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Abstract: To cope with the challenges in forest management that are contemporarily caused by
climate change, data on current chemical and physical soil properties are more and more necessary.
For this purpose, we present a further amalgam of depth functions and SCORPAN modelling to
provide data at arbitrary depth layers. In this concept, regionalisation is split up into the modelling
of plot totals and the estimation of vertical distributions. The intended benefits by splitting up
are: consistency between estimates on plot level and depth layer level, avoidance of artificial depth
gradients, straightforward interpretation of covariates in the sense of pedogenetic processes, and
circumnavigation of the propagation of uncertainties associated with separation between horizons
during field sampling. The methodology was tailored to the circumstances within the north-eastern
lowlands and the utilisation of current inventory data of the National Forest Soil Inventory (NFSI)
in Brandenburg (Germany). Using the regionalisation of soil organic carbon (SOC) as an example,
the application is demonstrated and discussed in detail. The depth to groundwater table and terrain
parameters related to the catchment area were the main factors in SOC storage. The use of kriging
did not improve the model performance. The relative depth gradients of SOC were especially
distinguished by tree species composition and stand age. We suppose that interesting fields of
application may be found in scenario-based modelling of SOC and when SOC serves as a basis for
hydrological modelling.

Keywords: depth functions; SCORPAN modelling; soil forming factors; forest soils; soil organic
carbon; regionalisation; north-eastern lowlands; forest site mapping; Brandenburg

1. Introduction

Nowadays, regional data on forest soil properties are increasingly demanded for
various questions concerning forest management practices, like tree species selection,
liming, harvest intensity, or the detection of risk areas. Thus, quantitative data related to
climate change and its site-specific drought effects, as well as data on current soil nutrient
status, are required to support decision-making.

Soil organic carbon (SOC) profoundly influences a soil’s cation exchange capacity
[1–3], which is a key feature for nutrient supply to trees. Soil texture, SOC , and the usually
tightly correlated bulk density [4–6] are the main factors controlling the soil hydraulic
properties [7–9]. Especially in the case of the mainly sandy textured soils of the north-
eastern lowlands, soil organic carbon strongly influences the spatial patterns of hydraulic
properties [10]. In addition to these well-understood principles, which are widely used
in modelling water and element budgets, SOC also affects the wettability of soils [11,12]
and, thus, the development of preferential flow paths [13]. Implications of preferential flow
paths are not limited to percolation and actual soil water storage [14], and may also include
feedback effects on local climate [15].
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Whereas in the glacial deposits of the north-eastern lowlands, soil texture is largely
predetermined by parent material, other soil forming factors, like groundwater, vegeta-
tion/forest management, and climate, also have to be taken into consideration for soil
organic carbon. In particular, due to the influence of groundwater and vegetation, the
temporal variation of SOC is expected to be high (compared to soil texture). Since en-
richment of soils with soil organic matter usually starts just after deposition of parent
material, tighter correlations with current terrain can also be expected. On the other hand,
to cope with the temporal variation, contemporary measurements of SOC are strictly
needed for regionalisation.

Over the last decades, several approaches for mapping SOC have been developed,
which generally make intense use of terrain parameters derived from digital elevation
models. Further covariates related to soil forming factors, like climate data, geological
mapping units, or data on landcover, are also frequently used. The methods usually
involved range from machine learning techniques, like support vector machines [16] or
artificial neural networks [17], to all kinds of statistical models, such as stepwise linear
regression and decision trees [18–21]. Especially since the introduction of the SCORPAN
framework for digital soil mapping by McBratney et al. [22], which extended the classic
concept of soil forming factors [23] by soil and space, the additional use of geostatistics
in regionalisation approaches for SOC became a widely used technique [24]. Newer
approaches also use deep learning [25], data augmentation [26], and increment-averaged
kriging [27] to predict multiple depths with a single model.

The majority of studies conducted are on the prediction of SOC for predefined depths
of the entire soil solum or discrete soil layers. Prior to development of prediction models, it
is therefore necessary that the solum depth or soil layer boundaries are well defined for
the respective purposes. If the SOC of several soil layers should be mapped, fitting of the
increasing number of prediction models becomes more and more time consuming. The
SOC stock of every layer is then treated as unbounded random variables (see also [28]).
Thus, it becomes far from straightforward to ensure consistency between SOC stored in
single layers and the stocks of the entire soil solum at every single site in the resulting maps.

Analogous problems arise for the resulting depth gradients of SOC, which might
adopt artificial shapes. Furthermore, fitting of individual models for respective soil layers
forces the user to deal with several different estimates of variable importance. Except for
soil layers with a priori well-known differences regarding the main processes for carbon
enrichment, such as the organic layer and mineral soil, it will hardly be possible to logically
interpret the influence of covariates in terms of soil forming factors. This may hinder the
optimal selection of predictors and detection of spurious covariates to be excluded. Last
but not least, individual regionalisation of depth layers may enhance the propagation of
potentially large sampling errors caused by incorrect separation. Such errors especially
result from mingling of the organic layer and mineral soil [29].

The usage of depth functions to describe the vertical variation of soil properties
has a long tradition in soil science (see [30] for a detailed overview). The application of
soil attribute depth functions in three-dimensional spatial prediction of soil properties
was already proposed by Bishop et al. [31]. It has also already been shown that the
concept of depth functions is beneficial in mapping SOC distribution throughout the soil
profile: Equal-area quadratic smoothing splines were used to derive SOC for homogeneous
depth increments from legacy profile data as a data basis for the development of artificial
neural networks and regression models [21,32,33]. To obtain maps of continuous depth
functions, Malone et al. [32] utilised equal-area quadratic splines for interpolation through
predicted SOC contents of discrete soil layers after regionalisation. To calculate weighted
means of SOC for mapping units from available legacy soil data, Odgers et al. [34] applied
equal-area quadratic smoothing splines. From a more conceptual perspective, depth
functions are used for two reasons within 2.5D soil mapping frameworks [35]: The first
reason is the harmonisation of soil observations. Equal-area quadratic smoothing splines
are then often fitted to depth interval values after mapping to derive continuous depth
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functions for each pixel mapped. The equal-area smoothing splines of Bishop et al. [31] can
be considered as the state of the art for these two applications for one reason in particular:
The interpolation process preserves the masses originally measured or predicted on a depth
interval basis (especially for small values of λ).

Direct utilisations of depth functions during the mapping process itself are given
by Mishra et al. [36] and Kempen et al. [37]. Mishra et al. [36] used ordinary kriging to
interpolate parameters of exponential functions fitted to single-point observations before-
hand. Kempen et al. [37] predicted parameters of soil-type-specific depth functions of SOC
using cokriging.

By using relative depth gradients, we try to strengthen the interpretability of SCOR-
PAN factors in three-dimensional mapping of SOC in forest soils. Our further objectives
were to ensure the consistency between solum stocks and stocks within single depth layers,
to avoid the construction of artificial depth gradients, and to lessen the propagation of
sample separation errors. The basic conceptual hypothesis of the method is that distinguish-
ing between covariates that control horizontal and vertical distribution of SOC simplifies
variable selection during model development. Even though increasing interpretability may
decrease model performance measures, we believe that a good understanding of covariates
in terms of soil forming factors is valuable for the mapping results.

2. Material and Methods

For the regionalisation of SOC stocks in the north-eastern lowlands, we started with
the general methodology proposed by Kempen et al. [37]. The main accommodations to
the requirements for mapping SOC in the north-eastern lowlands concern a simplified
derivation of depth functions, which does not require expert-knowledge-based groupings
like horizons and soil types. Additionally, we tried to facilitate the accessibility of the
main factors controlling the horizontal and vertical distribution of SOC. To achieve this, we
substituted soil-type-specific depth functions with data-driven clustering and split up the
mapping process for the vertical and horizontal distribution of SOC with relative depth
gradients. A flowchart of the methods and data involved is given in Figure 1.

SOC
inventory
data

solum stocks

depth layers

scorpan factors

S soil
C climate
O organisms land-use
R relief
P parent material
A age
N space

regression
analysis

pred. values

residuals

geostatistics predicted
solum stocks

cluster
analysis

relative depth
gradients

classification
tree

depth gradient
type probability

predicted
SOC stocks in
depth layers

Figure 1. Conceptual framework for mapping soil organic carbon (SOC) stocks in depth layers using SCORPAN modelling
and relative depth gradients.

