
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: inalegwu334real@yahoo.com; 
 
 

International Research Journal of Pure & 
Applied Chemistry  

11(1): 1-15, 2016, Article no.IRJPAC.22863 
ISSN: 2231-3443, NLM ID: 101647669 

 
SCIENCEDOMAIN international 

              www.sciencedomain.org 

 

 

In-silico Discovery and Simulated Selection of  
Multi-target Anti-HIV-1 Inhibitors 

 
Emmanuel Israel Edache1*, Hambali Umar Hambali2, David Ebuka Arthur1, 

Adedirin Oluwaseye3 and Onoyima Christian Chinweuba4 
 

1Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria. 
2Department of Chemical Engineering, Ahmadu Bello University, Zaria, Kaduna State, Nigeria. 

3Chemistry Advance Laboratory, Sheda Science and Technology Complex (SHESTCO), P.M.B. 186, 
Garki, Abuja, Federal Capital Territory, Nigeria. 

4Department of Chemistry, Nigeria Police Academy, Wudil, Kano State, Nigeria. 
 

Authors’ contributions 
 

This work was carried out in collaboration between all authors. Authors EIE, DEA and AO designed 
the study and wrote the protocol. Authors EIE, DEA and AO preformed the statistical analysis, 

managed the literature search and wrote the first draft of the manuscript with assistance from authors 
HUH and OCC. All authors read and approved the final manuscript. 

 
Article Information 

 
DOI: 10.9734/IRJPAC/2016/22863 

Editor(s): 
(1) Hao-Yang Wang, Department of Analytical, Shanghai Institute of Organic Chemistry, Shanghai Mass Spectrometry Center, 

China.  
Reviewers: 

(1) Hazem Mohammed Ebraheem Shaheen, Damanhour University, Damanhour, Egypt. 
(2) Gyula Oros, Plant Protection Institute of the Centre for Agricultural Research of the Hungarian Academy of Sciences, 

Budapest, Hungary. 
(3) Rajeev Singh, University of Delhi, New Delhi, India. 

Complete Peer review History: http://sciencedomain.org/review-history/12951 
 
 
 

Received 2 nd November 2015  
Accepted 1 st December 2015 
Published 12 th January 2016  

 
 

ABSTRACT 
 

The multi-target quantitative structure-activity relationship (mt-QSAR) study of human 
immunodeficiency virus (HIV-1) inhibitors was addressed by applying a modest, hitherto active 
linear regression model based on the Genetic function approximation. QSAR studies were 
performed on two datasets of HIV-1 inhibitors targeted on integrase and reverse transcriptase, 
respectively. By using the genetic function approximation method, the collaboration among different 
set of inhibitors was exploited and an efficient multi-target QSAR modeling for HIV-1 inhibitors was 
obtained. The predictive quality of the mt-QSAR models was tested for an external set of 30 
compounds, randomly chosen out of 150 compounds. The linear regression model based on the 
Genetic function approximation with eight selected descriptors was obtained. The accuracy of the 
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proposed model is illustrated using the following evaluation techniques: cross-validation, validation 
through an external test set, applicability domain, and Y-randomization. We accordingly propose a 
quantitative model, and we interpret the activity of the compounds relying on the multivariate 
statistical analysis. This study shows that the prediction results demonstrated that the predictive 
capacity of the model was attractive, and it can be utilized for outlining comparable gathering of 
anti-HIV compounds. 
 

 
Keywords: Multi-target; QSAR; HIV-1 inhibitors; GFA; DFT; applicability domain. 
 
1. INTRODUCTION 
 
The handling of the acquired immunodeficiency 
syndrome (AIDS) is the utmost challenging 
worldwide medical problem. So far, there is no 
realistic cure for HIV/AIDS. “Highly Active 
Antiretroviral Therapy” (HAART) is 
recommended for the treatment of HIV [1]. 
HAART is an aggressive treatment of HIV where 
the combination of different antiviral drugs is 
used to suppress HIV replication and the 
progression of the disease [2]. Most of the 
current strategies for treating AIDS depend on 
inhibiting HIV-1 reverse transcriptase enzyme. 
Multi-drug resistance is one of the major 
immediate threats to human health today [3], 
trends in the incidence of HIV together with the 
development of multi-drug and extensively drug 
resistant strains of HIV raises the need to 
intensify the search for more efficient drugs to 
combat this disease. The majority of existing 
therapy methods have targeted the viral 
replication at reverse transcriptase (RT), 
integrase and protease enzyme [4,5]. However, 
the emergence of drug resistance has been 
observed [6], therefore, new therapeutic agents 
are still needed. Recently, a new class of 
therapeutic agents has focused on inhibiting HIV 
entry into cells, CD4 binding, co-receptor binding 
and membrane fusion such as T-20 [7].  
 
The multi-target drug design method is an 
encouraging way to complement the current 
single-target process and an embarrassment of 
studies address the problem of target prediction 
[8] and multi-target structure-activity models 
[9,10]. The multi-target drug prediction is a 
current research topic in the field of drug design. 
Despite the positive results of the studies 
mentioned above, the considered models were 
still trained for each target separately. In this 
study, the multi-target QSAR study of HIV-1 
inhibitors was addressed by applying a simple, 
yet effective linear regression model based on 
genetic function approximation, which is recently 
presented in machine learning community. 
QSAR studies were performed on two datasets 

of HIV-1 inhibitors targeted on integrase and 
reverse transcriptase, by using the GFA method, 
the collaboration among different set of inhibitors 
was exploited and an efficient multi-target QSAR 
modeling for HIV-1 inhibitors was obtained. The 
general descriptor features and drug-like features 
for compound description were ranked according 
to their jointly importance in multi-target [11,12] 
QSAR modeling respectively, which will offer 
useful hints for the design of novel multi-target 
HIV-1 inhibitors with increasing likelihood of 
successful therapies of HIV. 
 
