation (30) of the initial positive integer N by using of the rule of 

the ternary inversion (26).  
 

2.3 Ternary mirror-symmetrical arithmetic  

 
2.3.1 Comparison of the ternary mirror-symmetric numbers  

 
Consider the set of the weights of the (2n -1)-th ternary mirror-symmetrical representation (30): 

 

{Ф2n
, Ф

 2(n-1)
, …, Ф

2
, Ф

0
, Ф 

-2
,… , Ф

 -2(n-1)
,Ф 

-2n}. 

 

It is easy to prove that the weight of the n-th digit of the “golden” ternary representation (30) is always 

strictly more that the sum of the rest weights of the representation (30). It follows from this fact that the 

higher significant digit of the representation (30) contains in itself the information about the sign of the 

ternary mirror-symmetric number. If the numeral of the higher significant digit of the ternary mirror-

symmetrical representation is equal to 1, this means that the ternary mirror-symmetric number is positive. If 

the numeral of the higher significant digit of the ternary mirror-symmetric representation is equal to 1 , this 

means that the ternary mirror-symmetric number is negative.  

 

It follows from this consideration very simple method of comparison of the two ternary mirror-symmetric 

numbers A and B by value. The comparison begins from the higher digits of the comparable numbers and 

lasts before obtaining the first pair of the not coincident ternary digits ak and bk. If the numeral ak > bk (1>0, 

1>1 , 0>1 ), then A>B. In the opposite case: A<B. 
 

Hence, we have found two important advantages of the ternary mirror-symmetric representation (30): 
 

1. Similarly to the classical ternary-symmetric representation (25) the sign of the ternary mirror-

symmetrical number is determined by the higher significant digit of the representation (30). 
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2. Comparison of the numbers is performed similarly to the classical ternary symmetric representation 

(25), that is, starting from the higher digits before obtaining the first pair of the not coincident 

ternary digits.   
 

2.3.2 The range of number representation of the ternary mirror-symmetrical numeral system  
 

Consider now the range of number representation in the numeral system (29). Suppose that the ternary 

“golden” representation (30) has 2m+1 ternary digits. In this case, by using (30) we can represent all integers 

in the range from 
 

max 11...11.11...1
m m

N = 123 123                                                           (35) 

 

 to 

min
11... 1 .11...11

m m

N =
14243 123

.                                                         (36) 

 

It is clear that Nmin is the ternary inversion of Nmax, that is, 
 

 Nmin = Nmax . 
 

It follows from this consideration that using the (2m+1) ternary digits we can represent in the numeral 

system (29).   
 

2 Nmax + 1                                                                        (37)  
 

integers from Nmax to Nmin including the number 0. 
 

For the calculation of Nmax we can interpret (35) as the ternary L-code (32). Then we can interpret the 

abridged notation (35) as the following sum: 
 

 Nmax = L2m+1 + L2m -1 + ... + L3 + L1 +  L-1 + L-3 + ... + L-2m + 1 .                           (38) 
 

For the odd indices i=2k - 1 we have the following property for Lucas numbers [3]: 

 

L-2m + 1 = - L2m -1 .                                                                                     (39) 
 

Taking into consideration the property (39) we can get the following value of the sum (38):  
 

Nmax = L2m+1.                                                                        (40) 
 

Taking into consideration (37) and (40), we can formulate the following theorem. 
 

Theorem 8. By using (2m+1) ternary digits in the ternary mirror-symmetric numeral system  (29), we can 

represent 2L2m+1 + 1 integers in the range from  - L2m+1  to L2m+1,  where L2m+1 is Lucas number. 

 

2.3.3 Ternary mirror-symmetrical summation  

 
The following identities for the golden ratio powers underlie the mirror-symmetric summation:  

 

( ) ( )2 1 2 12 22
k kk k+ −Φ = Φ − Φ + Φ                                                         (41) 

 

( ) ( )2 1 2 123 0
k kk + −Φ = Φ + + Φ                                                          (42) 
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( ) ( )2 1 2 12 24 ,
k kk k+ −Φ = Φ + Φ + Φ                                                         (43) 

 

where k=0,±1,±2,±3,… .  
 