In the first step, stepwise regression analysis was used to select the most significant
covariates, which determine whole solum SOC stocks at inventory plots, from a bundle of
potentially relevant SCORPAN factors. Afterwards, the residuals of the fitted regression
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models were examined using geostatistical methods (variogram analysis, ordinary kriging)
on spatial dependencies. Hence, the regionalisation of the SOC solum stocks complied
with the widely used regression kriging discussed in detail by Hengl et al. [38].

The regionalisation of depth gradients started with calculation of relative SOC stocks
within the particular depth layer by expressing single stocks in proportion to solum
stocks. The obtained relative depth gradients were then grouped into depth gradient
types using cluster analysis. Finally, classification tree approach was used to estimate the
probability that a site was in one of the distinct depth types. In addition to the purpose
of regionalisation, the resulting classification tree offers insights into the main factors
controlling the vertical distribution of SOC.

2.1. Inventory Data

To address the expected temporal variably of SOC adequately, we restricted the SOC
data invoked to inventory and inventory-like data. Our primary source of SOC data
was thus the second National Forest Soil Inventory (NFSI) [39]. An additional NFSI-like
soil sampling campaign was conducted at a regional scale to enhance the analysis of
topographic effects on SOC. Within the NFSI, field sampling was conducted during 2006
and 2009. At the regional scale, the collection of soil samples was done in the years 2008
and 2009 [40]. We did not make use of additional legacy profile data to avoid biased
estimates on total SOC stocks and to prevent a mix-up of spatial and temporal effects on
SOC. In contrast to the often-used legacy profile data, the NFSI comes with six well-defined
uniform depth layers (organic layer, 0–5, 5–10, 10–3, 30–60, and 60–90 cm). Hence, the
homogenisation or refinement of soil layers was not necessary prior to regionalisation. The
volumetric SOC contents (kg m−3) were obtained by using Equation (1), where ρfe, Corg,
and CF denote the bulk density of the fine earth (kg m−3), the concentration of organic
carbon (kg kg−1), and the volume fraction of coarse fragments (%), respectively.

SOC = ρfe Corg(1−
CF
100

) (1)

The volume fraction of coarse fragments was estimated in the field and measured by
sieve analysis in the laboratory (depending on rock size). Mass fractions obtained from the
sieve were transformed into volume fractions by assuming a rock density of 2.65 g cm−3.
The bulk density of the fine earth was determined on soil-core samples. Mass and volume
fractions of coarse fragments (>2 mm) contained within the core samples were excluded
from the calculation. Organic carbon was determined by dry combustion using a total
analyser (LECO CNS-2000). All laboratory analyses were performed in compliance with
the NFSI standards, which are documented in detail in GAFA [41].

2.2. Environmental Covariates

Since the preliminary considerations strongly suggested that SOC is controlled by a
wide range of influences, we tried to obtain environmental covariates that address all seven
SCORPAN factors appropriately. A short overview of the compiled variables is given in
Tables 1 and 2.

Covariates related to parent material and soil properties were primarily derived from
forest site mapping data [42,43] and by means of digital soil mapping techniques [40,44].
In addition to widely used particle size fractions, we additionally computed the geometric
mean particle size Dg% ... for numerical characterisation of the soil texture. Dg% ... was
originally proposed by Meersmans et al. [45] to improve the reflection of SOC variation
due to texture. For estimates of the depth of groundwater, we additionally considered
water-table maps based on monitoring wells [46].

Climatic factors were directly taken from the detailed compilation by Riek et al. [47].
The selection of indicators to be considered was guided by assumptions on dominant
processes influencing the storage of SOC inside the study area. Thus, CWB win (climatic
water balance during winter) and P win (winter precipitation) were chosen as proxies for
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vertical translocation, whereas CWB sum (climatic water balance in the summer half-year),
P sum (summer precipitation), and Ta (annual mean temperature) were used to indicate
climatic effects on soil biological activity. Additionally, we calculated the annual rage
of temperature ∆T as a surrogate for continentality and the number of frost-free days.
The latter was originally introduced by Ramann [48] and then revisited by Jenny [23] as
Ramann’s Weathering Factor, expressing the length of the ‘chemical weathering season’.

Table 1. Environmental covariates for the regionalisation of SOC arranged by the associated SCORPAN factors.

Soil Properties (s), Parent Material (p)

CF ... coarse fragments [%]

S% ..., Si% ..., C% ...
proportions of particle-size
classes (sand, silt, clay)

Dg% ... geometric mean particle size

zCaCO3 depth of calcareous horizon

zGW depth of groundwater

Climate (c)

CWB sum, CWB win climatic water balance (seasonal)

Ta annual mean temperature

nd> 0◦C frost-free days

∆T
annual range of temperature (as
surrogate for continentality)

P a, P win, P sum precipitation (annual, seasonal)

Organisms, Vegetation, Land Use (o)

pdeciduous, ppine,
pbeech, poak

proportions of tree species

Topography (r)

terrain attributes derived from the digital elevation
model (DEM) (see Table 2)

Age (a)

series . . .
geochemical series (age of de-
posit)

t stand, forest stand age

Spatial Position (n)

WA200, WA500,
WA1000,

proportion of surrounding forest
area (within search radii of 200,
500, 1000 m)

l edge distance to nearest forest edge

The proportions of tree species were derived from forest inventory data (‘Datenspei-
cher Wald’) to obtain forest-specific indicators on land-use effects. The usage of forest
inventory data allowed us to calculate the respective percentages from ratios of a single-
species basal area to the total basal area of the forest stands. In the rare case of missing
data, CORINE landcover classes [49] were used instead (applies to mapping only).

The role of topography on SOC was examined with several terrain attributes derived
from a digital elevation model (DEM). As the cell size of the underlying DEM was 25 m,
the terrain attributes derived form the environmental covariates with the highest spatial
resolution in our study. Seeing that the covariates derived from DEM might be able to
improve the prediction of SOC at the smallest spatial scales and the general availability of
DEM data, we made exhaustive use of them. Nevertheless, the selection of indices from the
vast number of existing terrain attributes was once again strictly constrained with respect
to the theory of topography as a soil forming factor. The computed terrain attributes are
tabulated in Table 2.

The time factor on SOC was considered from a geologic and a forest management
perspective. For this, we computed the mean stand age as a basal-area-weighted average
on the basis of forest inventory data. To cope with the problem of soil formation time, we
used the geochemical series gathered by forest site mapping as a rough estimate.
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Table 2. Terrain attributes derived from the digital terrain analysis.

Topographic Indices Derived by Evaluating the 3× 3 Altitude Submatrix or Elevations Within Search Radii

β slope [50]

north, east northness and eastness derived from cosine and sine transformation [51] of aspect [50]

βd downslope index [52]

C, C plan, C prof isotropic, planform, and profile curvature [50]

ΨL ... negative openness (radii 100, 250, 500 m in [53])

ΨS sky-view factor [54]

ΨT terrain configuration factor [55]

Ψwte wind exposition [54]

Ŝ direct solar beam irradiance [56]

TPI ... topographic position index (radii 25, 125, 500 m in [57])

TRI ... terrain ruggedness index (radii 50, 300 m in [58])

Topographic Indices Calculated at the Catchment Scale

A C catchment area [59]

βC average slope [50] within catchment

L, S, LS slope length, slope steepness, and topographic factors from the Revised Universal Soil Loss
Equation (RUSLE in [60])

TWI topographic wetness index [61]

SPI stream power index [62]

Terrain Attributes Derived from Drainage (DN) and Ridge Networks (RL) [63,64] at Different Spatial Scales (Large
Scale (l), Small Scale (s))

βRL(...), βDN(...),
βtot(...)

uphill slope angle (to ridge network), downhill slope angle (to drainage network), and total slope
angle (slope from ridgeline to drainage network) [65]

sRL(...), sDN(...),
s tot(...),

horizontal distances to ridgeline and drainage networks and total slope length (distance from
ridgeline to drainage network) [65]

∆zDN(...) elevation above the thalweg [66]

RSP (...) relative slope position [65]

MBI (...) mass balance index [67]

In addition to the consideration of space by the use of geostatistics, we also computed
simple distance-based indices. The created indices should serve as proxies for edge effects,
like micro-climate and atmospheric deposition. Since the probability of land-use changes
in the past increases with closeness to the forest edge, the indices may also act as proxies
for former stand history (beyond the time horizon of forest inventory data).