Computer-aided drug design techniques may 
play a very important role. These techniques are 
based on multi-target Quantitative Structure-
Activity Relationship (mt-QSAR) studies. It 
means that they are models linking the structure 
of drugs with the biological activity against 
different targets [13]. This kind of study may also 
be useful in a Multi-Objective Optimization of 
desired properties or activity of drugs against 
different targets. There are over 5000 descriptors 
that may be comprehensive and used to solve 
these problem [14]. QSAR studies reported up-
to-date are based on descriptors and databases 
of structurally parent compounds relevant to only 
one viral species. Subsequently, the researcher 
interested in predicting, for example, the antiviral 
activity for a given series of compounds, has to 
develop as many QSAR equations as 
combinations of compound families versus viral 
species have to be predicted. Therefore, it is of 
major interest the development of a single unified 
equation explaining the antiviral activity of 
structurally heterogeneous series of compounds 
against as many viral species as possible [15]. In 
fact, other mt-QSAR approaches, with 
demonstrated usefulness, have been introduced 
recently in Medicinal Chemistry [16]. The results 
of this study will go a long way to authenticate 
the claims by QSAR expert and will as well 
enrich the database on 1-[(2-
hydroxyethoxy)methyl]-6-(phenylthio)thymine, 
indole β-diketo acid, diketo acid and 
carboxamide derivatives with anti-HIV-1 activity 
that can be used in drug discovery with the 
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development of rational/QSAR tools for decision 
support in anti-HIV therapy. 
 
2. MATERIALS AND METHODS 
 
Our study was performed on two kinds of HIV 
target datasets conformed from a far-reaching 
literature review, which consisted of inhibitors 
with their binding affinities on HIV integrase and 
reverse transcriptase. These inhibitors are 
correspondingly referred as; integrase inhibitors, 
which inhibit the proviral DNA to insert into the 
host cell genome, and non-nucleoside reverse 
transcriptase inhibitors (NNRTI), which inhibit the 
virus by preventing the copying of its genomic 
DNA into proviral DNA for incorporation into the 
host cell DNA. The dataset containing 150 
compounds with well-defined activity [17,18], was 
selected for QSAR study. The biological activity 
data in the form of IC50 and EC50 (molar 
concentration of the drug leading to 50% 
inhibition of enzyme) value in lm (micromoles) 
were converted into negative logarithmic dose in 
moles (pIC50) for mt-QSAR Analysis (Table 1). 
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Fig. 1. Compound 1-106 
 

 
 

Fig. 2. Compound 107-117 
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Fig. 3. Compound 118-122 

 
 

Fig. 4. Compound 123-126 
 

 
 

Fig. 5. Compound 127-135 
 

 
 

Fig. 6. Compound 136-150 
 

2.1 Molecular Modeling and Generation of 
Molecular Descriptors 

 
The dual core personal computer equipped with 
the operating system Windows seven was used 
for making calculations of this work. Structure of 
all the compounds was drawn using ChemDraw 
Ultra module of the program and transferred to 
Spartan’14 (2013) version 1.1.2 [19] module to 
create the three-dimensional (3D) structure. 
These structures were then subjected to energy 
minimization using molecular mechanics 
(MMFF). Energy minimized molecules were 
subjected to optimization via DFT (density 
function theory) method with B3LYP function [20] 
and 6-311G* basic set [21]. These methods have 
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become popular in recent years because they 
can reach similar precision to other methods in 
less time and less cost from the computational 
point of view. The geometry optimization of the 
lowest energy structure was carried out without 
any symmetry constraints were also transferred 

to PaDEL-Descriptor [22] version 2.18 and were 
subjected to re-optimization (with the MMFF94 
force field). Most stable structure for each 
compound was generated and used for 
calculating various physicochemical parameters 
used for the statistical analysis. 

 