The identity (41) is a mathematical basis for the ternary mirror-symmetrical summation of two single-digit 

ternary digits and gives a rule of the carry-over formation (Table 4).  
 

Table 4. Ternary mirror-symmetrical summation ak+bk 

 

/ 1 0 1

1 111 1 0

0 1 0 1

1 0 1 111

k kb a

 

 

The main peculiarity of Table 4 consists in the rule of summation of two ternary units with equal signs, i.e. 
 

1 1 1 1 1

1 1 1 1 1

k k k k ka b c s c+ =
+ =
+ =

 

 

We can see that for the ternary mirror-symmetrical summation of ternary numerals of the same sign, the 

intermediate sum sk with opposite sign and the carry-over ck with the same sign appear. However, the carry-

over from the k-th digit is spreading simultaneously to the adjacent two digits, namely to the adjacent left-

hand, that is, (k+1)-th digit, and to the adjacent right-hand, that is, (k-1)-th digit. 
 

Table 4 describes an operation of the simplest ternary mirror-symmetrical adder called the single-digit 

ternary mirror-symmetrical half-adder. This half- adder is a combinative logic circuit that has two ternary 

inputs ak and bk and two ternary outputs sk and ck. It operates in accordance with Table 4 (Fig. 12-a). 
 

 
 

Fig. 12. Mirror-symmetrical single-digit adders: (a) half- adder; (b) full adder 
 

As the carry-over from the k-th digit is spreading to the left-hand and to the right-hand digits, this means that 

the full mirror-symmetric single-digit adder has to have two additional inputs for the carry-overs that come 

from the (k-1)-th
 
and (k+1)-th digits to the k-th digit. Thus, the full mirror-symmetric single-digit adder is a 

combinative logic circuit that has 4 ternary inputs and 2 ternary outputs (Fig. 12-b). Let us denote by 2Σ the 

mirror-symmetric single-digit half- adder that has 2 inputs and by 4Σ the mirror-symmetric single-digit full 

adder that has 4 inputs.  

4Σ 

bk ak 

b) 
ck-1 ck+1 

ck sk 

k+1    k-1 

2Σ 

bk ak 

a) 

ck sk 

k+1  k-1 
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Now, let us describe the logical operation of the mirror-symmetric full single-digit adder of the kind 4Σ. 

First of all, we note that the number of all possible 4-digit ternary input combinations of the mirror-

symmetrical full adder in Fig. 12-b is equal to 3
4
=81. The values of the output variables sk and ck are some 

discrete functions of the algebraic sum S of the input ternary variables ak, bk , ck-1, ck+1, that is,  
 

S=ak+bk+ck-1+ck+1.                                                                                                            (44) 
 

The sum (44) takes the values from the set {-4,-3,-2,-1,0,1,2,3,4} The operation rule of the mirror-

symmetrical full adder of the kind 4Σ (Fig. 12-b) consists in the following. The adder forms the output 

ternary code combinations k kc s  in accordance with the value of the sum (41) as follows:  

 

.4 11; 3 10; 2 11; 1 01; 0 00;1 01;2 11;3 10;4 11− = − = − = − = = = = = =  

 

The lower digits of such 2-digit ternary representations are values of the intermediate sums sk and the higher 

digit are the values of the carry-over’s ck that are spreading to the neighboring (the left-hand and the right-

hand) digits. 
 

Note that the functioning rule of the ternary mirror-symmetrical adder in Fig. 12 fully coincides with the 

functioning rule of the classical ternary-symmetrical adder.  
 

2.3.4 Ternary mirror-symmetrical multi-digit adder  
 

The multi-digit combinative mirror-symmetric adder (Fig. 13) that performs the summation of two (2m+1)-

digit mirror-symmetrical numbers is a combinative logic circuit that consists of (2m+1) ternary mirror-

symmetric summators of the kind 4Σ  (Fig. 12-b). 
 

