
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: obed.appiah@uenr.edu.gh, obedkappiah@yahoo.com; 
 
 
 

Asian Journal of Research in Computer Science 
 
7(1): 50-66, 2021; Article no.AJRCOS.62354 
ISSN: 2581-8260 

 
 
 

 

Framework for Prioritizing Contact Tracing and 
Mass Testing of COVID-19 Using Graph Theory 

 
Obed Appiah1*, Dominic Otoo1 and Christopher Bombie Ninfaakang1 

 
1
University of Energy and Natural Resources, Sunyani, Ghana. 

 
Authors’ contributions 

 
This work was carried out in collaboration between all authors. Author OA conceived the presented 

idea. Authors OA and CBN designed the study. Author DO verified the analytical methods and 
supervised the findings of this work. All authors read and approved the final manuscript. 

 
Article Information 

 
DOI: 10.9734/AJRCOS/2021/v7i130173 

Editor(s): 
(1) Dr. Omidiora, Elijah Olusayo, Ladoke Akintola University of Technology (LAUTECH), Nigeria. 

(2) Dr. R. Gayathri, Anna University, India. 
(3) Prof. M. A. Jayaram, Siddaganga institute of Technology, India. 

Reviewers: 
(1) Oyeniran, Oluwashina Akinloye, Ajayi Crowther University, Nigeria. 

(2) Ogundile Opeyemi Paul, Covenant University, Nigeria. 
(3) Nurudeen. O. Lasisi, Federal Polytechnic Kaura Namoda, Nigeria. 

(4) Bianca Constantin, Dunarea de Jos University Galati, Romania. 
(5) Kamshad Mohsin, Galgotias University, India.   

Complete Peer review History: http://www.sdiarticle4.com/review-history/62354 

 
 
 

Received 09 October 2020 
Accepted 07 November 2020 
Published 09 February 2021 

 
 

ABSTRACT 
 

Contact tracing has become one of the most useful tools for fighting the novel Corona Virus 
(COVID-19) pandemic worldwide. The underlining philosophy of contact tracing is determining 
people who have been in contact with infected persons and thus isolate them from becoming 
agents of onward transmission of the virus.  Slow tracing of contacts and inconsistent or inaccurate 
information provided by patients usually leads to the spread of the virus along a trajectory at the 
healthcare systems' blindside. This has led to the proposal of app-based contact tracing solutions.  
This paper proposes an SQL-based framework that transforms simple interaction data entries into 
interaction graphs and applies graph theory to prioritize the contact tracing process. The framework 
returns nodes or individual IDs together with values called Risk_Points to enable individuals' 
selection for isolation and treatment. Results on simulated data show that the proposed framework 
can help slow the virus's rate of transmission. 
 

 

Original Research Article 



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
51 

 

Keywords: SQL-based framework; graph-theory risk points; contact tracing; COVID-19 testing. 
 

1. INTRODUCTON 
 
Contact tracing has become one of the most 
useful tools for fighting the novel Corona Virus 
(COVID-19) pandemic worldwide. The 
underlining philosophy of contact tracing is 
determining who had been near an infected 
person and thus isolated them, preventing them 
from becoming agents for onward transmission 
of the virus [1,2]. It is believed that the risk of 
infection is highest if one has been within 1.5 to 2 
m of an infected person for at least 10 minutes 
[1]. Various works have explored contact 
tracing's effectiveness in dealing with the 
COVID-19 pandemic [1,2]. However, work by 
Ferretti et al. [3] shows that effective contact 
tracing combined with a large-scale COVID-19 
testing programme might delay the spread of the 
virus or even stop it altogether. 

 
The success of contact tracing in tracking and 
treating infectious diseases has been proven to 
be effective. During the outbreaks of Ebola in 
Africa, contact tracing was a useful tool used to 
track and treat patients [4-7] quickly. The main 
contact tracing approach is made by identifying 
contacts' locations through interviewing patients 
and their acquaintances. The information 
provided by the patient is verified, and their close 
contacts are also tested for the possibility of 
carrying the virus. Such close contacts are 
usually quarantined (isolated) until their status is 
known before releasing them or treating them for 
the virus [4–8] indicated that the dynamics of the 
COVID-19 transmissibility may not yet be fully 
understood. However, identifying patients and 
institutionalizing measures such as social 
distancing can help fight the disease. The 
success of contact tracing is primarily based on 
the accuracy of patients' information and 
effective means of reaching contacts. If patients' 
information is not consistent or inaccurate, it 
usually leads to the spread of the virus along a 
trajectory at the blindside of the healthcare 
system. When the contacting process is slow, 
tracking the virus is also slowed, especially 
transmission by asymptomatic patients.  
Inconsistencies or inaccuracies in the patient's 
information may not be deliberate, but recalling 
all close contacts within a specific period can 
sometimes be challenging. That is, forgetfulness 
and the patients' psychological state may make it 
difficult for them to remember all the people 
he/she may have come near [7]. This has led to 
the proposal of technology to aid in identifying 

proximity contacts.  The smartphone-based 
contact tracing has been proposed for managing 
contacts and hence effectively identifying 
potential infectious people. Olu et al. [6–9] are 
prominent examples of proposed mobile or 
smartphone-based contact management 
systems. Various techniques or approaches such 
as sensitive location data (Global Positioning 
System or radio cell data) have been applied 
using mobile apps. Yasaka et al. [10] suggested: 
“contact points” where smartphone users create 
“checkpoints” by generating Quick Response 
(QR) codes that can be scanned by all other 
users when joining their checkpoint.   
 