Table 1. Biological activities of the training and test set 
 

No R1 R2 R3 X PIC50 Predicted 
PIC50 

Residuals 

1* 3-CN Me CH2OCH2CH2OH O 5.000 4.6797 0.3203 
2 3-COMe Me CH2OCH2CH2OH O 5.140 4.7319 0.4081 
3 3-COOMe Me CH2OCH2CH2OH O 5.100 5.3778 -0.2778 
4 3,5-Cl2 Me CH2OCH2CH2OH O 5.890 6.1860 -0.2960 
5 3,5-Me2 Me  CH2OCH2CH2OH  O 6.590 5.9066 0.6834 
6 3-OMe Me CH2OCH2CH2OH O 4.660 4.8120 -0.1520 
7 3-OH Me CH2OCH2CH2OH O 4.090 3.7714 0.3186 
8 3-NO2 Me CH2OCH2CH2OH O 4.470 4.8074 -0.3374 
9 3-I Me CH2OCH2CH2OH O 5.000 5.2473 -0.2473 
10 3-Br Me CH2OCH2CH2OH O 5.240 5.0500 0.1900 
11 3-Cl Me CH2OCH2CH2OH O 4.890 4.7662 0.1238 
12 3-F Me CH2OCH2CH2OH O 5.480 4.5106 0.9694 
13 3-CF3 Me CH2OCH2CH2OH O 4.350 4.9716 -0.6216 
14 3-t-Bu Me CH2OCH2CH2OH O 4.920 4.9853 -0.0653 
15 3-Et Me CH2OCH2CH2OH O 5.570 5.0988 0.4712 
16 3-Me Me CH2OCH2CH2OH O 5.590 4.7311 0.8589 
17 2-OMe Me CH2OCH2CH2OH O 4.720 4.8542 -0.1342 
18 2-NO2 Me CH2OCH2CH2OH O 3.850 4.4880 -0.6380 
19 2-Me Me CH2OCH2CH2OH O 4.150 3.8658 0.2842 
20 H Et CH2OCH2CH2OH O 6.920 5.4241 1.4959 
21 H i-Pr CH2OCH2CH2OH O 7.200 6.5751 0.6249 
22 3,5-Me2 Et CH2OCH2CH2OH O 7.890 7.0244 0.8656 
23 3,5-Me2 i-Pr CH2OCH2CH2OH O 8.570 8.1755 0.3945 
24 3,5-Cl2 Et CH2OCH2CH2OH O 7.850 7.3039 0.5461 
25 H Me CH2OCH2CH2OH O 5.150 4.3064 0.8436 
26 H I CH2OCH2CH2OH O 5.440 5.2250 0.2150 
27 H CH=CPH2 CH2OCH2CH2OH O 6.070 5.9337 0.1363 
28 4-F Me CH2OCH2CH2OH O 3.600 4.2571 -0.6571 
29 4-Cl Me CH2OCH2CH2OH O 3.600 3.9485 -0.3485 
30 4-OH Me CH2OCH2CH2OH O 3.560 3.9728 -0.4128 
31 3-CONH2 Me CH2OCH2CH2OH O 3.510 4.5501 -1.0401 
32 H COOMe CH2OCH2CH2OH O 5.180 5.4159 -0.2359 
33 H CONHPh CH2OCH2CH2OH O 4.740 4.6154 0.1246 
34 H SPh CH2OCH2CH2OH O 4.840 5.9415 -1.1015 
35* H CCH CH2OCH2CH2OH O 4.740 3.5914 1.1486 
36* H CCPh CH2OCH2CH2OH O 5.470 4.3007 1.1693 
37 H COCHMe2 CH2OCH2CH2OH O 4.920 5.3874 -0.4674 
38 H COPh CH2OCH2CH2OH O 4.890 5.3635 -0.4735 
39 H CCMe CH2OCH2CH2OH O 4.720 4.3327 0.3873 
40 H F CH2OCH2CH2OH O 4.000 3.4761 0.5239 
41 H Cl CH2OCH2CH2OH O 4.520 4.0879 0.4321 
42* H Br CH2OCH2CH2OH O 4.700 4.7191 -0.0191 
43 2-Cl Me CH2OCH2CH2OH O 3.890 3.7650 0.1250 
44 3-CH2OH Me CH2OCH2CH2OH O 3.530 4.5804 -1.0504 
45* 4-NO2 Me CH2OCH2CH2OH O 3.720 4.3142 -0.5942 
46 4-CN Me CH2OCH2CH2OH O 3.600 4.3391 -0.7391 
47 4-OMe Me CH2OCH2CH2OH O 3.600 4.5607 -0.9607 
48 4-COMe Me CH2OCH2CH2OH O 3.960 4.4301 -0.4701 
49* 4-COOH Me CH2OCH2CH2OH O 3.450 3.7322 -0.2822 
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No R1 R2 R3 X PIC50 Predicted 
PIC50 

Residuals 

50 3-NH2 Me CH2OCH2CH2OH O 3.600 3.8286 -0.2286 
51 H Pr CH2OCH2CH2OH O 5.470 5.2652 0.2048 
52 4-Me Me CH2OCH2CH2OH O 3.660 4.0097 -0.3497 
53 H CH=CH2 CH2OCH2CH2OH O 5.690 4.7291 0.9609 
54* H CH=CHPh CH2OCH2CH2OH O 5.220 4.7125 0.5075 
55 H CH2Ph CH2OCH2CH2OH O 4.370 5.0784 -0.7084 
56* H Me CH2OCH2CH2OAc O 5.170 5.6595 -0.4895 
57 H Et CH2OCH2Me O 7.720 6.7095 1.0105 
58 H Et CH2CH2Ph O 8.230 6.8269 1.4031 
59 3,5-Cl2 Et CH2CH2Me O 8.130 8.6967 -0.5667 
60 H Me CH2OCH2CH2OC5H11 O 4.460 5.320 -0.8600 
61 H Me CH2OCH2CH2OCH2Ph O 4.700 5.3307 -0.6307 
62 H Me H O 3.600 3.0964 0.5036 
63 H Me Me O 3.820 4.9059 -1.0859 
64* H c-Pr CH2OCH2Me O 7.000 6.7082 0.2918 
65* H Et CH2O-i-Pr O 6.470 6.9214 -0.4514 
66 H Et CH2O-c-Hex O 5.400 6.4185 -1.0185 
67 H Et CH2OCH2-c-Hex O 6.350 5.9712 0.3788 
68 H Et CH2OCH2CH2Ph O 7.020 6.7969 0.2231 
69* H Me CH2OMe O 5.680 5.6838 -0.0038 
70 H Me CH2OBu O 5.330 5.5944 -0.2644 
71 H Me Et O 5.660 5.8524 -0.1924 
72* H Me Bu O 5.920 5.6360 0.2840 
73 H i-Pr CH2OCH2Me O 7.990 7.8584 0.1316 
74* H i-Pr CH2OCH2Ph O 8.510 7.8725 0.6375 
75 3,5-Me2 Et CH2OCH2Ph O 8.550 8.3215 0.2285 
76 3,5-Me2 Et CH2OCH2Me O 8.240 8.3075 -0.0675 
77 H Me CH2OCH2CH2OMe O 5.060 5.37286 -0.3129 
78* H Me CH2OCH2CH2OCOPh O 5.120 5.8451 -0.7251 
79 H Me CH2OCH2Me O 6.480 5.5904 0.8896 
80 H Me CH2OCH2CH2Cl O 5.820 5.3906 0.4294 
81* H Me CH2OCH2CH2N3 O 5.240 5.3620 -0.1220 
82 H Me CH2OCH2CH2F O 5.960 5.2894 0.6706 
83 H Me CH2OCH2CH2Me O 5.480 5.5944 -0.1144 
84* H Me CH2OCH2Ph O 7.060 5.6046 1.4554 
85 H Et CH2OCH2Me S 7.580 7.0212 0.5588 
86* H i-Pr CH2OCH2Me S 7.890 8.1703 -0.2803 
87 H i-Pr CH2OCH2Ph S 8.140 8.1835 -0.0435 
88 3,5-Cl2 Et CH2OCH2Me S 7.890 8.9027 -1.0127 
89* H Et CH2O-i-Pr S 6.660 7.2336 -0.5736 
90 H Et CH2O-c-Hex S 5.790 6.7307 -0.9407 
91 H Et CH2OCH2-c-Hex S 6.450 6.2829 0.1671 
92 H Et CH2OCH2C6H4(4-Cl) S 7.920 6.6230 1.2970 
93 H Et CH2OCH2CH2Ph S 7.040 7.1085 -0.0686 
94 H c-Pr CH2OCH2Me S 7.020 7.02 -7.1E-15 
95* 3,5-Me2 Me CH2OCH2CH2OH S 6.660 6.1276 0.5324 
96 H Pr CH2OCH2CH2OH S 5.000 5.4871 -0.4871 
97* 3,5-Me2 i-Pr CH2OCH2CH2OH S 8.300 8.4001 -0.1001 
98* H Et CH2OCH2Ph S 8.090 7.0345 1.0555 
99* 3,5-Me Et CH2OCH2Ph S 8.140 8.6326 -0.4926 
100 3,5-Me2 Et CH2OCH2Me S 8.300 8.6192 -0.3192 
101* H Et CH2OCH2CH2OH S 6.960 5.6447 1.3153 
102* H i-Pr CH2OCH2CH2OH S 7.230 6.7974 0.4326 
103 3,5-Me2 Et CH2OCH2CH2OH S 8.110 7.2472 0.8628 
104* 3,5-Cl2 Et CH2OCH2CH2OH S 7.370 7.5269 -0.1569 
105* H Me CH2OCH2CH2OH S 6.010 4.5251 1.4849 
106* H CH2CH=CH2 CH2OCH2CH2OH O 5.600 5.0171 0.5829 
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No. R R1 R2 X PIC50 Predicted 
PIC50 