During the development of the model, we tried to circumnavigate the positional errors
contained in the different sources of spatial data. Thus, whenever the NFSI contained the
same information, as in the case of soil texture or tree species composition, we favoured
the inventory data as a source for derivation of environmental covariates. Field estimates
from the NFSI of terrain features, slope, exposition, and curvature were also used to verify
the spatial positioning of sample locations within the DEM. Following Grimm and Behrens
[68], we also iteratively inspected alternative residual values at DEM cells surrounding the
measured coordinates. Thereby, we attempted to obtain a further mitigation of uncertainties
resulting from locational errors of the DEM and sample points. The assumed range of
spatial uncertainty and, thus, the respective domain for virtually shifting the sample points
within the DEM were constrained to the 3× 3 altitude submatrix in both cases.
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2.3. Regression Analysis of Total Solum SOC

The amount of SOC within the soil solum was assumed to be equal to the sum of SOC
stored in the six NFSI depth layers (organic layer plus mineral soil 0–90 cm). Altogether,
424 profiles could be used within the analysis. The total amount of SOC stored within the
soil solum SOCSolum (kg m−2) was modelled using multiple linear regression equations
in the usual form of Equation (2). Predicted values, the constant, regression coefficients,
covariates, and the number of explanatory variables are denoted by Ŷ b0, bj, Xj, and J,
respectively:

Ŷ = b0 +
J

∑
j=1

bjXj. (2)

Distributions of solum stocks were inspected by histogram analysis. The functional
relationships to predictor variables were examined using scatter plots. In cases showing
evidence of non-linear relationships, appropriate intrinsically linear functions were tested.
Residual values were examined for heteroscedasticity and autocorrelation in scatter plots
and were additionally tested with the Durbin–Watson statistic for the latter. As a measure
for the multicollinearity, the tolerance value Tj was computed. Low tolerances indicate
increasing magnitudes of multicollinearity. A tolerance value of 1 denotes perfectly uncor-
related predictors. Thresholds for entry and removal of covariates into/from the regression
equations within the stepwise selection process were set to probabilities of F of 0.1 and 0.15,
respectively [69].

We chose stepwise linear regression analysis over the more elaborate statistical tech-
niques that are currently used in digital soil mapping. The intended advantages by sticking
to this well-established approach were the integrated variable selection during model
development and the direct interpretability of covariate effects: Using multiple linear
regression, the influence of each predictor on the SOC can be seen from the regression
coefficients bj. Positive coefficients indicate that SOC increases with increasing covariate
values. Absolute values of standardised regression coefficients b̂j were used as an indicator
for relative variable importance within the regression models. Throughout the iterative
model development, we permanently examined the plausibility of the predictors that were
entered. Covariates that failed to comply with the expected effects associated with the
respective soil forming factors were continuously eliminated. This was especially the case
if the sign of the estimated regression coefficients was not in accordance with the a priori
assumed causal relationships. We also examined the stability of the direction of effects
within the lower and upper confidence interval bounds, bj − t95sbj

and bj + t95sbj
.

Model performance was assessed by means of scatter plots and statistical indices. For
the latter, the common measures—coefficient of determination r2, adjusted coefficient of
determination r2

adj, norm of residuals se, and F-statistic Femp—were calculated. In addition
to the classical model performance measures computed on the calibration sample, we used
cross-validation to estimate the effects of random fluctuations due to the limited calibration
sample size [70]. For this purpose, we employed repeated tenfold cross-validation [71].
For each model one hundred runs of tenfold cross-validation were performed, resulting
in one thousand model fits. Based on the one hundred validation data sets that were
obtained, the coefficient of determination r2

cv and the root mean square error RMSE cv were
recalculated. We also computed the least squares analysis of slope b1 cv and the concordance
correlation coefficient of Lin [72] (CCC cv). Both statistics are common indicators in assay
and instrument validations. All computations were performed using IBM SPSS Statistics
19 (IBM®).

Inspired by the stratified modelling approach of Zirlewagen and v. Wilpert [73], re-
gionalisation of the total solum SOC was divided into two submodels. The first submodel
was calibrated at terrestrial sites, while the second addressed soil development under
hydromorphic conditions. The idea behind partitioning into submodels is the assumption
that markedly different factors control storage of SOC in both hydrologic domains. A
desired side effect was the introduction of a (nonlinear) threshold point for groundwater
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effects on SOC at the terrestrial sites. To prevent discontinuities and to maintain sufficient
cases, sites within a transient area from the hydromorphic regime to terrestrial soils were
used in the development of both models. The overlap used ranged from 2.0 to 3.0 m depth
to the groundwater table. The upper threshold for distinguishing between both hydrologic
domains conforms to the classification given by the German soil mapping guidelines,
‘GWS6’ [74], whereas the lower bound of 3.0 m is taken from local forest site mapping
instructions [43]. It is the cut-off above which forest sites are considered to be influenced
by groundwater.

2.4. Geostatistical Analysis

Following the recommendations of McBratney et al. [22], we applied variogram analy-
sis and kriging on the residuals to examine the spatial trends within the remaining variance.
Considering the density of the sampling points, we mainly intended to incorporate un-
known large-scale effects, such as paleoclimate or atmospheric depositions, rather than to
improve predictions in the close surroundings of single NFSI plots.

All geostatistical analyses were conducted under the assumption of isotropy. The
autocorrelation coefficients ρ(h) and semivariances (Matheron’s estimator) γ(h) were cal-
culated according to Webster and Oliver [75]. Since variograms and autocorrelograms
are sensitive to the underlying lag increment, the first step of the analysis was the estima-
tion of a suitable interval. In order to find an appropriate increment, we calculated the
average separation between sample points and their nearest neighbours, as recommended
by Webster and Oliver [75]. Finally, the potential model improvement due to the estima-
tion of residuals by ordinary kriging was evaluated. For this purpose, we performed a
leave-one-out cross-validation, as recommended by Webster and Oliver [75].

2.5. Depth Gradients

To derive the relative depth gradients, the volumetric SOC contents (kg m−3) of the six
NFSI layers i were expressed as depth-related percentages SOC% (% m−1) of total solum
SOC storage SOCSolum (kg m−2) (Equation (3)). At sites where a forest floor layer was
lacking, the partial SOC storage for this layer was set to zero.

SOC%i = 100
SOCi

SOCSolum
(3)

All depth data were grouped into depth gradient types using clustering. We used
the common agglomerative hierarchical procedure of Ward [76]. As an objective function
for minimising at each fusion step, the squared Euclidean distance was used. As stated
by Backhaus et al. [77], Ward’s method can be considered as conservative, which means
that there is little tendency to form equal or unequal group sizes. Therefore, Ward’s method
is usually one of the best grouping methods for finding the actual underlying structure of
the data. In particular, it is an excellent choice if the number of clusters is unknown [78].
For that reason, hierarchical grouping methods were preferred over iterative partitioning
methods that require a priori assumptions on the best number of clusters [79], even if this
solution may not be superior in terms of within-group homogeneity. For the calculation of
Euclidean distances, the partial SOC stocks were equally weighted for each depth layer.

The estimation of the optimal cluster number was guided by examination of the scree
plot (elbow method) and the stopping rule of Mojena [78]. The estimation of optimal
cluster solutions by the latter is based on the threshold ranges of the standardised error
sum of squares (ESS). For this, ESS values are standardised with respect to the mean value
and standard deviation of the ESS across all clustering stages. Within standardised ESS
values ranging from 2.75 to 3.50, Mojena [78] observed the best overall results in terms of
the predicted number of clusters for the subsequent clustering stage. To obtain suitable
graphical representations of the selected cluster solution, we used the equal-area quadratic
smoothing splines of Bishop et al. [31]. Where available, the SOC data of the NFSI depth
layer of 90–140 cm were used to improve the fitting at the bottom of the solum. According
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to the findings of Bishop et al. [31], we set the the roughness parameter λ to 0.1. Only in
cases where the fit using λ = 0.1 obviously failed, we increased λ to 1.0 and refitted the the
respective spline. The between-cluster distances of the obtained clusters are delineated
numerically by the normalised differences between within-cluster means and total means
(t-statistics). In addition to the graphical depiction, the within-cluster distances were
assessed by the F-statistic, which expresses the ratio of within-group variability to total
variability. Finally, depth gradient types could be obtained as arithmetic means of relative
depth gradients merged to a single cluster.