Abeler et al. [1] presented a slightly modified 
version of [10-11] concepts of app-based contact 
tracing. Generally, the underlining concepts are 
similar to the checkpoint approach, which use 
proximity information instead of GPS or radio cell 
data. The device works by users sharing their 
COVID-19 status on their app.  Whenever a 
smartphone user (A) who has registered with the 
app on his/her phone comes near another user 
(B), then the IDs are exchanged, and the status 
is communicated if such person does have the 
virus or not. Fig. 1. presents an illustration of how 
user’s smartphones exchange IDs when phones 
are less than 2meters apart. 
 

In Fig. 1, Alice and Bob stay within 2 meters for 
more than 10 minutes and their temporary ID is 
stored on each other phone.  When Alice is 
diagnosed with COVID-19, the system can 
retrieve all the IDs on Alice's phone to trace all 
the people he came in contact with.  The server 
then alerts all phones that have been close to the 
infected persons’ phone. The alerted people 
would still need to contact their local health 
authorities, as their identity is not linked to the 
app. Fig. 2. illustrates a pictorial representation of 
the concept proposed by [1]. 
 

Whether the contact tracing is done manually or 
app-based, there is an underlining representation 
of data that these interactions depict.  This was 
identified in [12] when they proposed the use of 
checkpoints. Of course, the concept of 
checkpoints has been proposed in diverse ways 
such as stationary proximity (banks, restaurants, 
offices, etc) and mobile proximity (buses, trains, 
taxis, etc.). Poojary [12] computes transmission 
graphs of infected patients to help identify 
possible threats.  In turn, these graphs could let 
every user know if any possible transmission 
paths were leading up to the checkpoint they 



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
52 

 

visited and thus their risk of being infected.  This 
app's strength is that it will be able to traverse 
the network of contacts to effectively identify all 
connections to a checkpoint and estimate the 
risk by using the depth from an infected to a 
desired node. The use of networks then provides 
an interesting option to go beyond contact 
tracing. However, the interactions represented by 
the networks or graphs could be a starting point 
for going beyond the current traditional method 
of contact tracing to further reduce the 
transmission rate of the virus, especially among 
asymptotic patients. 
 
The modeling of interactions of entities using 
graphs and trees is not new and has seen 
extensive applications with various degrees of 
success. The application of graph theory to solve 
various problems have underlined various 
models to help provide optimum solutions. The 
use of graphs to estimate the shortest possible 
paths, maximum and minimum flow, traveling 
salesman problem, etc. Numerous algorithms 
that have been proposed to fix such problems 

are common today [13-15]. For example, [16] 
applied graph theory to rank contractors 
successfully. In [17], graph theory was 
successfully used to estimate the shortest 
possible path that Zoomlion-Ghana garbage 
trucks could traverse the road network efficiently 
using minimum time and optimized garbage 
collection from various homes to dumping sites.  
The Contact-Tracing approach, which has 
become a major approach to identifying potential 
Coronavirus carriers, lends itself to a tree-like 
model with patients as nodes [12,18]. Countries 
worldwide have adopted such models and the 
World Health Organization (WHO) approves 
such an approach as one of the effective means 
of dealing with the disease [19]. Keeling                          
[18] for instance, demonstrated how the                     
network information could be used to perform 
contact tracing effectively.  In their work, an 
illustration of graphs or trees presenting duration 
of contact and proximity as well is done.                        
Fig. 3. presents a simple graph of interactions                    
of citizens in the spread of the COVID-19                   
virus. 

 

 
 

Fig. 1. A COVID-19 tracing approach via Bluetooth [Source: [1]] 
 

 
Fig. 2. A user can share their data with the server after receiving a COVID-19 diagnosis Source 

[1] 



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
53 

 

 
 

Fig. 3. A graph representation of sample contacts of members of society: Source: [18] 
 
Contact tracing, isolation, and treatment have 
become an effective means of slowing the 
spread of COVID-19, but researchers have 
asked how the disease can further be slowed 
and that beyond contact tracing, what else can 
be done [20]?  Mass testing has been proposed 
but, in the instance where resources are limited, 
such as in developing countries, priority testing 
as an alternative to mass testing may be an 
effective means of further slowing the spread.  In 
this paper, a framework for generating 
Risk_Points ranking value is proposed for 
prioritizing contact tracing and mass testing to 
slow further the virus's infection rate given that 
an app-based contact tracing technologies are 
adopted.  Again, the use of Structured Query 
Language (SQL) based graph data as well as 
manipulations to generate this ranking 
information is presented.  The need for SQL 
based graph is important because most app-
based applications will store their data in a 
relational database. 
 

2. METHODOLOGY 
 
The proposed framework extracts interaction 
information from the dataset of the contact 
tracing app.  An interaction graph is generated 
from the interaction information, after which 
graph theory concepts such as adjacent, 
degrees, and paths are used to estimate a value 
called the Risk_Points.  The Risk_Points value 

help identify who must be identified immediately 
for testing. Graph theory principles are employed 
in the proposed framework to prioritize contact 
tracing, and mass are presented next. 
 
Fig. 4. presents a simple graph generated from 
the Contact table and stored in the edge’s 
relation or table.  An edge in a graph represents 
the connection between two nodes.  In this 
proposed framework, personids become nodes, 
and a paired entry of personids in the edges 
table forms an edge.  Therefore, the edges table 
store the graph representing the interaction of 
persons.  
 
Adjacent (neighbours): Two vertices “a” and “b” 
in a graph G are called adjacent (or neighbours) 
in G if {a, b} is an edge of G. Adjacent or 
neighbours of a node in the graph represents 
primary contact. If a person “a” tests positive, 
then person “b” must be identified for testing.  
SQL_2 in the appendix presents an SQL 
statement that lists all the adjacent nodes in the 
interaction graph. 
 