Residuals 

107 H H CH3 2-CO 0.7780 0.1358 0.6422 
108            OCH2O CH3 2-CO 0.3010 0.2200 0.2200 
109 H H CH2CH3 2-CO 0.2040 0.4190 -0.2150 
110            OCH2O CH2CH3 2-CO 0.6990 0.5137 0.5137 
111 H H Bn 2-CO 0.0000 0.5915 -0.5915 
112            OCH2O Bn 2-CO 0.3010 0.6869 0.6869 
113 H H CH3 3-CO 0.3010 0.3503 -0.0493 
114           OCH2O CH3 3-CO 0.4770 0.3874 0.3874 
115 H H CH2CH3 3-CO 0.4770 0.4725 0.0045 
116           OCH2O CH2CH3 3-CO 0.4770 0.4725 0.5209 
117* H H Bn 3-CO 0.0000 0.8146 -0.8146 

 
No. R R1 R2 X PIC50 Predicted 

PIC50 
Residuals 

118 H H CH3 2-CO 1.6530 1.2915 0.3615 
119*                  OCH2O CH3 2-CO 1.6990 1.3757 0.3233 
120                  OCH2O CH2CH3 2-CO 1.8130 1.6693 0.1437 
121                  OCH2O CH3 3-CO 1.7780 1.5432 0.2348 
122 H H CH2CH3 3-CO 1.8416 1.6283 -0.2133 

 
 No. R1 R2 PIC50 Predicted PIC50 Residuals 
123 4’-Cl - 0.000 0.2665 -0.2665 
124 3’-F - 0.602 0.6929 -0.0909 
125 - 4-OCH3 0.824 1.1063 -0.2823 
126 - 3-OCH3 0.854 1.1517 -0.2977 

 
No. R1 R2 PIC50 Predicted PIC50 Residuals 
127 4-F - 1.000 2.3987 -1.3987 
128 H - 0.638 1.8732 -1.2352 
129 2-Cl - 0.432 2.1258 -1.6938 
130 3-Cl - 1.398 0.1628 1.2352 
131 4-Cl - 0.420 1.6481 -1.2281 
132 4-F, 3-Cl - 1.398 1.5282 -0.1302 
133 4-F CN 1.699 0.3459 1.3531 
134 4-F Br 1.523 1.1098 0.4132 
135 4-F I 1.699 1.6384 0.0606 

 
No. R1 R2 R3 PIC50 Predicted 

PIC50 
Residuals 

136 NHCOCH3 CH3 4-fluorotoluene 2.1555 1.5778 0.5772 
137 NH-SO2-CH3 CH3 4-fluorotoluene 2.097 1.9982 0.0988 
138 NHCO-N(CH3)2 CH3 4-fluorotoluene 1.745 1.6208 0.1242 
139 NHSO2-N(CH3)2 CH3 4-fluorotoluene 1.921 1.4660 0.4550 
140 NHCOCO-N(CH3)2 CH3 4-fluorotoluene 2.000 0.9059 1.0941 
141 NHCOCO-OCH3 CH3 4-fluorotoluene 1.824 1.3640 0.4700 
142 NHCOCO-OH CH3 4-fluorotoluene 2.398 1.9205 0.4775 
143 N(CH3)COCO-