2.6. Mapping of Relative Depth Gradient Types

To predict the probabilities of individual depth gradient types, we employed the
classification and regression trees approach (CART) of Breiman et al. [80]. The usage
of relative depth gradients enhances non-linear dependencies between environmental
covariates and class probabilities. Therefore, we preferred tree-based approaches over
parametric approaches, like stepwise linear discriminant programs. Thus, using a tree-
based approach, we avoided elaborate transformations of the predictor variables. A further
consideration leading to the employment of CART was the metric scale in the majority of
the environmental covariates. Compared to other tree classification approaches like Chi-
Squared Automatic Interaction Detection (CHAID) [81], CART is able to process interval-
level variables directly without prior grouping. The Gini diversity index [82,83] was used
as measure of node impurity in the growing and pruning steps of tree construction. Thus,
the obtained trees were optimised to predict the probabilities of the depth gradient types
(class probability tree). The most characteristic feature of CART is the determination of
right-sized trees by optimal pruning instead of by using stopping rules. We employed
tenfold cross-validation and selected the best-performing tree within the standard error
(1 SE rule). The random samples used in tenfold cross-validation were constructed with
regard to class membership. The random selection was constrained so that the proportions
of clusters in each test sample equalled the respective proportions in the total sample.
The only ‘stopping rule’ invoked was that each terminal node should contain at least a
minimum of five cases, thus reducing computational effort, but still providing sufficiently
large trees for subsequent pruning in almost any situation [80].

3. Results
3.1. Mapping Total Solum SOC

The best covariates for predicting solum SOC, which were determined by stepwise
regression, are given in Table 3. The signs of RSP (s) (relative slope position) and sDN(s)
(horizontal distance to drainage network) show that SOC increases at low relative slope
positions and at toe-slope positions in close proximity to the drainage line. In terms of
soil forming processes, this indicates lateral inputs of organic matter due to flooding and
depositions by overland flow from higher slope positions. Similar explanations can be
given for the increase of SOC with the steepness of catchment slopes βC and the decrease
with the stream power index SPI. Erosion within the catchments causes a corresponding
deposition at the sites, while at high erosive potential (SPI ), the SOC is lowered by topsoil
losses or loss of surface inputs (litter). In addition to these covariates related to erosion
by overland flow, the terrain parameter east×β (product of local eastness and slope) can
be considered as an indicator for the redistribution of organic matter by the prevailing
westward winds.

An indicator for the vertical translocation of SOC within the soil profile can be seen
in the winter precipitation P win. Especially during winter season, when the soil is wet,
rainfall strengthens podzolization (e.g., [84,85]), and thus enhances SOC sequestration in
deeper soil layers.

Covariates focusing on in situ soil development are zCaCO3 (depth of calcareous
horizon), CF 0...90 (proportions of coarse fragments) and Ŝ (direct solar beam irradiance). At
first glance, the positive correlation coefficient of zCaCO3 appears contradictory to the in situ
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effects of calcium. Actually, calcium bridges organic matter and clay minerals and stabilises
aggregates [86]. However, in acidic soils without near-surface or even any calcareous layers
within the solum (e.g. zCaCO3 > 3.0 m), soil respiration is often hindered due to the low
activity of soil microbial communities under acid conditions. Of course, acid conditions
induced by high zCaCO3 may also enhance podzolization processes. On the contrary, soil
respiration usually increases with increasing soil temperatures [87,88] under intense direct
insolation Ŝ. The reduction of SOC stocks at high rock contents CF 0...90 indicates that the
corresponding loss of soil volume is not balanced by higher concentrations of SOC in the
remaining fine-earth fraction (see [89]).

Table 3. Selected covariates Xj for estimation of SOC stocks in the soil solum and the corresponding statistical parameters:
regression coefficient bj (10−4), standard error of the regression coefficients sbj

(10−4), standardised regression coefficients b̂j,
t-statistic tj, p-value pj, confidence interval bounds bj − t95sbj

and bj + t95sbj
(10−4), and tolerance value Tj.

Submodel for Terrestrial Soils (zGW > 200 cm)
Xj bj sbj b̂j tj pj bj − t95sbj bj + t95sbj Tj

b0 120,171.553 23,687.729 5.073 0.000 73,589.574 166,753.532
RSP (s) 21,833.983 3433.882 0.316 6.358 0.000 15,081.245 28,586.720 0.489
zCaCO3 56.971 6.384 0.354 8.923 0.000 44.416 69.526 0.768
Ŝ −83.837 11.125 −0.267 −7.536 0.000 −105.714 −61.960 0.962
βC 3523.879 351.225 0.452 10.033 0.000 2833.195 4214.564 0.596
SPI −724.272 102.116 −0.281 −7.093 0.000 −925.084 −523.460 0.771
P win 350.321 61.723 0.207 5.676 0.000 228.942 471.700 0.907
sDN(s) −157.999 32.076 −0.247 −4.926 0.000 −221.076 −94.922 0.482
CF 0...90 −986.206 229.538 −0.157 −4.296 0.000 −1437.593 −534.819 0.906
east×β 1385.928 330.355 0.165 4.195 0.000 736.285 2035.571 0.781
pdeciduous −65.345 21.793 −0.126 −2.999 0.003 −108.200 −22.490 0.685
series I 4550.659 2083.234 0.092 2.184 0.030 453.973 8647.344 0.674

Submodel for Soil with a Near-Surface Groundwater Table (zGW ≤ 300 cm)
Xj bj sbj b̂j tj pj bj − t95sbj bj + t95sbj Tj

b0 467,508.956 46,026.281 10.157 0.000 376,026.739 558,991.173
ln(zGW) −74,129.674 9063.024 −0.613 −8.179 0.000 −92,143.415 −56,115.933 0.957
A C 0.718 0.158 0.342 4.541 0.000 0.404 1.033 0.950
zCaCO3 68.062 33.571 0.154 2.027 0.046 1.336 134.789 0.937
MBI (l ) −356,426.489 196,452.978 −0.135 −1.814 0.073 −746,898.055 34,045.078 0.975

The land-use effects on SOC are captured by the proportions of deciduous trees
pdeciduous. The negative regression coefficient implies the well-known risk of litter loss by
wind blowing for leaf litter. On the other hand, this might also signal that SOC stored in
the generally thicker forest floor layers at coniferous sites is not transferred to mineral soil
at deciduous sites to the same extent. The raised SOC storage at juvenile glacial deposits
(series I) appears as a result of the higher ecosystem productivity in these nutrient-rich soils.

The increase of SOC stocks in the presence of high groundwater tables (zGW ≤ 300 cm)
is in line with expectations. Carbon mineralisation is more and more inhibited due to the
development of anaerobic conditions with rising groundwater levels at these sites. To
describe the nonlinear response to groundwater levels zGW properly, the best fit was found
for the logarithmic transformation. Larger catchments also result in higher SOC stocks. In
addition to the mean depth of groundwater, a large catchment area A C indicates stable, less-
fluctuating groundwater levels, thus causing higher ecosystem productivity at low water
tables and reduced mineralisation (especially at high water tables). The effect of zCaCO3 is
similar to that of the terrestrial sites. Acidic conditions inhibit soil microbial activity. The
decrease of SOC with increasing mass balance index MBI (l ) is in good agreement with net
loss due to the lateral transport processes associated with positive MBI (l ) values.
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Especially for the various terrain attributes, the occurrence of multicollinearity, mask-
ing the individual variable importance, cannot be completely neglected. In particular,
within the submodel for the terrestrial soils, some smaller tolerance values were observed.
Despite these restrictions, the inspection of standardised regression coefficients b̂j clearly
indicates a generally high importance of terrain parameters in the submodel for terrestrial
soils. The highest absolute value of b̂j was found for the slope within the catchment βC.
The soil property zCaCO3 is also of particular importance in this submodel. The distinctly
most important predictor in the submodel for soils with near-surface groundwater was,
of course, the depth of groundwater zGW itself. The standardised coefficient obtained
for the terrain parameter A C must be seen in terms of the groundwater regime rather
than terrain effects. Although the number and importance of included variables are quite
different, predictors related to nearly every SCORPAN factor are incorporated into the
regression equations. The only exception to this is the space factor, indicating that edge
effects and stand history are of minor importance.