 
 

Fig. 13. Ternary mirror-symmetrical multi-digit adder 
 

We can see from Fig. 13 that the main peculiarity of the ternary mirror-symmetric multi-digit adder consists 

in the fact that the carry-over from each digit is spreading symmetrically to the adjacent digits to the left and 

to the right. Two mirror-symmetrical numbers A and B enter the multi-digit input of the adder. The single-

digit adder 
04Σ  separates the adder into two parts: the single-digit adders 1 2 34 , 4 ,4Σ Σ Σ

 
for the highest 

digits and the single-digit adders 1 2 34 , 4 ,4− − −Σ Σ Σ
 
for the lowest digits. 

 

Numerical example 
 

Sum up two ternary mirror-symmetric numbers 5+10:  
 

1

1

.1 1

5 0 1 1 1, 1 1 0

10 0 1 1 0, 1 1 0

0 0 1, 0 0

1 1 1 1

15 1 1 1 1, 1 1 1

S

C

=

=

=

↔ ↔

=

 

Note that the symbol ↔  marks the process of carry-over spreading. 

 

4Σm 4Σ2 4Σ1 4Σ0 4Σ-1 4Σ-2 4Σ-m 
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We can see that the addition process for this example consists of two steps. The first step is forming the first 

multi-digit intermediate sum S1 and the first multi-digit carry-over C1 according to Table 4. The second step 

is the summation of the numbers S1+C1 according to Table 4. As for this case the second multi-digit 

intermediate carry-over C1=0, this means that the summation is over and the sum S1+C1=15 is the summation 

result. It is important to emphasize that the summation result  

 

1015 1111.111=                                                                        (45) 

 

is represented in mirror-symmetrical form.  

 

As noted above, the possibility of summing up all integers (positive and negative) in the “direct” code is an 

important advantage of the ternary mirror-symmetrical numeral system (29), that is, we do not use the 

notions of inverse and additional codes.  

 

Numerical example 
 

Sum up the negative mirror-symmetrical number (-24) and the positive mirror-symmetric number 15: 

 

1

1

1

24 1 1 0 1, 0 1 1

15 1 1 1 1, 1 1 1

0 1 1 1, 1 1 0

1 1

1 1 1 1

9 1 1 1 1, 1 1 1

S

C

C

′

″

=

=

− =

=

↓ ↔ ↓

↔ ↔

− =

 

 

We can see that the summation process consists of two steps. The first step is forming the first multi-digit 

intermediate sum S1 and the first multi-digit carry-over 
1 1 1C C C′ ″= +  according to Table 4. The second 

step is to sum up the numbers 
1 1 1 .S C C′ ″+ +  Here, we use the functioning rule of the ternary mirror-

symmetric single-digit summator in Fig. 12-b. As for this case the second multi-digit intermediate carry-over 

S1=0, this means that the summation is over and the sum 
1 1 1 9S C C′ ″+ + = −  is the summation result. It is 

important to emphasize that the summation result  

 

109 1111.111− =                                                           (46) 

 

is negative number because the ternary mirror-symmetrical representation (46) begins with the negative unit 

1 . In addition, the summation result (43) is represented in mirror-symmetric form what allows checking the 

summation process.  

 

2.3.5 Ternary mirror-symmetrical subtraction  

 
The subtraction of two mirror-symmetrical numbers N1-N2 transforms to the summation if we represent their 

difference in the following form: 

 

N1-N2=N1+(-N2).                                                                                      (47) 

 

It follows from (47) that until the subtraction we have to take the ternary inversion of the subtrahend N2 

according to (26).  
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2.3.6 The "swing" phenomenon  

 
Now, let us sum up two equal ternary mirror-symmetrical numbers 5+5: 

 