Degree: The degree of a vertex in an undirected 
graph is the number of edges incident with it, 
except that loop at a vertex contributes twice to 
the vertex's degree. Persons or nodes with a 
higher number of degrees are assigned higher 
Risk_Points. SQL 3 presents an SQL statement 
that identifies all nodes and their degrees  



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
54 

 

Isolated vertex: A vertex with a degree of zero 
(0). It follows that the isolated vertex is not 
adjacent to any node.  Isolated nodes do not 
have primary contacts and therefore, the 
framework eliminated them in identifying 
contacts. 
 

Pendant: A vertex is a pendant if and only if it 
has a degree of 1. In selecting persons or nodes 
for testing, the pendant is assigned the least 
Risk_Points. If pendants exist in the interactions 
graph, they will be listed at the bottom of the list 
that SQL 3 in the appendix generates.  However, 
they can be specifically extracted using SQL 4. 
 
In-degree and out-degree are generally related 
to directed graphs where arrows depict the 
direction of the edge. The summation of in-
degree and out-degree is equal to the node's 
degrees and that can be estimated by SQL 3.  
Graphs extracted for the estimation do not 
employ these properties. However, edges are 
weighted that enables the framework to avoid 
retrospective traversal in the network. The 
weights represent the chronological order for 
which interaction occurs. 
 

Regular graphs: A regular graph is a type of 
undirected graph where the degree for all the 
vertices in the graph is the same. The complete 
graph on vertices, denoted by Kn is the simple 
graph that contains exactly one edge between 
each pair of distinct vertices. In the situation 
where the interaction graph is complete, each 
community member is equally susceptible to the 
virus and therefore the RisK_Points will be the 
same for all members.  SQL 5 in the appendix list 
all the nodes in the network when the graph is 
regular or complete. 
 

Cuts vertices (articulated points) and cuts 
edges or bridges:  An undirected graph is called 
connected if there is a path between every pair 
of distinct vertices of the graph. The removal of 
the cut vertex or cutting edges or bridges from a 
connected graph produces a not connected 
subgraph.  Cuts in the interactions are assigned 
higher Risk_Points.  SQL 6 presents an SQL 
statement that identifies potentials cuts in the 
networks.  
 
Cycle:  The cycle Cn, n >= 3, consists of n 
vertices v1, v2, ….,vn  and edges {v1, v2}, {v2, v3}, 
… ,{vn-1, vn} and {vn,v1}.  When the graph is not 
complete, the vertices that form a cycle in the 
graph are assigned higher Risk_Points. A wheel 
Wn is obtained when we add a vertex to the cycle 

Cn, for n>= 3, and connect this new vertex to 
each of the n vertices in Cn, by the new edge. 
 
The center of the wheel is assigned higher 
Risk_Points. 
 
Path: Given two nodes or vertices, a path exists 
between them if a collection of edges links the 
vertices.  Thus, a path contains the vertices 
vo,v1,..vk and edges (vo,v1),(v1,v2),…,(vk-1,vk).  A 
path of length k from a vertex u to a vertex u’ in a 
graph G = (V, E) is a sequence {v0, v1, v2,…,vk} 
of vertices such that u=v0, u’=vk, and (vi-1,vi)  E 
for i=1,2,…,k.  The length of the path is the 
number of edges in the path. A path is simple if 
all the vertices in the path are distinct. 
 
Path Length (k):  For simplicity in the interaction 
graph, we assign specific names to paths of 
certain lengths.  The path with length zero (0) will 
be assigned to the initial vertex. The adjacent 
nodes of a specific node will have a length of 1.  
The length can be used to describe the 
respective depth of contact to a particular 
person. The length and descriptions can be 
presented as follows: 
 
Length  Description 
0 Root node 
1 Primary Contact 
2 Secondary Contact 
3 Tertiary Contact 
4 Quaternary 

 
SQL 6–8 presents various SQL statements that 
can select all possible paths between nodes with 
respective lengths of interest.  The path length of 
1 has already been discussed as adjacent 
nodes. 
 

2.1 Generation of Graph from Persons’ 
Interaction Dataset 

 
The proposed framework relies on the datasets 
generated by app-based contact tracing tools.  
The framework's input is a relational database 
table with three (3) relevant fields storing entity 
IDs, location IDs, and the period a contact 
happened.  The Unique ID for a person, Unique 
ID for an instance of contact (venue or location 
where the distance between entities happens to 
be less than a meter for a minimum of 10 
minutes), and the period (date and time) that a 
Unique ID was at that specific contact instance.  
Table 1 represents an instance of the tblContact 
table in the database. 



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
55 

 

 

 

Fig. 4. A simple graph 
 

Table 1. Contact relation with sample data 
 

Personid Locationid Period 
A X 2020-04-23  18:00:00 
B X 2020-04-23  18:30:00 
C X 2020-04-23  18:10:00 
D X 2020-04-23  18:20:00 
B Y 2020-04-24  18:00:00 
F Y 2020-04-24  18:20:00 
C Z 2020-04-24  18:00:00 
E Z 2020-04-24  18:10:00 

 
2.1.1 Algorithm for extracting graph 

 
The interaction graph is extracted from the 
tblContact table by  

 
1. Select all interactions within the last 14 

days.  Sort the list in ascending order. 
2. Group your selection in step 1 by the 

locationid. 
3. For each locationid, group persons whose 

interaction period is less than the specified 
minimum time for possible transmission of 
the disease. In this instance, 10 minutes is 
selected. 