The p-values pj derived from the t-statistic are small for the majority of the regres-
sion coefficients. Increased p-values occur only for coefficients in the submodel for sites
with near-surface groundwater. However, even in these cases, the sign and, thus, the
direction of effects do not shift within the lower and upper confidence interval bounds,
bj − t95sbj

and bj + t95sbj
. All in all, the results of the t-statistic suggest statistically reliable

regression equations.
The model performance measures are given in Figure 2. As expected, the p-values

derived from the F-distribution signal high significance. The number of explanatory
variables J entered into both equations is distinctly below the threshold of 10 N/J that was
recommended by Hengl et al. [38] to prevent overfitting. Particularly in terms of absolute
errors, the norm of residuals se confirms that the performance of the groundwater submodel
is slightly poorer. The increased differences in this domain can also be seen clearly from
the scatter plot of the measured and predicted values (Figure 2). These differences between
both submodels mainly result from the high variability of SOC in the group of soils with
near-surface groundwater. Thus, the coefficients of determination, r2 and r2

adj, are quite
similar in both models. The scatter plot shows no extreme outliers or systematic deviations.
Merely by viewing the data of both models at once, some heteroscedasticity appears.
Within the single models, though, the observed overall heteroscedasticity has no effect on
the estimation of confidence intervals [77].
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Figure 2. Measured SOC stocks versus values predicted by regressions models for terrestrial soils and soils with near-
surface groundwater. Model performance measures for the regressions models: number of observations N, number of
explanatory variables J, coefficient of determination r2, adjusted coefficient of determination r2

adj, norm of residuals se,
standard deviations of observed SOC stocks ssoc, F-statistic Femp, and p-value p.
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The assessment of random fluctuations due to the limited size of the calibration sample
is shown in Figure 3. The cross-validation estimates of r2

cv derived for the terrestrial soil
models are in good agreement with the values obtained from the calibration sample. In
the case of models for hydromorphic conditions, the agreement between the calibration
sample and cross-validation estimates of r2

cv is slightly poorer. In comparison to the
cross-validation results for the group of terrestrial sites, the fluctuations of r2

cv across the
repetitions are distinctly higher for the hydromorphic sites. Quite similar relations can
be discovered by inspecting se and RMSE cv. The cross-validation estimates RMSE cv are
almost as small as the respective calibration sample estimates se. The fluctuation of RMSE cv
across validation runs is nearly negligible. Again, the situation is different for the cross-
validation estimates derived for hydromorphic sites, showing slightly increased values
that vary substantially over the performed repetitions. Altogether, these observations are
in line with the findings of Browne [70] regarding the use of cross-validation in regression
applications: If the calibration sample is sufficiently large, the model performance measures
yielded by calibration and cross-validation are essentially the same. On the other hand,
the cross-validation clearly unveils the slightly optimistic impression of model performance
that was originally derived for the small sample of hydromorphic sites. The indicators b1 cv
and CCC cv adopted from assay and instrument validation also reflect this dependence on
sample size. By definition, the slope b1 between the observed and predicted values equals
the coefficient of determination when this performance measure is used in conjunction
with regression analysis (applies to the calibration sample).

Thus, the cross-validation estimates r2
cv and b1 cv also reach a comparable level, as long

as the sample size is large. CCC cv extends the Pearson correlation coefficient by an
additional penalty for deviations of b1 cv from the 45◦ line. As a consequence of this,
squared values of CCC cv are distinctly lower than r2

cv each time.
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Figure 3. Box-and-whisker plot showing the results of model evaluation by one hundred runs of tenfold cross-validation:
coefficient of determination r2

cv, root mean square error RMSE cv, least squares analysis of slope b1 cv, and the concordance
correlation coefficient of Lin [72] CCC cv.

3.2. Geostatistical Analysis of Residuals

After selecting the shortest separations from all 89,676 distances between the 424 sam-
ple points, the obtained mean of 3.684 km served as a starting point to choose the lag
increment. For practical reasons, e.g., plotting the variogram, the lag increment was finally
set to 4.0 km. In the range 0 to 200 km, the mean number of observations contained in each
of the 51 lags was 1752. Only at lags > 150 km did the numbers of cases fall below 1000.

The experimental autocorrelation coefficients ρ(h) are shown in Figure 4. The auto-
correlogram shows an immediate decline of autocorrelation coefficients within the first
lag interval. At all subsequent lag distances h ≥ 2 km, the autocorrelation coefficients
show a narrow range of scatter around zero. As a consequence of the considerable number
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of negative coefficients, it is not possible to compute the autocorrelation length with the
exponential autocorrelation function (Equation (4)) commonly used for this purpose [90].

i=1

∑
n−1

[
ρi(0)− e(-h/λ)

]
= 0 (4)

Even as the autocorrelation length reaches close to zero, the sum of coefficients cannot
be balanced by the exponential autocorrelation function. Figure 4 shows an alternative fit
that assumes all negative coefficients as zero, yielding an autocorrelation length of 1.1 km.
These findings imply that autocorrelation is of minor importance at the scale analysed.
Likewise, this can be taken as an indication that the main influences affecting SOC in
the study area are already captured by the regression models. This is very similar to the
findings of Zirlewagen and von Wilpert [91] on the regionalisation of SOC in the forest soil
of Baden-Wuerttemberg (Germany). They also observed only very weak autocorrelation
coefficients for residuals remaining after regression analysis.

0 50 100 150 200
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

h (km)

ρ
(h
)

experimental

e(−h/1.099)

0 50 100 150 200
0

1

2

3

4

5

6

7

c0 = 2.146
c = 2.651
r = 36.072

h (km)

γ
(h
)
( kg

2
m

−
4)

experimental

c0 + c
[
1 − e(−h/r)

]

Figure 4. Autocorrelogram, sample variogram, and fitted variongram model (nugget + exponential) for residuals of the
regression equations.

The values of the sample variogram (Figure 4) reach the sill within a range of 100 km.
After reaching this maximum, the semivariance shows a hole effect, which typically arises
from regular repetitions [75] or spatial variation occurring at several scales [90]. The ob-
served regularly oscillating semivariances are possibly caused by the periodically arranged
glacial deposits in the north-eastern lowlands resulting from successive ice advances.
Especially within the study area, the distance between moraines and related landscape
elements left by the successive glacial stages is quite similar to the observed periodicity of
the semivariogram [92,93]. Although variables like zCaCO3 and CF 0...90 were entered into
the regression equations, these effects may be enhanced by a slight under-representation of
the corresponding predictors (e.g., particle size classes) within the regression models.

For modelling the variogram, we selected an exponential function with an additional
nugget component (Figure 4). The range for fitting the function to the experimental
values was restricted to 100 km, thus neglecting the hole effect at larger lag distances.
Following Webster and Oliver [75], we did not fit the variogram model to the hole effect,
as there was no clear theory for the observed periodicity. In addition, the use of increased
weight factors at high distances in the kriging procedure would not support the desired
incorporation of unknown large-scale effects. The combined variogram model achieved a
high goodness of fit (R2 = 0.874). The parameters estimated using the Levenberg–Marquardt
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method [94] indicate that pairs of residuals are spatially correlated up to a distance of
108 km (ca 3 ×r) until the model approaches the maximum semivariance (sill c). However,
nearly half of the spatially dependent variation occurs at distances below the lag increment
or is contributed by measurement errors, as can be seen from the fairly high nugget
component c0 [90].

Although modelling the variogram yielded a properly fitted equation with high good-
ness of fit, solving the kriging equations based on it had only a low predictive power.
Plotting the scatter of residuals retained from regression analysis eReg against their esti-
mates obtained from leave-one-out cross-validation showed only a poor correlation (Figure
5). When the kriging estimates are used to improve the SOC stocks predicted by regres-
sion equations, the conducted correction actually brings a slight deterioration in model
performance. Analogously to autocorrelogram analysis, these results show that a high
degree of large-scale variation is already explained by regression. In this study, the use of
geostatistical estimates can thus be omitted.
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Figure 5. Scatter diagrams of residuals retained from regression analysis eReg against residuals estimated by ordinary
kriging êKrig and measured SOC stocks versus predictions improved by kriging estimates of residuals obtained during
leave-one-out cross-validation.

3.3. Depth Gradients

In the first step, relative depth gradients of the individual inventory plots are grouped
into depth gradient types by clustering. Throughout the stagewise proceeding of the clus-
tering process, the number of clusters decreases, starting with the number of observations
(424), until all sites and clusters are unified (Figure 6).

While the the number of clusters decreases, the ESS based on squared Euclidean
distances increases. After discarding the initial partition of 424 clusters and the final one-
cluster solution, 422 possible cluster solutions remain. A first approximation of the optimal
number of clusters with the elbow method suggests a solution with five clusters, since the
most distinct increase in the ESS appears after the solutions with four clusters. Regarding
the standardised ESS values obtained by clustering the relative depth gradients of SOC, the
stopping rule of Mojena [78] indicates an optimal solution in the range of 5 to 8 clusters.
Finally, taking into account practical considerations on handy cluster sizes that facilitate
interpretation and prediction of the resulting depth gradient types, we selected the solution
with five clusters for the subsequent analyses.
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Figure 6. Increase in the error sum of squares (ESS) with a decreasing number of clusters during hierarchical grouping of
depth gradients. The grey bar indicates the range of standardised ESS according to the stopping rule of Mojena [78].