5 0 1 1 1. 1 1 0

5 0 1 1 1. 1 1 0

0 1 1 1. 1 1 0

1 1

1 1 1 1

1 1

1 1

1 1 0 0. 0 1 1

1 1

1 1

1 1

1 1 1 1

0 1 1 1. 1 1 0

1 1

1 1

1 1

1 1 1 1

=

=

↓ ↔ ↓

↔ ↔

↔ ↓

↔

↔

↔ ↓

↓ ↔

↔ ↔

↔

↔ ↓

↓ ↔

↔ ↔

 

 

It follows from this example, we have found a special summation case called swing. If the summation 

process goes on, then at some step the process of the formation of carries begins to repeat; this means that 

the process of the summation becomes infinite. The "swing"-phenomenon is similar to races that appear in 

digit automatons, when the electronic elements are switched.  

 

In order to eliminate the "swing"-phenomenon, we use the following effective "technical" method [7]. The 

“swing”-phenomenon appears in the ternary mirror-symmetric summator in Fig. 14 because the carry-overs 

come at the same time from two adjacent single-digits adders. A “technical” solution of this phenomenon is 

to delay the input signals of the single-digit summators with odd indices ( )1, 3, 5,...k = ± ± ±  by one 

summation step. For this situation at the first step of the summation only the summators with the even 

indices ( )0, 2, 4, 6,...k = ± ± ±  operate and they form the intermediate sums and corresponding carry-

overs to the single-digit summators with the odd indices. Then, at the second summation step the carry-overs 

that were formed at the first step are summarized with the corresponding ternary variables of the odd digits 

of the summable numbers. Thanks to such an approach, the "swing"-phenomenon is eliminated.  

 

Now, let us demonstrate the above method to eliminate the "swing"-phenomenon at the summation of the 

numbers 5+5: 
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10

10

10

1

1

1

5

5

10

0 1 1 1. 1 1 0

0 1 1 1. 1 1 0

1 1. 1

1 1

1 1 1 1

1 1 0 1. 0 1 1

S

C

C

′

″

=

↓ ↓

↓ ↓

=

=

↓

↔

↔ ↔

=

 

 

The first step of the mirror-symmetrical summation is to summarize all the input ternary numerals with even 

indices (2,0,-2). The ternary numerals of all digits with odd indices (3,1,-1,-3) are delayed at the first step. 

The second step is the summation of all the carry-overs, which appear at the first step, with the input ternary 

numerals of the digits with odd indices. It is important to emphasize that the result of the summation 

 

1010 1101. 011=                                                                         (48) 

 

is a positive number because the ternary representation (48) begins with the positive ternary numeral 1 and 

in addition the result of the summation (48) is represented in mirror-symmetric form.  

 

An analysis of all the above examples of ternary mirror-symmetric summation shows that both the final 

result of the summation and all intermediate results are mirror-symmetric numbers, that is, the property of 

mirror symmetry is an invariant of mirror-symmetrical summation. This means that mirror-symmetrical 

summation (and subtraction) possesses the important mathematical property of “mirror symmetry” what 

allows checking the ternary mirror-symmetrical summation and subtraction. 

 

2.3.7 Ternary mirror-symmetrical multiplication and division  

 

The following trivial identity for the golden ratio powers underlies the ternary mirror-symmetrical 

multiplication: 

 

Ф
2n

 × Ф
 2m

  = Ф
 2(n+m)

 .                                                                       (49) 

 

The rule of the mirror-symmetric multiplication of two single-digit ternary mirror-symmetric numbers is 

given in Table 5. 

 

Table 5. Ternary mirror-symmetrical multiplication 

 

bk       
ak

 1  0 1 

1  1 0 1  
0 0 0 0 

1 1  1 1 

  

The ternary mirror-symmetrical multiplication is performed in the “direct” code. The general algorithm of 

the multiplication of two multi-digit mirror-symmetrical numbers is reduced to the formation of the partial 

products in accordance with Table 5 and their summation in accordance with the rule of the ternary mirror-

symmetric addition.  
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Numerical example 
 

Multiply the negative mirror-symmetric number 
106 1 01.0 1− =  by the positive mirror-symmetric number 