N(CH3)2 
CH3 4-fluorotoluene 1.824 2.0287 -0.2047 

144* NHCO-pyridine CH3 4-fluorotoluene 1.699 1.4853 0.2137 
145 NHCO-pyridazine CH3 4-fluorotoluene 1.824 2.0946 -0.2706 
146 NHCO-pyrimidine CH3 4-fluorotoluene 2.155 1.6141 0.5409 
147 NHCO-oxazole CH3 4-fluorotoluene 2.155 1.6986 0.4564 
148 NHCO-thiazole CH3 4-fluorotoluene 2.097 2.4271 -0.3301 
149 NHCO-1H imidazole CH3 4-fluorotoluene 2.222 2.4303 -0.2083 
150 NHCO-1,3,4-

oxadiazole 
CH3 4-fluorotoluene 1.824 2.7315 -0.9076 

*indicates the compounds considered in the test set 
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2.2 Variable Selection and Model 
Generation 

 
Even though many molecular descriptors are 
available, only a subclass of them is statistically 
important in terms of correlation with biological 
activity. Therefore, it is very important to address 
the variable selection method for deriving the 
best QSAR model. GFA [23] approach were 
adopted to select the best possible variables as 
well as for the generation of QSAR models. 
 
2.2.1 Genetic function approximation method 
 
GFA [23] approach is a search method to find 
approximate solutions to optimization and search 
problems. GFA is conceived from 
 

(i)  Genetic algorithm and 
(ii)  Friedman’s Multivariate Adaptive 

Regression Splines (MARS) algorithm. 
 
The following steps were performed: 
 

(i)  Initial population of equations were 
generated by random number of 
descriptors, 

(ii) Pairs from the population of equations 
were chosen at random, crossovers were 
performed and posterity equations were 
generated, 

(iii) The fitness of each posterity equation was 
assessed by lack of fit (LOF) score that 
automatically penalizes models with too 
many features. A distinctive feature of GFA 
is that it generates a population of 
equations rather than a single equation as 
do most other statistical methods. The 
range of variations in this population gives 
added information on the quality of fit and 
importance of the descriptors. By 
examining these models, additional 
information can be obtained. For example, 
the frequency of use of a particular 
descriptor in the population of equations 
may indicate how relevant the descriptor is 
to the prediction of activity. The fitness 
function, i.e., lack-of-fit is calculated by 

 

��� = ���
�	
��
�

� ��           (1) 

 
Where c is the number of basis functions, d is the 
smoothing parameter, m is the number of 
samples in the training set, LSE is the least 
square error and p is the total number of features 

contained in all basis functions. Material Studio 
version 7.0 was used for GFA. 
 
2.3 Validation of the QSAR Model 
 
The predictive capability of the QSAR equation 
was determined using the leave-one-out cross-
validation method. The cross-validation 
regression coefficient (���� ) was calculated by 
the following equation: 
 

���� = 1 − ∑�����
����
��

∑�����
�������           (2) 

 
Where !"#$, #%!, and  �#%! are the predicted, 
experimental, and mean values of experimental 
activity, respectively. Also, the accuracy of the 
prediction of the QSAR equation was validated 
by F value, and R2. The R2 value can be 
generally increased by adding the additional 
predictor variables to the model, even if the 
added variable does not contribute to the 
reduction of the unexplained variance of the 
dependent variable. Therefore, the R2 usage 
requires special attention. For this reason, it is 
better to use another statistical parameter, called 
the adjusted R2 (R2

adj), were R2
adj is defined by; 

 

&'$(� = 1 − (1 − &�) +
	
+
,
	          (3) 

 
R2

adj is interpreted similarly to the R2 value, 
considering the number of degrees of freedom 
also. It is adjusted by dividing the residual sum of 
squares and total sum of squares by their 
respective degrees of freedom. The R2

adj value 
diminishes if an added variable to the equation 
does not reduce the unexplained variance [24]. 
Subsequently, R2

adj is used to compare models 
with different numbers of predictor variables. 
 
A large F indicates that the model fit is not a 
chance occurrence. It has been shown that a 
high value of statistical characteristics is not 
necessary for the proof of a highly predictive 
model [25,26]. Hence, to evaluate the predictive 
ability of our QSAR model, we used the method 
described by Golbraikh and Tropsha [25] and 
Roy and Roy [26]. The values of the correlation 
coefficient of predicted and actual activities and 
the correlation coefficient for regressions through 
the origin (predicted vs. actual activities and vice 
versa) were calculated using the regression of 
analysis Tool-pak option of Excel, and other 
parameters were calculated as reported by the 
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above authors [25,26]. The determination 
coefficient in prediction, �-#.-�  , was calculated 
using the following equation [26]: 
 

�-#.-� = 1 − ∑�����
/�0/
�/�0/��

∑��/�0/
��/�123234��        (4) 

 
Where  !"#$/�0/ and  -#.- are the predicted 
value based on the QSAR equation (model 
response) and experimental activity values, 
respectively, of the external test set compounds. 
 �-"'56567 is the mean activity value of the 
training set compounds. Quality factor (Q) is 
calculated as; 
 

� = 8
���                         (5) 

 
Where R is variance and SEE is the standard 
error of estimate. Over fitting and chance 
correlation, due to excess number of predictor 
variables can be detected by Q value [27,28]. 
Positive value of this QSAR model suggests its 
high predictive power and lack of over fitting [29]. 
 