4. For each group identified in step 3, extract 
pairs of personids that meet the time frame 
specified. 

5. Store the pair values as edges with each of 
the personid as nodes in the database's 
edges tables. 

 

SQL 1 in the Appendix is used to generate the 
edges table. The edge table or relation stores all 
the interactions which represent the network. The 
chronological order of interactions is numbered 
and used as the weight of edges. Table 2. 
represents an example of entry values on the 
edge tables. 

Table 2. An extract from edges relation 
 

node_a node_b Weight 
A B 1 
C B 2 

 
 

Fig. 5. A sample wheel graph 
 

2.2 Risk_Points Estimation 
 
The proposed framework uses a value called 
Risk Points to determine which person in the 
interaction graph must be selected for testing. 
The points are estimated by evaluating the 
degree, pendant, regular graphs, complete 
graph, cycle, wheels, and cuts vertices 
(articulated) properties of the graph.  The formula 
is simplified by identifying all the possible paths 
formed up to the 4

th
 path length from a given 

node and then registering the second node in 
each path. The selected nodes’ frequencies are 
used as Risk Points values. The main principle 
behind the formula is that nodes that participate 
a lot in interactions will have high frequencies 
and therefore, can be used as an estimate for 
reporting a vulnerability. 
 



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
56 

 

Algorithm 1. Prioritization primary contacts of positive COVID-19 case 
 

0 Create AdjacentList 

1 Let vo be vertex that test positive for COVID-19 

2 Extract all paths to the 4th length starting from v0 (v0, v1, v2, v3, v4). Use SQL 8 

3 Add v1s in all the paths in (2) to AdjacentList 

4 Extract all paths to the 3rd length starting from v0 (v0, v1, v2, v3). Use SQL7 

5 Add v1s in all the paths in (4) to Adjacent List 

6 Extract all paths to the 2nd length starting from v0 (v0, v1, v2). Use SQL 7 

7 Add v1s in all the paths in (6) to AdjacentList 

8 Extract all paths to the 1st length starting from v0 (v0, v1). Use SQL 2 

9 Add v1s in all the paths in (8) to AdjacentList 

10 Determine the frequency of vertices in AdjacentList and sort in descending order 

11 Use the AdjacentList in the order of appearance to locate members of the community, with 
person IDs on top of the list given the highest priority. 

 
Algorithm 2. Priority mass testing selection 

 

 Create List 
 For each entity (node), determine its adjacent nodes and their Risk_Points 
 Determine the sum of Risk_Points for each adjacent node determine above 
 Sort the list in descending order to identify persons with high Risk_Points. 

 
Two algorithms for identifying members to test 
for COVID-19 are presented in the proposed 
framework. In Algorithm 1, the framework 
accepts a vertex, v0, that has tested positive for 
COVID-19 as input and generates a list of 
entities and their Risk Points. The design 
prioritizes adjacent nodes or primary contacts by 
evaluating their interactions with other vertices.  
Priority is given to primary contact that has a lot 
of edges to the quaternary level from vo. All the 
primary contacts will be selected for testing, but 
the framework ensures nodes with many 
secondary, tertiary, and quaternary interactions 
are given high Risk_Points values.   
 
The adjacent list presented in Algorithm 1 
smartly orders the primary contacts so that 
primary contacts with a lot of further contact 
interactions to the 3

rd
 length may potentially be 

spreading the disease and therefore will have to 
be immediately tested to track the disease 
effectively.  SQL 10 in the appendix presents the 
SQL statement that implements Algorithm 1. 
 
Algorithm 2. scans through the contact 
interactions and uses vertices' characteristics to 
select nodes’ whose positive testing for COVID-
19 may be disastrous. 
 
Algorithm 2 evaluates the Risk_Points values for 
all the nodes in the network.  These values assist 

in prioritizing the identification and selection                      
of community members for mass testing                        
for COVID-19.  SQL 11 in the appendix                
presents the SQL statement that implements 
Algorithm 2. 
 

3. RESULTS AND DISCUSSION 
 
The dataset used to test the proposed framework 
was generated from a simulated scenario. 10 
persons, 10 unique locations, and a time interval 
of 5 minutes for 5 hours were generated. A set of 
Unique IDs {PID01, PID02, PID03, PID04, 
PID05, PID06, PID07, PID08, PID09, and PID10} 
were assigned to 10 people. A set of unique 
location ids {LID01, LID02, LID03, LID04, LID05, 
LID06, LID07, LID08, LID09, and LID10} were 
assigned to the various locations an individual 
could be found. The neglist table stores 
personids that test negative for COVID-19 to 
eliminate them from the extracted network or 
graph. Table 3. presents the capturing of 
persons and their location for 5 hours. 
 
From Table 3, the time interval between two 
entry values is 5 minutes, but in a real-world 
scenario, this will change. There will be instances 
where the time difference may be less than a 
minute or more than 10 minutes. However, the 
5minutes interval was selected to evaluate the 
proposed framework. 