The five relative depth gradient types obtained and the sites assigned to the respective
clusters are shown in Figure 7. The most distinct differences between the five clusters can
be seen for the forest floor and top soil layers. This is also indicated by the t-statistics.
In these depth increments, the t-statistics attain the highest absolute values. In contrast,
close to the bottom of the soil solum, the derived depth gradient types seem very similar,
which is also expressed by small t-values in these depth increments. The cluster C5 stands
out as having the highest proportions of SOC stored in the organic layer of any cluster.
Consequently, C5 is also characterised by the smallest SOC portions inside the mineral
soil with t-statistics that are invariably negative. An opposite depth gradient is typified
by cluster C3, which contains the lowest proportions of SOC inside the organic layer. It
also shows the highest t-values for any mineral soil layer below 10 cm depth. Cluster C4 is
in close accordance with C3 concerning the forest floor, whereas the mineral soil SOC is
closely bunched in the upper parts of the profile. The clusters C1 and C2 can be seen as
intermediate types between C3 and C5 in which increasing proportions of SOC are stored
in the forest floor layer.

It does not seem far fetched to bring the derived depth gradients in line with soil
types and humus forms. Actually, the clusters C3 and C4 often coincide with the humus
forms of mull and mull-like moder, respectively. The humus forms of mor humus and
mor-humus-like moder appear most frequently within the clusters C2 and C5. Soil types
were merely in rough accordance with the derived depth gradient types. Lessives tend to
occur preferentially in cluster C4. Additionally, the frequencies of arenosols and podzols
are increased in the clusters associated with mor humus forms C2 and C5. The loose
relationship between clusters and soil types may be a consequence of the fact that vertical
distribution of SOC is not a diagnostic criterion for many soil types. On the other hand,
the observed differences between soil types and humus forms indicate that the vertical
distribution of SOC throughout the soil profile is often altered by current land-use and
stand history.

The plotted depth gradients (Figure 7) show a reasonable homogeneity. The assess-
ment of within-group variability by the computed F-statistics supports this impression:
Overall, with F-statistics below 1 in the majority of cases, the obtained clusters can be
considered as homogeneous ([77], p. 447). The ‘mor humus cluster’ C5 is by far the most
homogeneous cluster. The occurrence of increased F-statistics is limited to deeper soil
layers. Due to the small proportions of SOC stored in these depth increments, the higher
variability can be widely neglected. In fact, the increased F-statistics within the deeper lay-
ers can be seen as a result of the equally weighted distances used for hierarchical grouping.
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Compared to the variability observed within the upper parts of the soil, also these layers
are very homogeneous, as shown by the line graphs in Figure 7.
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Figure 7. Equal-area quadratic smoothing splines fitted to the relative depth gradients of SOC percentage. The black
solid line depicts the mean value of all sites assigned to the respective clusters. Additional f- and t-statistics assess the
homogeneity within each cluster and the distinctness between the clusters, respectively.

3.4. Mapping of Relative Depth Gradient Types

The selection of an optimum-sized classification tree for the prediction of relative
depth gradients is shown in Figure 8. The starting point of the selection process is the
initially grown much-too-large tree with 18 terminal nodes |T̃k| and the 10 respective
auxiliary trees grown on subsamples for cross-validation. Subsequently, the weakest
subbranches are incrementally pruned off by minimal cost–complexity pruning with
respect to the complexity parameter αk. This results in a sequence of 18 subtrees (and
180 auxiliary subtrees) with decreasing complexity, finally ending at the root node (|T̃k| =
1). Since α is used as a penalty for complexity in the pruning procedure, the complexity
parameter αk consequently increases at every stage. As one might expect, the resubstitution
estimates for the risks R(Tk), which directly express the diversity within the terminal nodes,
monotonically increase with each pruning stage. In contrast, the misclassification rate
of the auxiliary trees is highest when sequential pruning is started. Hence, after a phase
of decreasing cross-validation estimates Rcv(Tk) and reaching of the minimum 0.689 at k
= 15, Rcv(Tk) increases again and equals R(Tk) at the end, when all subbranches of the
auxiliary tree are pruned off and just the root nodes remain. In addition to using Rcv(Tk)
as an honest estimate of the misclassification rate, Breiman et al. [80] introduced the 1 SE
rule, additionally invoking the standard error SE, to guide the user towards a more stable
tree selection. Using the 1 SE rule, the subtree of the smallest complexity within the range
of ±SE around the minimum value of Rcv(Tk) should be selected. Keeping close to this
rule, the tree T16, which contains just three terminal nodes |T̃k|, should be selected. It is
obvious that a classification tree pruned back to three terminal nodes is not able to predict
five clusters. Therefore, we used a less rigid interpretation of this rule and selected tree T14.
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This is exactly the smallest tree within the range of ±SE around the minimum of Rcv(Tk)
that makes it feasible to predict any distinguished depth gradient type.
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Figure 8. Selection of the best pruned subtree by tenfold cross-validation: resubstitution R(Tk) and cross-validation Rcv(Tk)

estimates of risks for the sequence k of subtrees and auxiliary subtrees derived by minimal cost–complexity pruning
according to the complexity parameter αk. |T̃k| denotes the number of terminal nodes of the respective subtrees. SE is the
estimate for the standard error of Rcv(Tk).

The obtained classification tree T14 is shown in Figure 9. In addition to the splitting
rules determined, the frequencies of the clusters contained in each node are also given.
The frequencies shown for the root node thus equal the number of clusters inside the total
sample. A quite distinct split between clusters associated with thick organic layers, C2 and
C5 and the clusters with high fractions of SOC contained in mineral soil, C3 and C4, can thus
be achieved by the proportions of deciduous trees within the forest stand. Actually, in sum
just nine sites of the types C2 and C5 remained within the right subbranch (pdeciduous >
92%). The clear recognition of depth gradient types associated with mor-humus-like humus
forms by the proportions of deciduous trees is in line with the well-known preference of
coniferous stands for developing thicker organic layers.

The next and final split on the right is the SOC stored in the soil solum, and it separates
cluster C3 from cluster C4. This separation reflects the usually less distinct gradients of
SOC across the mineral soil layers in soils rich in organic matter, like gleysols, or soils
containing colluvic material.

The left branch, which contains the sites with higher proportions of deciduous trees,
is subsequently split by stand age t stand. In particular, the ‘mor humus cluster’ C5 is rarely
observed in juvenile coniferous stands. Presumably, this must be seen in terms of stand
history and the more recent forest plantings. These were often combined with tillage
procedures, removing the organic layer, or transferring it to the mineral soil. In the past,
clear-cut logging was an established technique widely used throughout the north-eastern
lowlands. Especially since the 1960s, the combination of clear-cut logging with intense
tillage procedures became a popular method [95]. To facilitate the ploughing, tillage was
often preceded by stump removal with bulldozers. Even in cases where no-tillage planting
was performed, the necessary clearings stimulate the mineralisation of the organic layer
through warming of the forest floor and increased light exposure.
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Figure 9. Optimally pruned class probability tree for prediction of relative depth gradient types using environmental
covariates. The most frequent clusters within each node are shown in bold print.

Finally, the subbranch of more mature coniferous forest stands is further differentiated
by clay content within the mineral soil C% 0...90. At sites that are extremely poor in clay,
the highest proportions of SOC are stored inside the organic layer (C5). If at least some
clay is present within the soil profile, the cluster C2 is most frequently found. As described
above, the main difference between the two clusters is the less steep gradient of SOC from
the organic layer to the mineral soil. The observed shift of SOC from the organic layer to
mineral soil with increasing clay content can be seen as a result of higher soil biological
activity. In these usually less acidic and dry soils, an increased bioturbation by earthworms
can be expected. Furthermore, this may point to the reduced ability of clay-poor mineral
soils to stabilise SOC in organic–mineral complexes [86,96,97]. In mineral soils containing
at least some clay, clay minerals increase the proportions of the pore space, where carbon is
protected against bacteria and enzymes.