Further evaluation of the predictive ability of the 
QSAR model for the external test set compounds 
was done by determining the value of r2m by the 
following equation [26]: 
 

9:� = 9� × (1 − <9� − 9=�)          (6) 
 
Where 9=� is the square correlation coefficient 
between experimental and predicted values of 
the test set compounds with intercept set to zero. 
The value of 9:(-#.-)�  should be greater than 0.5 
for an acceptable model. The concept of r2

m was 
not only applied to test set prediction, but it can 
as well be applied for training set if one considers 
the correlation between observed and leave-one 
out predicted values of the training set 
compounds [26]. Moreover, this can be used for 
the whole set considering Leave-one-out 
predicted values for the training set and 
predicted values of the test set compounds [23]. 
The r2

m(overall) statistic may be used for selection 
of the best predictive models from among 
comparable models. The values of k and k′, 
slopes of the regression line of the predicted 
activity versus actual activity and vice versa, 
were calculated using the following equations 
[25]: 
 

> = ∑ �2��2
∑ ��2

� ?@A > ′ = ∑ �2��2
∑ �2�           (7) 

 
where  5 and  �5 are the predicted and 
experimental activities, respectively. 
 
Further statistical significance of the relationship 
between activity and the descriptors was 
checked by randomization test (Y-randomization) 
of the models. The Y column entries were 
scrambled and new QSAR models were 
developed using same set of variables as 
present in the un-randomized model. We have 
used a parameter, &!�, [30] which penalizes the 

model &� for the difference between squared 
mean correlation coefficient (R2

r) of randomized 
models and squared correlation coefficient (&�) 
of the nonrandomized model. The &!� parameter 
was calculated by the following equation: 
 

&!� = &� × <&� − &"�           (8) 
 

This parameter,&!�, ensures that the models so 
developed are not obtained by chance. We have 
assumed that the value of &!� should be greater 
than 0.5 for an acceptable model. 
 
Note that 9:�values do not take into account the 
number of predictor variables included in a 
model. When different models, having different 
number of predictor variables are compared then 
it may be very difficult to determine which one is 
the best model as 9:�  does not consider the 
number of predictor variables used. To solve this 
problem, another parameter 
9:(C�#"'DD)� (?AEFGHIA)may be calculated in a 
manner similar to the adjusted R2 [26]: 
 

9:(C�#"'DD)� (?AEFGHIA) = 

                   
(+
	)×"�(JK��1LL)� 
,

+
,
	      (9) 

 
Where N is the total number of compounds and 
P is the number of predictor variables.  
 
To check the intercorrelation of descriptors, 
variance inflation factor (VIF) analysis was 
performed. The VIF value is calculated from: 
 

MN� = 	
	
8�          (10) 



 
 
 
 

Edache et al.; IRJPAC, 11(1): 1-15, 2016; Article no.IRJPAC.22863 
 
 

 
9 
 

Where R2 is the multiple correlation coefficient of 
one descriptor’s effect regressed on the remain-
ing molecular descriptors. If the VIF value is 
larger than 10, information of descriptors can be 
hidden by correlation of descriptors [31,32]. 
 
3. RESULTS AND DISCUSSION 
 
The 150 active compounds with their biological 
activity were randomly divided into a training set 
of 120 compounds and a test set of 30 
compounds. With the wide range of difference 
between the experimental values and the large 
diversity in the structures, the combined data set 
of 120 molecules and 30 molecules is ideal as a 
training and test set, as both sets do not suffer 
from bias due to the similarity of the structures. 
The various molecular descriptors (885 in total) 
as described in PaDEL-Descriptors version 2.18 
[22] were calculated initially. By applying a 

missing value test, a zero test, a correlation test 
with a cutoff value of 0.0001, and a 
multicollinearity test with a cutoff value of 0.80, 
we have discarded the most likely parameters, 
resulting in 172 parameters. Further additional 
parameters were discarded by applying the GFA, 
and finally 8 parameters were selected for the 
development of the QSAR equation. As the 
squared correlation coefficient,&�, can be easily 
increased by the number of terms in the QSAR 
equation, we took the cross-validation correlation 
coefficient, ���� , as the limiting factor for a 
number of descriptors to be used in the final 
model. It was observed that the ����  value 
increased until the number of descriptors in the 
equation reached 8. So, the number of 
descriptors was restricted to 8 in the final QSAR 
model. The best significant relationship for the 
activity has been realized to be; 

 
Model 1: 
 

PNQ50 =  3.08172(+/−0.52134)   + 3.09393(+/−0.52028) ]^_`3 + 28.05602(+/
−3.2988) _Qb − 3 − 34.91622(+/−3.30279) MQb − 7 − 13.37449(+/−1.35611) MQ − 5 +
3.67308(+/−0.18491) MPQ − 5 − 0.76154(+/−0.08721) @bcA −
2.48376(+/−0.49227) @AAGG_ − 0.24588(+/−0.04857) de@bce@H5.                           (11) 

 
f = 120, ��� = 1.7850, & = 0.9658, &-"'56� = 0.9329, &'$(� = 0.9280, ���� = 0.9065, � − HIGH =
192.7484, _gg = 0.6557, � = 1.4729, P&g__ = 66.4307, _hgP = 0.7440, 9-#.-� = 0.8929, 
9=� = 0.8891,  9C′� = 0.8911 

 
Model 2: 
 

PNQ50 =
 3.35843(+/−0.50132)   + 3.45359(+/−0.5738) ]^_`3 + 26.16473(+/−3.20745) _Qb − 3 −
32.26124(+/−3.02354) MQb − 7 − 13.26959(+/−1.37737) MQ − 5 + 3.57781(+/
−0.18586) MPQ − 5 − 0.43222(+/−0.08688) @bcA − 0.18283(+/−0.03768) d?ibce@H5 +
0.56005(+/−0.10593) jde@.                                                                  (12) 

 
f = 120, ��� = 1.8483, & = 0.9648, &-"'56� = 0.9305, &'$(� = 0.9255, ���� = 0.9108, � − HIGH =
185.6753, _gg = 0.6672, � = 1.4460, P&g__ = 63.3978, _hgP = 0.7269, 9-#.-� = 0.9039, 
9-#.-=� = 0.9024, 9-#.-C′� = 0.901 