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
57 

 

Table 3. Sample data on interactions in the tblcontact 
 

Personid Locationid Period 
PID01 LID01 20/07/2020 06:00 
PID02 LID02 20/07/2020 06:05 
PID03 LID03 20/07/2020 06:10 
PID04 LID04 20/07/2020 06:15 
PID05 LID05 20/07/2020 06:20 
PID06 LID06 20/07/2020 06:25 
PID07 LID07 20/07/2020 06:30 
PID08 LID08 20/07/2020 06:35 
PID09 LID09 20/07/2020 06:40 
PID10 LID10 20/07/2020 06:45 
PID09 LID02 20/07/2020 06:50 
PID02 LID06 20/07/2020 06:55 
PID05 LID01 20/07/2020 07:00 
PID04 LID10 20/07/2020 07:05 
PID08 LID04 20/07/2020 07:10 
PID10 LID05 20/07/2020 07:15 
PID06 LID08 20/07/2020 07:20 
PID07 LID09 20/07/2020 07:25 
PID09 LID04 20/07/2020 07:30 
PID04 LID07 20/07/2020 07:35 
PID04 LID08 20/07/2020 07:40 
PID06 LID06 20/07/2020 07:45 
PID03 LID02 20/07/2020 07:50 
PID03 LID06 20/07/2020 07:55 
PID04 LID10 20/07/2020 08:00 
PID01 LID01 20/07/2020 08:05 
PID04 LID03 20/07/2020 08:10 
PID01 LID04 20/07/2020 08:15 
PID01 LID05 20/07/2020 08:20 
PID02 LID06 20/07/2020 08:25 
PID07 LID07 20/07/2020 08:30 
PID04 LID05 20/07/2020 08:35 
PID10 LID08 20/07/2020 08:40 
PID06 LID01 20/07/2020 08:45 
PID05 LID01 20/07/2020 08:50 
PID05 LID09 20/07/2020 08:55 
PID01 LID10 20/07/2020 09:00 
PID04 LID07 20/07/2020 09:05 
PID02 LID03 20/07/2020 09:10 
PID09 LID03 20/07/2020 09:15 
PID04 LID09 20/07/2020 09:20 
PID07 LID07 20/07/2020 09:25 
PID02 LID08 20/07/2020 09:30 
PID07 LID03 20/07/2020 09:35 
PID06 LID10 20/07/2020 09:40 
PID08 LID02 20/07/2020 09:45 
PID05 LID04 20/07/2020 09:50 
PID08 LID03 20/07/2020 09:55 
PID09 LID06 20/07/2020 10:00 
PID07 LID03 20/07/2020 10:05 
PID01 LID10 20/07/2020 10:10 
PID01 LID10 20/07/2020 10:15 
PID04 LID04 20/07/2020 10:20 



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
58 

 

Personid Locationid Period 
PID09 LID01 20/07/2020 10:25 
PID08 LID09 20/07/2020 10:30 
PID09 LID09 20/07/2020 10:35 
PID08 LID08 20/07/2020 10:40 
PID04 LID01 20/07/2020 10:45 
PID02 LID09 20/07/2020 10:50 
PID04 LID03 20/07/2020 10:55 

 

Table 4. presents the set of all edges extracted 
from the tblContact table in Table 3.  The node_a 
and node_b fields on the table stores the pair of 
nodes that form an edge. The Weight field store 
the chronological order that an instance of 
contact occurred.   
 
48 edges were extracted from the tbl Contact 
table. This was done by using location and the 
time interval of an hour between two persons at 
a specific location. The graph is presented in Fig. 
6. The nodes in the graph represent individuals, 
and the edges represent instances of contact. 
The weight of the graph represents the 
chronological order of instances of contact. In 
Fig. 6, an edge may have more than one weight 
value. This indicates that two nodes have more 
than an instance of interaction. An example of 
such 2 nodes are PID07 and PID04. 
 
In Table 5, the vertices and their degrees are 
presented. This information helps in prioritizing 
the identification of members of the community 
for testing. However, the degree is not the only 
information used for prioritizing selection. The 
current contact tracing techniques being used to 
combat COVID19 select adjacent nodes without 
any priority. 
 
The interaction graph in Fig. 6. is simplified by 
merging several edges into one. The value(s) 
attached to an edge depicts the number of edges 

combined to form that edge. Node PID04, has 
the highest number of edges, while PID10 has 
the least. Tables 6, 7 and 8 present the                       
priority contact tracing list when PID07, PID04, 
and PID10 test positive for COVID-19, 
respectively. Algorithm-I was used to generate 
the table. 
 
Algorithm 2 generated Table 9, which contains all 
the nodes in the network and their Risk_Points to 
help identify the community members who may 
be vulnerable. Table 5 shows that the PID 04 
and PID10 have degrees of 15 and 4 
respectively, but have 132 and 87 points on the 
general risk_points estimation in Table 9. These 
values put PID04 and PID10 on the 3

rd
 and 6

th
 

positions, respectively for testing. 
 
Fig. 7. presents the entities and their risk_points 
from Fig. 6. From the results, there is no direct 
relationship between the degree of nodes and 
their risk points.   
 
In Table 8. we have the list of all adjacent nodes 
of PID04 and their Risk_Points.  8 out of the 9 
nodes in the network were identified as having 
the potential of being infected with the disease 
from PID04.  PID03 is the only node that has no 
direct contact with PID04.  PID08 is assigned the 
highest risk value when PID04 tests positive; 
however, on the degree table, PID08 has a 
degree of 10.  The value is lower than that of 