102 11.1= : 

 

1 0 1. 0 1

1 1. 1

1 0. 1 0 1

1 0 1. 0 1

1 0 1 0. 1

1 1 0 1. 0 1 1

 

 

The multiplication result in this example is formed as the sum of the three partial products. The first partial 

product 1 0. 1 01 is the result of multiplication of the negative mirror-symmetrical multiplier 

106 1 01.0 1− =  by the lowest positive ternary numerals 1 of the positive mirror-symmetrical multiplier 

102 11.1= , the second partial product 1 01. 0 1 is the result of the multiplication of the same number 

106 1 01.0 1− =  by the middle negative ternary numeral 1  of the number 
102 11.1= , and, finely, the third 

partial product 1 0 1. 01 is the result of the multiplication of the same number 
106 1 01.0 1− =  by the 

higher positive ternary numeral 1 of the number 
102 11.1= . 

 

Note that the product -1210 =1 1 01, 011 is represented in the mirror-symmetric form! Because its 

higher digit is a negative ternary numeral1, it follows from here that the product is a negative mirror-

symmetrical number.  

 

As for the mirror-symmetrical division, it generally similar to the division rule in the classical ternary 

symmetrical numeral system (22). The detailed description of the ternary mirror-symmetrical division is 

given in the article [7].  

 

3 Matrix and Pipeline Mirror-symmetrical Adder and Multiplier  

 
3.1 Matrix mirror-symmetrical adder 
 
It is well known that the digital signal processors put forth high demands to the speed of arithmetical 

devices. The different special structures (matrix, pipeline, etc.) are elaborated for this purpose. We can show 

that the ternary mirror-symmetrical arithmetic contains in itself the interesting possibilities for designing fast 

arithmetical devices for signal processors.  

 

Consider now the matrix multi-digit ternary mirror-symmetric adder (Fig. 14). Each cell of the matrix adder 

in Fig. 14 is full ternary-symmetrical single-digit adder of the kind 4∑ , which have the 4 inputs and 2 

outputs (see Fig. 12-b). The matrix adder in Fig. 14 consists of the 21 single-digit full adders 4∑ , which 

are arranged in the form of the 7×3-matrix. Each ternary single-digit adder has designation 
2
34Σ , where the 
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number 4 means that the adder 
k
i

4Σ
 
has 4 ternary inputs, the indexes i and k in the adder 

k
i

4Σ
 
mean that 

the adder 
k
i

4Σ  refers to the i-th digit of the ternary mirror-symmetric representation (27) and the adder are 

placed in the k-th row of the matrix adder in Fig. 14.  

 

The inputs of the single-digit adders 

 

1
3-4 ,1

2-
4 , 1

1
4,1

0
,1

1
4,1

2
4 ,

1
34 Σ∑∑ ∑ ∑ ∑

−
Σ  

 

of the first row form the multi-digit input of the matrix ternary-symmetrical adder in Fig. 14. The output of 

the intermediate sum of each single-digit adder is connected to the corresponding input of the next single-

digit adder of the same column.  

 

 
 

Fig. 14. Matrix ternary mirror-symmetrical adder 
 

The outputs of the intermediate sum of the single-digit adders  

 

1
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2-
4 , 1

1
4,1

0
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1
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2
4 ,

1
34 Σ∑∑ ∑ ∑ ∑

−
Σ  

 

of the last row form the multi-digit output of the matrix mirror-symmetric adder. 

 

The main peculiarity of the matrix mirror-symmetric adder in Fig. 14 consists in a special designing the 

connections between the carry outputs of the single-digit adders and the inputs of the neighboring single-

digit adders. The carry outputs of all single-digit adders with the even lower indices (2, 0, -2) are connected 

to the corresponding inputs of the adjacent single-digit adders, which are placed in the same row, but the 

carry outputs of all the single-digit adders with the odd lower indices (3, 1, -1, -3) are connected with the 

corresponding inputs of the adjacent single-digit adders, which are placed in the lower row. Note that such 

organization of the carry connections allows eliminating the above "swing" phenomenon. 
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Consider the operation of the matrix mirror-symmetric adder on the example of the addition of two equal 

ternary mirror-symmetric numbers: 

 

A = 0 1 1 1, 1 1 0   and   B = 0 1 1 1, 1 1 0. 