 
In the equations, the figures in the parentheses are the standard errors of the regression coefficients. 
 
where N is the number of compounds in the training set, &-"'56�  is the squared correlation coefficient, 

SEE is the estimated standard deviation about the regression line, &'$(�  is the square of the adjusted 
correlation coefficient for degrees of freedom, F test is the measure of variance that compares two 
models to see if the more complex model is more reliable than the less complex one (the model is 
supposed to be good if the F test is above a threshold value), and ����  is the square of the correlation 
coefficient of the cross-validation using the leave-one-out cross-validation technique. The QSAR 
model developed in this study was statistically (&-"'56�  = 0.9329, ����  = 0.9065, F test = 192.75) best 
fitted and consequently was used for prediction of activities (pIC50) of training and test sets of 
molecules. The relationships between predicted (both training and test) activities and the 
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corresponding experimental activities are shown in Figs. 7 and 8. The &-"'56�  and ����  values of 
0.9329 and 0.9065, respectively, of the model corroborate with the criteria for a QSAR model to be 
highly predictive [25]. The difference between  &-"'56�  and ����  never exceed 0.3. A large difference 
suggests the following: presence of outliers, over-fitted model, and presence of irrelevant variables in 
data [29] as such &-"'56� − ���� = 0.0264 which is less than 0.3. The standard error of estimate for 
the model was 0.6557, which is an indicator of the robustness of the fit and suggested that the 
predicted pIC50 based on model is reliable. The developed model was further validated by a 
randomization technique (&k"'6$� = 0.0658 and �k"'6$� = −0.1002, no chance correlation) [33]. 
The values of R2

r and R2 were determined, which were then used for calculating the value of R2
p. 

Models with R2
p values greater than 0.5 are considered statistically robust. If the value of R2

p is less 
than 0.5, then it may be concluded that the outcome of the model is merely by chance, and it is not at 
all well predictive for truly external data sets. In this data set, values of R2

p for all the 100 models were 
well above the stipulated value of 0.5 (Table 2). Therefore, it can be concluded that besides being 
robust, the model developed is well predictive. 
 

 
 

Fig. 7. The calculated PIC50 versus the experimental PIC50 for training set 
 

The inter-correlation of the descriptors used in 
the QSAR model was very low (below 0.8), which 
is in conformity to the study that, for a statistically 
significant model, it is necessary that the 
descriptors involved in the equation should not 
be inter-correlated with each other [34]. To 
further check the intercorrelation of descriptors, 
VIF analysis was performed. In this model, the 
VIF values of these descriptors are (Tables 3 and 
4) 2.852 (ATSc3), 2.0917(SCH-3), 4.4264 (VCH-
7), 1.9016 (VC-5), 2.6669 (VPC-5) 2.2706 
(nHBd) 1.1085 (nddssS) and 1.8683 (minHBint5) 
(Table 3), which are less than the threshold value 
of 10 [31,32]. Satisfied with the robustness of the 
QSAR model developed using the training set, 
we have applied the QSAR model to an external 
data set constituting the test set. As the 
experimental values of IC50 for these inhibitors 

are already available, this set of molecules 
provides an excellent data set for testing the 
prediction power of the QSAR model for new 
compounds. Table 1 represents the predicted 
pIC50 values of the test set based on model (1). 
The overall root mean square error (RMSE) 
between the experimental and predicted pIC50 
values was 0.6955, which reveals good 
predictability. The estimated correlation 
coefficients between experimental and predicted 
pIC50 values with intercept (r2

testo) and without 
intercept (r2

test) were 0.8891 and 0.8929, 
respectively. The value of [(r2

test − r2
test0)/r

2
test] = 

(0.8929 − 0.8891)/0.8929 = 0.0042, which is less 
than 0.1 stipulated value [25] and therefore vali-
dates the usefulness of the QSAR model for 
predicting the biological activity of the external 
data set. Also, the values of k and k′ were 1.033 

y = 0.9328x + 0.2758

R² = 0.9328

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9

P
re

d
ic

te
d

 I
C

5
0

Experimental IC50



 
 
 
 

Edache et al.; IRJPAC, 11(1): 1-15, 2016; Article no.IRJPAC.22863 
 
 

 
11 

 

and 0.9562, which are well within the specified 
ranges of 0.85 and 1.15 [25]. The values of 
r2

m(LOO) = 0.8899, R2
pred = 0.9261,  r2

m(test) = 
0.8381, and r2

m(overall) =0.8919 were found to be in 
the acceptable range [26], thereby indicating the 
good external predictability of the QSAR model. 
 
The Williams plot, the plot of the standardized 
residuals versus the leverage, was exploited to 
picture the applicability domain (AD) [35,36]. 
Leverage indicates a compound’s distance from 
the centroid of X. The leverage of a compound in 
the original variable space is defined as: 
 

ℎ5 = m5n(mnm)
	m5          (13) 
 
where Xi is the descriptor vector of the 
considered compound and X is the descriptor 
matrix derived from the training set descriptor 
values. The warning leverage (h*) is defined as: 
 

ℎ∗ = p(!q	)
+                       (14) 

 

Where N is the number of training compounds, p 
is the number of predictor variables. From the 
Williams plot (Fig. 9), it is obvious that one 
compounds in the test set fall inside the domain 
(No. 63) of the GFA-MLR model (the warning 
leverage limit is 0.225). There are only four 
compounds (No. 94, 128, 130 and No. 134 in the 
training set) which have the leverage higher than 
the warning h* value, thus they can be regarded 
as structural outliers. Fortunately, in this case the 
data predicted by the model are good for 
compound numbers 7 and 24, thus they are 
‘‘good leverage” compounds. For all the 
compounds in the training and test sets, their 
standardized residuals are smaller than three 
standard deviation units (±3δ) except compound 
number 105. Consequently compound 105 can 
be as outlier. Because this compound is one of 
the test set compounds, there is no need to 
remove this compound from the data set. 