In addition to assessing the accuracy of the tree predictions with risks R(T14) and
Rcv(T14), based on the node impurities and, hence, expressing the risk for erroneous
class probabilities, we also computed the error matrix of Congalton and Green [98]. For
building the error matrix, we used the most frequent cluster within the individual terminal
nodes of the tree for classifications (Figure 10). As one might expect, the p-values clearly
show that the classifications of each individual cluster (pKi ), as well as for the entire error
matrix (pK̂), are significantly better than random results. Referring to the nomenclature
of Landis and Koch [99], the relative strength of agreement associated with the derived
values of conditional KHAT statistic K̂i can be considered as moderate in the majority of
cases (KHAT is an estimate of Kappa). The classification achieved at least fair accordances
for any of the clusters. For the overall classification, K̂ also indicates a fair strength of
agreement between the reference and classified data. The poorest results in terms of K̂i
are produced for cluster C1. This can be seen as a result of the anthropogenic origin
assumed for this depth gradient, making predictions challenging. In total, the hit rate
of the classification tree expressed by overall accuracy (OA) slightly exceeds 50%. The
depth gradient with the highest individual hit rates (producer’s accuracy (PA) and user’s
accuracy (UA)) is the most frequently observed cluster C5, which is common in mature
pine stands on sandy soils. The ratios of row- (ni+) and column-sums (n+j) are reasonably
balanced, so the predictions are unbiased and no depth gradient is over-predicted.
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Figure 10. Cross-tabulation of predicted vs. observed depth gradient types. Accuracy measures of
the error matrix are denoted as: row total ni+, column total n+j, producer’s accuracy (PA), user’s
accuracy (UA), overall accuracy (OA), KHAT statistic K̂, conditional KHAT statistic K̂i, and p-values
pK̂ of respective KHAT statistics.

By combining the tree estimates of the relative depth gradient probabilities with the
estimates of the SOC stocks within the entire soil solum derived by regression analysis,
the volumetric SOC content of single layers can be calculated. The application of the
complete methodology for making predictions for NFSI depth layers then results in the
estimates presented in Table 4 and Figure 11. In addition to the total model performance
measures, values based on single layers—thus excluding depth as an independent variable—
are also given.

Table 4. Model performance measures obtained from the calibration sample and repeated tenfold cross-validation: number
of observations N, number of explanatory variables J, coefficient of determination r2, adjusted coefficient of determination
r2

adj, norm of residuals se, standard deviations of observed volumetric SOC contents ssoc, F-statistic Femp, p-value p, root
mean square error RMSE cv, least squares analysis of slope b1 cv, and concordance correlation coefficient CCC cv. The
variations of cross-validation estimates (doubled standard deviations) within the repeated runs are given in parentheses.

Layer N J r2 r2
adj se ssoc Femp p r2

cv RMSE cv b1 cv CCC cv

floor * 424 18 0.500 0.478 1.2 1.7 22.5 0.00 0.50 (±0.01) 1.21 (±0.01) 0.51 (±0.01) 0.67 (±0.01)

0–5 cm 424 18 0.296 0.265 16.0 18.6 9.5 0.00 0.26 (±0.02) 16.48 (±0.35) 0.37 (±0.02) 0.48 (±0.02)

5–10 cm 424 18 0.487 0.464 9.9 13.8 21.4 0.00 0.46 (±0.02) 10.10 (±0.18) 0.42 (±0.01) 0.61 (±0.01)

10–30 cm 424 18 0.554 0.534 4.9 7.3 27.9 0.00 0.53 (±0.02) 5.05 (±0.08) 0.45 (±0.01) 0.65 (±0.01)

30–60 cm 424 18 0.286 0.254 2.9 3.4 9.0 0.00 0.28 (±0.01) 2.91 (±0.02) 0.26 (±0.01) 0.42 (±0.01)

60–90 cm 424 18 0.229 0.194 2.9 3.2 6.7 0.00 0.18 (±0.03) 2.92 (±0.03) 0.10 (±0.01) 0.19 (±0.02)

0–90 cm 424 18 0.638 0.622 2.6 4.3 39.7 0.00 0.59 (±0.03) 2.76 (±0.08) 0.54 (±0.02) 0.72 (±0.02)

mineral 2120 19 0.719 0.717 12.7 24.0 339.9 0.00 0.70 (±0.01) 9.12 (±0.17) 0.75 (±0.01) 0.83 (±0.01)

* Values for forest floor se, ssoc, and RMSE cv are given in kg m−2; values off all other layers are given in kg m−3.

The p-values derived from the F-statistics signal highly significant prediction of SOC
in every layer considered. As one might expect, the scatter plot (Figure 11) shows a
clear decrease of absolute errors with increasing depth, since SOC generally decreases
with increasing soil depth. This decrease of absolute errors and variability of SOC is also
confirmed by the norm of residuals and the standard deviations of volumetric SOC. Both
measures are highest within the forest floor layer and lowest in the 60–90 cm layer of the
NFSI.

In terms of the predictable variation expressed by the coefficients of determination
r2 and r2

adj, the model performance is highest within the 10–30 cm layer. It then decreases
towards the the mineral soil surface, as well as with increasing soil depth. The relatively
low coefficients of determination within the upper parts of the mineral soil probably result
from steep vertical gradients of SOC. Inside these thin near-surface layers, a high degree of
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disturbance can also often be expected. Furthermore, the results within these layers suffer
most from sampling artefacts related to segregation of the organic layer from the mineral
soil. Close to the bottom of the soil solum, the coefficients of determination are quite low.
However, for the majority of practical applications, this may be balanced by the small SOC
contents within these layers in total.

100 101 102

100

101

102

r2 = 0.717
N = 2120

measured SOC (kg m−3)

pr
ed

ic
te

d
SO

C
(k

g
m

−
3 )

0–5 5–10 10–30
30–60 60–90

100 101

100

101

r2 = 0.50
N = 424

measured SOC (kg m−2)

pr
ed

ic
te

d
SO

C
(k

g
m

−
2 )

floor

Figure 11. Scatter diagrams of measured versus predicted values of volumetric SOC at National Forest Soil Inventory (NFSI)
depth layers of the mineral soil (0–5, 5–10, 10–30, 30–60, and 60–90 cm) and SOC stocks of the organic layer.

Within the organic layer, the coefficients of determination are again fairly high. How-
ever, especially in the range of small SOC contents, several outliers that overestimate the
SOC stored within the organic layer occur (Figure 11). Facing thin forest floor layers,
the distinction between the mineral soil and the organic layer during sampling becomes
more and more challenging. In extreme cases, very thin organic layers are ‘overlooked’
during sampling and are finally sampled together with the first layer of the mineral soil.
Thus, the slightly biased estimation observed at low amounts of SOC within the organic
layer must not necessarily be taken as a sign of poor model performance. Due to the gener-
ally high predictive power of soil depth on SOC content, the coefficients of determination
increase markedly if these are computed using all observations jointly. Model performance
also increases with increasing layer thickness. If the SOC content within the total mineral
soil (0. . . 90 cm) is predicted, the coefficients of determination are similar to the values
calculated for total solum stocks.

All in all, the model performance measures obtained from the calibration sample are
well confirmed by the respective cross-validation estimates. In particular, the concordance
between se and RMSE cv is promising for an estimation of the prediction errors that is
not overly optimistic. Larger discrepancies between the calibration and cross-validation
estimates are limited to the depth layers at 0–5 and 60–90 cm. As indicated by the doubled
standard deviations, the results of the repeated runs of cross-validation are also less stable
within these depth layers. Since CCC cv, which comprises an additional assessment of slope,
is a much stricter model performance indicator than r is, the squared values of CCC cv are
again distinctly lower than r2

cv.
The application of the derived models for mapping SOC stored in the forest soils of

Brandenburg is shown in Figure 12. As examples, the geographic distributions of SOC
within the six NFSI depth layers used for model development are shown. Nevertheless,
whenever required, the usage of the relative depth gradient types enables the user to
predict any depth layer of interest.
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Figure 12. Cartograms displaying the spatial distribution of SOC within the NFSI depth layers obtained by regionalisation
using relative depth gradients for a 100 m grid of the forested area of Brandenburg.
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The cartograms are based on estimates derived for a grid resolution of 100 m. To
prevent the estimates from drifting beyond physical bounds, the range of values of the
predictor variables was constrained. Cut-offs were set with respect to the limits that are
present in the NFSI data used for model development. This became necessary because,
in case of the grid, which contains one million individual grid cells, the sample size was
drastically enlarged compared to the NFSI sample. Associated with this is a broadened
range of values for the environmental covariates, resulting in extreme combinations of
predictors in single grid cells. Similarly, according to the soil types that were present in
the training sample, histosols, which were not within the scope of the conducted analysis,
were excluded from mapping. To obtain a proper visualisation of the spatial distribution
for the majority of sites, the colour map legends of the final cartograms were made to span
between the 5th und 95th percentiles.