 
Table 4. Edges extracted from the contact table 

 

node_a node_b Weight 

PID02 PID09 1 

PID06 PID02 2 

PID01 PID05 3 

PID10 PID04 4 

PID04 PID08 5 

PID05 PID10 6 

PID08 PID06 7 

PID09 PID07 8 

PID08 PID09 9 

PID06 PID04 10 



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
59 

 

node_a node_b Weight 

PID02 PID06 11 

PID09 PID03 12 

PID02 PID03 13 

PID06 PID03 14 

PID09 PID01 15 

PID06 PID02 16 

PID03 PID02 17 

PID04 PID07 18 

PID01 PID04 19 

PID04 PID10 20 

PID01 PID06 21 

PID01 PID05 22 

PID06 PID05 23 

PID04 PID01 24 

PID07 PID04 25 

PID04 PID02 26 

PID02 PID09 27 

PID05 PID04 28 

PID04 PID07 29 

PID10 PID02 30 

PID02 PID07 31 

PID09 PID07 32 

PID01 PID06 33 

PID02 PID08 34 

PID09 PID08 35 

PID07 PID08 36 

PID02 PID07 37 

PID09 PID07 38 

PID08 PID07 39 

PID06 PID01 40 

PID06 PID01 41 

PID05 PID04 42 

PID08 PID09 43 

PID09 PID04 44 

PID08 PID02 45 

PID09 PID02 46 

PID08 PID04 47 

PID07 PID04 48 

 
PID09, but PID09 has the least Risk Points when 
PID04 test positive. If degrees of nodes are the 
only means of prioritizing, then PID02 should 
have been the entity with the highest Risk_Points 
when PID04 test positive. PID09 has the least 
result because the only edge existing between 
the nodes (PID09 and PID04) weights 44. The 
11 edges formed with PID09 has weights of (15, 
12, 35, 43, 9, 8, 36, 1, 27, 46, 32). 10 out of the 
11 edges do have weight values less than 44.  
This suggests that 10 of the contacts between 
PID09 had occurred before that of PID04.  The 

other edge with the weight 46 formed by (PID09 
and PID02) has fewer consequences since 
PID02 is an adjacent node to PID04 and 
therefore its risk of contracting the disease will be 
more probable from PID04 directly, rather than 
through PID09.  Again, the secondary, tertiary, 
and quaternary path lengths generated by the 
algorithm are used to estimate adjacent nodes' 
frequencies in these paths to help generate the 
risk_points values in Tables 6 – 9. The 
framework assigns lower points to PID09 while 
higher points to PID08.  



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
60 

 

 

 
Fig. 6. Interaction network extracted from tblcontact table 

 
Table 5. Various vertices and degrees 

 

Vertex Degree 
PID04 15 
PID02 14 
PID09 12 
PID06 11 
PID07 11 
PID08 10 
PID01 9 
PID05 6 
PID03 4 
PID10 4 

 
Table 6. Primary contacts nodes and their risk_points when node PID 07 test positive for 

COVID-19 
 

Node Risk Points 
PID04 28 
PID08 9 
PID09 3 
PID02 2 



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
61 

 

Table 7. Primary contacts nodes and their risk_points when node PID 04 test positive for 
COVID-19 

 

Node Risk Points 
PID08 48 
PID07 31 
PID02 31 
PID10 13 
PID01 5 
PID05 2 
PID06 1 
PID09 1 

 
Table 8. Primary contacts nodes and their risk_points when node PID10 test positive for 

COVID-19 
 

Node Risk_Points   
PID04 68 
PID02 18 
PID05 1 

 

 
 

Fig. 7. Entities degrees and risk_points of the graph in Fig. 6. 
 

Table 9. Nodes and their risk_points 
 

Node Risk_Points 
PID06 155 
PID02 147 
PID04 132 
PID08 100 
PID09 90 

0

20

40

60

80

100

120

140

160

180

PID04 PID02 PID09 PID06 PID07 PID08 PID01 PID05 PID03 PID10

Entities Degrees and Risk_Points

degree Risk Points



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
62 

 

Node Risk_Points 
PID10 87 
PID01 65 
PID07 42 
PID03 34 
PID05 24  

 

4. CONCLUSION 
 
A framework for prioritizing contact testing for 
COVID-19 and other infectious viruses is 
presented in this paper. The proposed 
framework relies on the interaction dataset 
stored by app-based contact tracing tools.  It 
extracts interaction networks from the dataset for 
which edges’ weights represent the chronological 
order of interactions. In the traditional approach 
of contact tracing, suspected cases do have the 
same alert signal. This makes it challenging to be 
head of the disease because the cases are not 
prioritized. The proposed framework assigns risk 
points to all contacts and can help healthcare 
workers decide each suspected case's urgencies 
and handle them accordingly. Experimental 
results show that the number of primary contacts 
does not necessarily result in high risk points. 
However, the time of contacts and the 
secondary, tertiary, and quaternary interactions 
influence an individual's potential of being 
infected with the virus.  Therefore, the framework 
can improve the contact tracing process and 
hence help curb the exponential spread of the 
disease. 
 

COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 
1. Abeler J, Bäcker M, Buermeyer U, 

Zillessen H. COVID-19 contact tracing               
and data protection can go together.                     
JMIR mHealth and uHealth. 2020;                      
8(4). 

2. Park O, Park YJ, Kim SY, Kim J, Lee J, 
Yum M. Contact transmission of COVID-19 
in South Korea: Novel investigation 
techniques for tracing contacts. Osong 
Public Health and Research Perspectives. 
2020;11(1):60–63,  

3. Ferretti L, Wymant C, Kendall M, Zhao L, 
Nurtay A, Abeler-Dorner L, Parker M, 
Bonsall DG, and C. Fraser. Quantifying 
SARS-CoV-2 transmission suggests 

epidemic control with digital contact 
tracing; 2020. 

4. Saurabh S, Prateek S. Role of contact 
tracing in containing the 2014 Ebola 
outbreak: A review. African Health 
Sciences. 2017;17(1):225.  

5. Martínez MJ, Salim AM, Hurtado JC, 
Kilgore PE. Ebola virus infection: Overview 
and update on prevention and treatment. 
Infectious Diseases and Therapy, 2015; 
4(4):365–390. 