Table 2. Predicted values of the test set 
(external cross-validation) and results of 

statistical parameters 
 

Parameters Model 1 Model 2 
9:(�ss)�  0.8899 0.8988 

9:(-#.-)�  0.8381 0.8686 

9:(C�#"'DD)�  0.8919 0.9033 

9:(C�#"'DD)� (?AEFGHIA) 0.8841 0.8963 

&t_gP 0.6955 0.6534 
&!"#$�  0.9261 0.9348 
&!� 0.9008 0.8992 
�u��  0.8800 0.8941 

v9-#.-C� − 9-#.-C′� v 0.002 0.0014 

9-#.-� − 9-#.-=′�
9-#.-�w  

0.002 0.0032 

9-#.-� − 9-#.-=�
9-#.-�w  0.0042 0.0017 

> 1.033 1.0313 

> ′ 0.9562 0.9592 
 
Euclidean based applicability domain, It is based 
on distance scores calculated by the Euclidean 
distance norms. First and foremost, normalized 
mean distance score for training set compounds 
are calculated and these values ranges from 0 to 
1(0=least diverse, 1=most diverse training set 
compound). Then normalized mean distance 
score for test set are calculated, and those test 
compounds with score outside 0 to 1 range are 
said to be outside the applicability domain. This 
can also be checked by plotting a ‘Scatter plot’ 
(normalized mean distance vs. respective 
activity) including both training and test set. If the 
test set compounds are inside the domain/area 
covered by training set compounds that means 
these compounds are inside the applicability 
domain otherwise not. From the plot (Fig. 10), all 
the test set compound are inside the domain of 
the training set [37]. 

 
Table 3. Specification of entered descriptors in GFA method 

 
Descriptors *t Stat **P-value ***VIF ****MF 
ATSc3 5.911163 3.81E-08 2.852 0.4582 
SCH-3 5.946609 3.23E-08 2.0917 0.0658 
VCH-7 8.50492 9.55E-14 4.4264 -3.9335 
VC-5 -10.5717 1.72E-18 1.9016 -2.0945 
VPC-5 -9.86242 7.44E-17 2.6669 8.1554 
nHBd 19.86406 2.43E-38 2.2706 -1.3983 
nddssS -8.7327 2.9E-14 1.1085 -0.0404 
minHBint5 -5.04555 1.78E-06 1.8683 -0.2127 
*t-stat was introduced to compare under the confidence level 95%, **p-value was introduced to compare under the 

confidence level 95%, ***Variation inflation factor, ****Mean effect 
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Table 4. Physical-Chemical meanings of the descriptors used in the developed mt-QSAR 
model 

 
Descriptor Definition Symbol 
Autocorrelation Descriptor Charge ATS autocorrelation descriptor, 

weighted by charges 
ATSc3 

ChiChain Descriptor Simple chain, order 3 SCH3 
Valence chain, order 3 VCH-7 

ChiCluster Descriptor Valence cluster, order 5 VC-5 
ChiPathCluster Descriptor Valence path cluster, order 5 VPC-5 
Electrotopological State Atom Type Descriptor 
 

Count of E-States for (strong) 
Hydrogen Bond donors 

nHBd 

Count of atom-type E-State: >S== nddssS 
Minimum E-State descriptors of 
strength for potential Hydrogen Bonds 
of path length 5 

MinHBint5 

 

 
 

Fig. 8. The calculated PIC50 versus the experimental PIC50 for the test set 
  

 
 

Fig. 9. The William plot, the plot for the standardized residuals versus the leverage value 

y = 0.9173x + 0.249

R² = 0.8929
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Fig. 10. Euclidean distance norms, the plot for normalized mean distance versus experimental 
pIC50 

 
To examine the relative importance, as well as 
the contribution of each descriptor in the model, 
the value of the mean effect (MF) [37,38] was 
calculated for each descriptor. This calculation 
was performed using the following equation. 
 

t�( = xy ∑ $2y2z32z{
∑ xy�y ∑ $2y32

         (15) 

 
Where MFj represents the mean effect for the 
considered descriptor j, βj is the coefficient of the 
descriptor j, dij stands for the value of the target 
descriptors for each molecule and eventually, m 
is the descriptors number for the model. The MF 
value indicates the relative importance of a 
descriptor, compared with the other descriptors 
in the model. Its sign (+, -) indicates the variation 
direction in the values of the activities as a result 
of the increase or decrease in the descriptor 
values. The mean effect values are shown in 
Table 3. All descriptors were calculated for the 
sorts. The activity is assumed to be highly 
dependent upon the ATSc3, SCH3 and VPC-5. 
In the model, a student’s t-test was performed at 
a confidence level of 95% to confirm the 
significance of each descriptor. All the p-values 
(Fig. 3) of the descriptors were less than 0.05, 
indicating that the selected descriptors were 
statistically significant at the 95% level. 
 
4. CONCLUSION 
 
In this article, a QSAR study of 150 molecules 
showing HIV-1 inhibitor activity was performed 

based on the theoretical molecular descriptors 
calculated by the PaDEL-Descriptors software. 
The built model was assessed comprehensively 
(internal and external validation) and all the 
validations indicated that the QSAR model built 
was robust and satisfactory and that the selected 
descriptors could account for the structural 
features responsible for the HIV-1 inhibitors. The 
QSAR model developed in this study can provide 
a useful tool to predict the activity of new 
compounds and also to design new compounds 
with high anti-HIV-1 inhibitor activity. 
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