 

The addition is fulfilled in 2 stages. Each stage is fulfilled by means of one row of the single-digit adders and 

consists of two steps. 

 

The first stage 
 

In accordance with Fig. 14, the first step of the first stage consists in the following. The single-digit adders 

of the first row with the even lower indices (
1
2

4Σ , 
1
0

4Σ , 
1
2-

4Σ ) form the intermediate sums, which enter the 

inputs of the second row adders, and the carries, which enter the corresponding inputs of the single-digit 

adders with the odd lower indices of the first row (
1
3

4Σ , 
1
1

4Σ , 
1
1-

4Σ , 
1
3-

4Σ ). Such transformation of the 

code information can be represented in the following form: 

 

0 1 1 1. 1 1 0

0 1 1 1. 1 1 0

1 1 1

1 1

1 1 1 1

↓ ↔ ↓

↔ ↔

 

 

Hence, the first step is the formation of the intermediate sums and the carries on the outputs of the single-

digit adders with the even lower indices (2, 0, -2).  
 

At the second step of the first stage the single-digit adders with the odd lower indices (3, 1, -1, -3) go into 

action. In accordance with the entered carries, they form the intermediate sums and the carries, entering the 

single-digit adders of the lower row, that is, 

 

0 1 1 1. 1 1 0

0 1 1 1. 1 1 0

1 1 1

1 1

1 1 1 1

1 1 1 1. 1 1 1

1 1

1 1

↓ ↔ ↓

↔ ↔

↔ ↓

↔

  

 

The first stage is over. We can see that the results of the first stage are some intermediate sum and some 

carries, entering the adders of the lower row. 
 

The second stage 

 

The single-digit adders of the second row with the even lower indices (
2
2

4Σ , 
2
0

4Σ , 
2
2-

4Σ ) form the 

intermediate sums, entering the corresponding inputs of the lower row adders and the carries, entering the 

corresponding inputs of the same row adders with the odd lower indices (
2
3

4Σ , 
2
1

4Σ , 
2
1-

4Σ , 
2
3-

4Σ ), that is, 
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1 1 1 1. 1 1 1

1 1

1 1

1 0 1 1. 1 0 1

↔ ↓

↔
 

 

Because all carries, which are formed at this stage, became equal to 0, this means that the addition is over at 

the second stage (this is true only for the considered case). The obtained sum enters the inputs of the lower 

row adders 
3
3-4 - 

3
34 ΣΣ  and then appears on the output of the matrix adder. 

 

3.2 The pipeline mirror-symmetrical adder 
 
There are two ways for the extension of the functional possibilities of the matrix mirror-symmetrical adder 

in Fig. 14. If we set the ternary registers, which consist of the flip-flop-flaps (see Fig. 12-b) between the 

adjacent rows of the single-digit adders, then the above matrix adder turns into the pipeline ternary  mirror-

symmetrical adder. In fact, the code information from the preceding rows of the single-digit adders is 

memorized in the corresponding registers and the preceding row of the adders becomes is ready for further 

processing. Then, the adders of the lower row process the code information, entering the lower row of the 

single-digit adders, and simultaneously the top row of the single-digit adders starts to process the new input 

code information. This means that since the given  moment we will get the sums of the numbers A1 + B1, A2 

+ B2, …, An + Bn , entering the adder input during the time period  2∆τ , where ∆τ is the delay time of the 

single-digit adder. 