6. Olu OO, Lamunu M, Nanyunja M, Dafae F, 
Samba T, Sempiira N et al. Contact tracing 
during an outbreak of ebola virus disease 
in the western area districts of Sierra 
Leone: Lessons for future ebola outbreak 
response. Frontiers in Public Health. 
2016;4. 

7. Danquah LO, Hasham N, Macfarlane M, 
Conteh FE, Momoh F, Tedesco AA et al. 
Use of a mobile application for Ebola 
contact tracing and monitoring in northern 
Sierra Leone: A proof-of-concept study. 
BMC Infectious Diseases. 2019;19(1).  

8. Cheng HY, Jian SW, Liu DP, Ng TC, 
Huang WT, Lin HH. Contact tracing 
assessment of COVID-19 transmission 
dynamics in taiwan and risk at different 
exposure periods before and after 
symptom onset. JAMA Internal Medicine; 
2020. 

9. He Z. What further should be done to 
control COVID-19 outbreaks in addition to 
cases isolation and contact tracing 
measures? BMC Medicine. 2020;18(1). 

10. Yasaka TM. Lehrich BM, Sahyouni R. 
Peer-to-peer contact tracing: Development 
of a privacy-preserving smartphone app 
(Preprint); 2020. 

11. Trace together. 

Available:http://www.tracetogether.gov.sg/.  

Accessed: 22-Jun-2020. 

12. Poojary T. Coronavirus: Apple and google 
to partner for contact tracing technology; 
2020. 

Available:https://yourstory.com/2020/04/co
ronavirus-apple-google-partner-contact-
tracing. 

Accessed: 22-Jun-2020. 



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
63 

 

13. Cormen TH, Leiserson CE, Rivest RL, 
Stein C. Introduction to Algorithms. MIT 
Press. Cambridge. MA. 2nd edition; 2001. 

14. Bryant V, Wallis WD. A beginner's guide to 
graph theory, the mathematical gazette. 
2001;85(503):374. 

15. SSG, Vetrivel S, ENM. Applications of 
graph theory in computer science an 
overview. International Journal of Engin 
eering Science and Technology. 2010; 
2(9):4610–4621. 

16. Darvish M, Yasaei M, Saeedi A. 
Application of the graph theory and matrix 
methods to contractor ranking. 
International Journal of Project Manage 
ment. 2009;27(6):610–619. 

17. Otoo D, Amponsah SK, Sebil C. 
Capacitated clustering and collection of 

solid waste in Kwadaso estate, Kumasi. 
Journal of Asian Scientific Research, 2014; 
4(8):460–472.  

18. Keeling MJ, Hollingsworth TD, Read JM. 
The efficacy of contact tracing for the 
containment of the 2019 novel corona 
virus (COVID-19); 2020. 

19. Coronavirus disease (COVID-19) - Events 
as they happen. World Health Organi 
zation. 

Available:https://www.who.int/emergencies
/diseases/novel-coronavirus-2019/events-
as-they-happen.  

Accessed: 22-Jun-2020. 

20. Dropkin G. Covid-19: Contact tracing 
requires ending the hostile environment. 
Bmj p. m1320; 2020. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
64 

 

APPENDIX 
 

SQL 1. Generate edges from tbl contact 
 

Delete from edges; 
Alter Table edges AUTO_INCREMENT = 1; 
Insert into edges (node_a, node_b)selecta.personid as node_a, b.personid as node_b from contact as 
a, contact as b where a.locationid  = b.locationid and timestampdiff(MINUTE, a.period, b.period) 
between 0 and 120 and a.personid != b.personid and timestampdiff(DAY, a.period, 
CURRENT_DATE) <= 14 and timestampdiff(DAY, b.period, CURRENT_DATE) <= 14 
Delete from edges; 
Alter Table edges AUTO_INCREMENT =  1; 
Insert into edges (node_a, node_b)selecta.personid as node_a, b.personid as node_b from contact as 
a, contact as b where a.locationid  = b.locationid and timestampdiff(MINUTE, a.period, b.period) 
between 0 and 120 and a.personid != b.personid and timestampdiff(DAY, a.period, 
CURRENT_DATE) <= 14 and timestampdiff (DAY, b.period, CURRENT_DATE) <= 14 and a.personid 
not in (select * from neglist) and b.personid not in (Select * from neglist); 

 
SQL 1. Generate edges from tbl contact 

 

Delete from edges; 
Alter Table edges AUTO_INCREMENT =  1; 
Insert into edges (node_a, node_b)selecta.personid as node_a, b.personid as node_b from contact as 
a, contact as b where a.locationid  = b.locationid and timestampdiff(MINUTE, a.period, b.period) 
between 0 and 60 and a.personid != b.personid and timestampdiff(DAY, a.period, CURRENT_DATE) 
<= 14 and timestampdiff(DAY, b.period, CURRENT_DATE) <= 14; 
Delete from edges; 
Alter Table edges AUTO_INCREMENT =  1; 
Insert into edges (node_a, node_b)selecta.personid as node_a, b.personid as node_b from contact as 
a, contact as b where a.locationid  = b.locationid and timestampdiff(MINUTE, a.period, b.period) 
between 0 and 60 and a.personid != b.personid and timestampdiff(DAY, a.period, CURRENT_DATE) 
<= 14 and timestampdiff(DAY, b.period, CURRENT_DATE) <= 14 and a.personid not in (select * from 
neglist) and b.personid not in (Select * from neglist); 

  
SQL 2. Generate adjacent nodes of a particular node 

 

 Select distinct node_b as adjacent from edges where node_a = 'A' union Select distinct node_a 
as Adjacent from edges where node_b = 'A' 

 
SQL 3. Generate degrees for each vertex in the graph 

 