The cartograms for every depth layer drawn show a high spatial variation. Especially
at small spatial scales, a high heterogeneity can be observed. As can be seen within the
example landscape extract under the magnifying glass, even at the smallest distances,
changes of SOC equivalent to the total range of values appear. In particular, the SOC
contents of the three upper mineral soil layers attain magnitudes that may significantly
contribute to soil water storage and nutrient status. The SOC contents also vary in a
range wide enough to substantially alter the soil’s physical and chemical properties, which
underlines the practical importance of regionalisation. Pursuant to the classification given
by Arbeitsgruppe Boden [74], the equivalent soil organic matter contents within the 0–5 cm
layer range from medium (h3) to very high (h5) values. Even within the 10–30 cm layer, the
h2 class still occurs frequently. The SOC contents of the two subsoil layers are generally very
low (h1), and are thus usually only of minor importance for ecological site characteristics.
On the other hand, only small quantities of hydrophobic compounds are required to form
water-repellent particle coatings [100]. In particular, under acidic conditions, the SOC
within the subsoil layers may still contribute to prolongation of preferential flow paths.
However, in terms of carbon sequestration, the amounts of SOC actually stored within
these thick subsoil layers are essential reservoirs (see below).

In addition to the predominant small-scale patterns caused by terrain and land cover,
some large-scale spatial gradients of mineral soil SOC can also be found. The SOC contents
are slightly increased in the climatically wetter regions in the north-west and south of
the study area. Amongst the large- and small-scale variations, some spatial clusters also
become apparent at medium scale. These areas reflect the effects of parent material, which is
usually closely related to the glacial deposits within the north-eastern lowlands. Increased
SOC contents occur in the area of the post-glacial floodplains, whereas outwash plains are
very poor in SOC.

On the small scale as well as on the large scale, the spatial patterns of SOC stored
within the organic layer are highly independent from those observed for any layer of
the mineral soil. Even the vertically directly adjacent mineral soil layer at 0–5 cm shows
a widely different spatial distribution. At first glance, this is not a surprise, since SOC
storage in both compartments underlies distinct mechanisms. Whereas the amounts of
SOC within the forest floor layer are highly controlled by short-term influences, such as tree
species compositions or forest management and stand history in general, the SOC storage
is usually more closely related to long-term factors, like topography or parent material. On
the other hand, these findings underline that the depth gradient types approach is flexible
enough to cope with these different sources of variation, despite the fact that the horizontal
distribution of the total SOC stocks is done using the same regression model.

Table 5 gives a small example of potential utilisations within the context of carbon
sequestration: Across all NFSI depth increments, the highest amounts of SOC are stored in
the organic layer by far. In total, more than one-third of the solum SOC is stored within
the forest floor. However, due to the thickness of the subsoil layers, the deeper NFSI
depth increments also substantially contribute to the stock. Although sites influenced by a
near-surface groundwater table merely cover 12.5% of the forested area of Brandenburg,
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considerable proportions of SOC are stored in these soils. Especially when the stable carbon
pools within the mineral soil are considered, the proportion of 20.9% of stored SOC is
distinctly larger than the respective area percentage.

Table 5. Carbon storage in forest soils of Brandenburg at terrestrial sites (Terr.) and sites influenced by a near-surface
groundwater table (Hydro.), as well as its distribution among depth layers.

Carbon Storage in NFSI Depth Increments (109 kg) Sums (109 kg)

Floor 0–5 cm 5–10 cm 10–30 cm 30–60 cm 60–90 cm 0–90 cm Solum

Hydro. (1302 km2) 6.073 3.576 2.087 4.084 2.321 1.075 13.143 19.216

Terr. (9139 km2) 26.373 13.921 7.971 15.197 8.668 4.078 49.834 76.207

Total (10,441 km2) 32.447 17.497 10.058 19.281 10.988 5.153 62.977 95.424

4. Discussion

Since soils and the responsible soil forming factors are unique to the spatial domain
under consideration, objective comparisons with studies conducted elsewhere are likely to
fail. These difficulties are enhanced by the fact that the available environmental covariates
also strongly depend on administrative units. This is especially the case for soil and
geological maps. However, despite these limitations, the underlying principles of SOC
storage in soils are, of course, transferable to other regions, and thus, some similarities can
be observed.

A strong influence of terrain attributes associated with catchment area on SOC was
already found by the pioneers in the field of soil attribute prediction through digital terrain
analysis [18]. Similar findings have also often been reported in more recent studies. The
TWI (topographic wetness index) was one of the best predictors for mapping soil organic
matter in Croatia [38]. A high regression coefficient of TWI was also found for mapping
mineral soil SOC within the pre-alpine lowlands [91]. Concerning terrain parameters,
the most similar results to those of this study were reported by Grimm et al. [20], who
found A C, RSP (...), LS (LS factor from the Revised Universal Soil Loss Equation), and
TWI as variables with the highest importances for mapping SOC within the topsoil layer
on Barro Colorado Island. Slightly different rankings of variable importance were given
by Ballabio [16]: For the prediction of SOC stored in A horizons within the Italian Alps,
elevation, Ŝ, and ΨS (sky-view factor) had the highest relative influence, whereas TWI and
LS were ranked third and fifth. The findings of Zushi [101], that for the prediction of topsoil
SOC stocks in Japanese cedar plantations with multiple linear regression analysis only
β and ΨS were selected by stepwise variable selection, while TWI and north (northness
derived from local aspect) had no significant influence, seem even more contradictory to
the variable importances observed here.

Beyond that, there are also landscapes where topography appears to be behind other
soil forming factors in general. In addition to studies that focused on soil properties and
land-use effects [45], in some cases, the influence of terrain on mineral soil SOC was low,
even where it was explicitly tested [19,21,102]. Increased influences of landcover classes and
tree species compositions were generally observed when SOC within topsoil or forest floor
layers was predicted [21,91,102]. This is in good agreement with the superior importance
of pdeciduous in the CART model for the prediction of relative depth gradients. In studies
where data on the depth of the groundwater table were available, it was naturally one of
the main factors that controlled SOC at the respective sites [45]. The fairly high influence
of zCaCO3 in our regression models must be interpreted in relation to the often-observed
influences of mapping units [19,21,102], since this covariate seems to be a property unique
to local forest site mapping.

The achieved model performance is in a range comparable to that of other studies
dealing with the prediction of SOC for numerous depth layers [32,36,37]. With low values
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near the upper and lower boundaries of the soil solum, the coefficients of determination
also often exhibit similar depth dependences [20,33].

The reported improvement of predictions by kriging the residuals varies widely
throughout the literature. As the improvement of regression estimates by subsequent
geostatistical interpolation is the underlying idea of regression kriging, corresponding im-
provements are usually found [32,38,103]. However, there were also studies that found no
substantial improvements [91,104]. Similarly to our results, these studies were conducted
in highly structured landscapes with relatively low sampling densities. As already stated
by McKenzie and Ryan [105], in these situations, the weak spatial dependence diminishes
the advantages of kriging. With this in mind, it is not surprising that even the advantage
of regression may disappear if the landscape of the study area is homogeneous and the
sampling density is high [106,107]. In these situations, pure spatial interpolation methods
become superior to regression (kriging). In addition to landscape properties and sampling
densities, these relations are, of course, strongly affected by the availability of suitable
environmental covariates at a proper spatial scale.

5. Conclusions

The concept of relative depth gradients offers a straightforward framework to ensure
consistency of depth gradients and model interpretability, whereas other methodologies,
such as SCORPAN modelling of depth function parameters, require further constraints.

We suppose that our amalgam of soil depth functions and digital soil mapping can
be a handy methodology whenever coherent depth gradients are of special importance
for the subsequent analyses. It may also offer a useful methodological framework if the
interpretability of covariates that control the horizontal and vertical distribution of SOC is
of particular interest. Since SOC stocks were estimated as a whole and an acceptable model
performance for single layers was still achieved, the usage of relative depth gradients may
help to lessen the propagation of sample separation errors. Therefore, the concept of the
relative depth gradients can be beneficial if the regionalisation of SOC serves as a basis for
hydrological or geochemical modelling.

Further interesting fields of application may be found in scenario-based modelling of
the land-use and climate effects on SOC storage and distribution.
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