 

3.3 The pipeline mirror-symmetrical multiplier  

 
The other possibility to extend functional possibilities of the pipeline adder consists in the following. We can 

see in Fig. 14 that each single-digit adder of the lower rows has a "free" input. We can use these inputs as the 

new multi-digit inputs of the pipeline adder. By using these multi-digit inputs, we can turn the pipeline adder 

into the pipeline multiplier. In this case the mirror-symmetrical multiplication of two mirror-symmetric 

numbers A(1)×B(1) is performed in the following manner. The first row of the single-digit adders 

summarizes the first two partial products 
1
2P+

1
1P . This code information enters the second row of the 

single-digit adders. If we send the 3-rd partial product 
1
3

P  to the "free" input of the second row, we will get 

the sum 
1
3P

1
2P+

1
1P +  on the outputs of the second row. In this case the first row starts to sum the first two 

partial products of the next pair of multiplied numbers A(2)×B(2). The "free" input of the 3-rd row is used to 

accept the next partial product 
1
4

P  of the first pair of the multiplied numbers A(1)×B(1), etc. We can see that 

the pipeline adder in Fig. 14 allows to multiply many mirror-symmetric numbers in the pipeline regime. In 

this connection the multiplication speed is determined by the time 2∆τ, where ∆τ  is the delay time of the 
single-digit adder. 

 

2 Conclusions 

 
The main conclusions, arising from the above reasoning’s, are as follows: 

 

1. The binary numeral system with the irrational base of Ф (Bergman’s system) and the ternary mirror-

symmetrical numeral system with the base of Ф2 (Stakhov’s system) are very important for future 

applications in mathematics, theoretical physics and computer science. 
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2. The historical importance of Bergman’s system is correction of "strategic mistake" in the 

development of mathematics, by recovering in modern mathematics Pythagorean MATEM of 

harmonics, lost by mathematics in the process of its historical development. The same could be said 

for the Stakhov's system.  

3. A conceptions of Bergman’s system opens up a new direction in the development of number theory 

(the “golden” number theory), and consequently, leads to new fundamental results in this field, in 

particular, to new unexpected properties of natural numbers (Z- and D-properties, Ф-, F-, L-codes 

and so on) .  

4.  Bergman’s system is possibly the most important mathematical discovery in the field of positional 
numeral systems after the invention of the positional principle of number representation (Babylon, 

2000 B.C.E.) and also decimal and binary systems. The importance of Bergman’s system for the 

development of numeral systems, mathematics and computer science can be compared with the 

introduction of irrational numbers by Pythagoreans in Ancient Greece.  

5. We can say the same on Stakhov’s ternary mirror-symmetrical numeral system with the irrational 

base of 2 3 5

2

+=Φ . This numeral system follows from Bergman’s system and Brousentsov 

ternary principle and combines in itself all advantages of Bergman’s system and classical ternary 

numeral system. Stakhov’s system has the following useful properties:  

 

5.1 All arithmetical operations are performed in “direct” form (without using additional and 

inverse codes). All integers (positive and negative) are represented in mirror-symmetrical 

form. This means that at the representation of integers, the 0
th

 digit divides the ternary mirror-

symmetrical representation into two mirror-symmetric parts. At the increasing of number its 

ternary mirror-symmetric representation is expanded symmetrically to the left and to the right 

relative to 0
th

 digit. This unique mathematical property generates very simple method of error 

detection in mirror-symmetrical computers and processors. 

5.2  It is proved that the mirror-symmetric property is invariant relative to arithmetical operations, 

that is, the results of all arithmetical operations always have mirror-symmetrical form. This 

means that the mirror-symmetrical numeral system and arithmetic can be used for designing 

of specialized self-checking mirror-symmetrical computers and processors.  

5.3 The ternary mirror-symmetrical numeral system is possibly the final stage in the long 

historical development of the concept of ternary numeral systems, because in the ternary 

mirror-symmetrical numeral system two scientific problems, the sign problem and 

representation of negative numbers and problem of error detection, based on the principle of 

mirror symmetry, are solving simultaneously. The author is ready to offer consulting services 

for any electronic company with advanced technology, which can be interested in the 

technical implementation of the ternary mirror-symmetrical processors and computers on this 

basis. 
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