 Select vertex, sum(degree) as degree from (select distinct node_a as vertex, count(node_a) as 
degree from edges group by node_a UNION ALL select distinct node_b as vertex, 
count(node_b) as degree from edges group by node_b) As Deg group by vertex order by 
degree desc 

 
SQL 4. Select pendant nodes 

 

 select * from (Select vertex, sum(degree) as degree from (select distinct node_a as vertex, 
count(node_a) as degree from edges group by node_a UNION ALL select distinct node_b as 
vertex, count(node_b) as degree from edges group by node_b) As Deg group by vertex) as 
Pendant where Pendant.degree = 1 

 
 
 
 



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
65 

 

SQL 5. Regular graphs 
 

Select * from  
(Select vertex, sum(degree) as degrees from (select distinct node_a as vertex, count(node_a) as 
degree from edges group by node_a UNION ALL select distinct node_b as vertex, count(node_b) as 
degree from edges group by node_b) As Deg group by vertex order by degree desc) As tblDegrees 
where degrees = (select max(degrees) from (Select vertex, sum(degree) as degrees from (select 
distinct node_a as vertex, count(node_a) as degree from edges group by node_a UNION ALL select 
distinct node_b as vertex, count(node_b) as degree from edges group by node_b) As Deg group by 
vertex order by degree desc) As tblDegrees) 
AND 
degrees = (select min(degrees) from (Select vertex, sum(degree) as degrees from (select distinct 
node_a as vertex, count(node_a) as degree from edges group by node_a UNION ALL select distinct 
node_b as vertex, count(node_b) as degree from edges group by node_b) As Deg group by vertex 
order by degree desc) As tblDegrees) 

 
SQL 6. Secondary contact (path length of 2) 

 

 select a.node_a as Suspected, a.node_b as Primary_Contact, b.node_bSecondary_Contact 
from edges as a, edges as b where a.node_b = b.node_a and a.weight<b.weight order by 
Suspected 

 
SQL 7. Tertiary contact (path length of 3) 

 

 select a.node_a as Suspected, a.node_b as Primary_Contact, b.node_bSecondary_Contact, 
c.node_b as Tertiary_Contact from edges as a, edges as b, edges as c where a.node_b = 
b.node_a and b.node_b=c.node_a and a.Weight<b.Weight and b.weight<c.Weight 

 
SQL 8. Quaternary contact (path length of 4) 
 

 select a.node_a as Suspected, a.node_b as Primary_Contact, b.node_bSecondary_Contact, 
c.node_b as Tertiary_Contact, d.node_b as Quaternary_Contact from edges as a, edges as b, 
edges as c, edges as d where a.node_b = b.node_a and b.node_b=c.node_a and c.node_b = 
d.node_a and a.Weight<b.Weight and b.weight<c.Weight and c.Weight<d.Weight 

 
SQL 9. Identify potential cuts 

 

Select Primary_Contact, Secondary_Contact, count(Tertiary_Contact) as Freq from (select a.node_a 
as Suspected, a.node_b as Primary_Contact, b.node_bSecondary_Contact, c.node_b as 
Tertiary_Contact from edge as a, edge as b, edge as c where a.node_b = b.node_a and 
b.node_b=c.node_a order by Suspected, Primary_Contact, Secondary_Contact, Tertiary_Contact) As 
G group by Primary_Contact, Secondary_Contact order by Freq DESC 

 
SQL 10. SQL implementation of algorithm 1 

 

Select AL4 as Node, count(AL4) as Risk_Points from  
((select a.node_b as AL4 from edges as a, edges as b, edges as c, edges as d where a.node_b = 
b.node_a and b.node_b=c.node_a and c.node_b = d.node_a and a.Weight<b.Weight and 
b.weight<c.Weight and c.Weight<d.Weight and a.node_a = 'A') 
UNION ALL 
(select a.node_b as AL3 from edges as a, edges as b, edges as c where a.node_b = b.node_a and 
b.node_b=c.node_a and a.Weight<b.Weight and b.weight<c.Weight and a.node_a = 'A') 
UNION ALL 
(select a.node_b as AL2 from edges as a, edges as b where a.node_b = b.node_a and 
a.Weight<b.Weight and a.node_a = 'A') 
UNION ALL 



 
 
 
 

Appiah et al.; AJRCOS, 7(1): 50-66, 2021; Article no.AJRCOS.62354 
 
 

 
66 

 

(Select node_b as AL1 from edges where node_a = 'A')  
UNION ALL 
(Select node_a as AL0 from edges where node_b = 'A')) As Paths 
group by AL4 order by Risk_PointsDesc 

 
SQL 11. SQL implementation of algorithm 2 

 

Select AL4 as Node, count(AL4) as Risk_Points from  
((select a.node_a as AL4 from edges as a, edges as b, edges as c, edges as d where a.node_b = 
b.node_a and b.node_b=c.node_a and c.node_b = d.node_a and a.Weight<b.Weight and 
b.weight<c.Weight and c.Weight<d.Weight) 
UNION ALL 
(select a.node_a as AL3 from edges as a, edges as b, edges as c where a.node_b = b.node_a and 
b.node_b=c.node_a and a.Weight<b.Weight and b.weight<c.Weight) 
UNION ALL 
(select a.node_a as AL2 from edges as a, edges as b where a.node_b = b.node_a and 
a.Weight<b.Weight) 
UNION ALL 
(Select node_b as AL1 from edges)  
UNION ALL 
(Select node_a as AL0 from edges)) As Paths 
group by AL4 order by Risk_PointsDesc 

_________________________________________________________________________________ 
© 2021 Appiah et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://www.sdiarticle4.com/review-history/62354 


