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Abstract

In the inviscid rip-current regime it was demonstrated that there is a longshore component of
the rip current system, which does not need friction in order to exist. Hence here in the viscous
regime we are not concerned with any frictionally determined currents, but only with how the
frictional terms modify the already constructed inviscid solution. Note that the frictional terms
are not invoked in the shoaling zone, and so the solution remains unchanged in that regime. The
nearshore is characterized by the presence of breaking waves, and so we developed equation to
be used outside surf zone, based on small-amplitude wave theory, and another set of equations
to be used inside the surf zone, based on an empirical representation of breaking waves, Suitable
matching conditions are applied at the boundary between the offshore shoaling zone and the
nearshore surf zone. Both sets of equation are obtained by averaging the basic equations over the
wave phase. Thus the qualitative solution constructed is a free vortex defined in both shoaling
and surf zone where in the surf zone the free vortex is perturbed by a long shore component.

Keywords: Wave-current interactions; setup; set down; surf zone; shoaling zone; longshore currents.

*Corresponding author: E-mail: fevansosaisai@gmail.com;

http://sciencedomain.org/review-history/24156


Osaisai; ARJOM, 9(2): 1-10, 2018; Article no.ARJOM.34820

1 Introduction

The hydrodynamics of the nearshore zone constitutes an important area of studies. The interest
is mainly driven by a combination of engineering, shipping and coastal interests. There has been
much research on shoaling nonlinear waves, on how currents affect waves and how waves can drive
currents. The basis for this subject was laid down by [1], [2], were analysis was done for nonlinear
interaction between short waves and long waves (or currents), and showed that variations in the
energy of the short waves correspond to work done by the long waves against the radiation stress
of the short waves. In the shoaling zone this radiation stress leads to what are now known as
wave setup and wave setdown, surf beats, the generation of smaller waves by longer waves, and
the steepening of waves on adverse currents, [3], [4]. The divergence of the radiation stress was
shown to generate an alongshore current by obliquely incident waves on a beach [5], [6]. During the
shoaling of the waves there is a discontinuity in the wave energy in the mean vorticity equation of
the waves. Thus there is sharp distinction in the behaviour of waves in the regimes due largely to
forcing.

As wave groups propagate towards the shore, they enter shallower water and eventually break on
beaches. The important process here is the wave breaking and dissipation of energy. The focusing
of energy and the wave height variation across the group forces low frequency long waves that
propagate with the group velocity [1]. These long waves may be amplified by continued forcing
during the shoaling of the short wave group into shallower water [3], [7], [8] and [9]. In sufficiently
shallow water, the short waves within the group may break at different depths leading to further
long wave forcing by the varying breaker-line position [10], [11]. This means that the shoreward
propagating waves may reflect at the shoreline and subsequently propagate offshore [12].

Wave breaking leads to a transfer of the incoming wave energy to a range of different scales of
motions, and particularly to lower frequencies [13]. Thus waves called surf beat [12]; [14], may
propagate in the cross-shore direction (called leaky waves). Waves may be trapped refractively as
edge waves [15]. Wave breaking may occur for two reasons. Firstly due to natural variation in the
wave direction and amplitude. These changes occur in space and time. Secondly wave may break
due to topographic influences. When this is the case, as in the nearshore zone, the location and
form of the wave breaking is influenced by the bottom depth profile.

Essentially we derived a model for the interaction between waves and currents. The aim is to
provide analytical solution for waves in the nearshore zone on time scales longer than an individual
wave. This is possible on long-time scales using the wave-averaging procedure often employed in
the literature [16]. We describe solutions for rip currents, in the shoaling zone matched to the surf
zone, for two different beach profiles.

The structure of the mathematical model is based on the Euler equations for an inviscid incompressible
fluid. We then employ an averaging over the phase of the waves, exploiting the difference in time
scales between the waves and the mean flow, which is our main interest. The nearshore zone is
divided into regions, a shoaling zone where the wave field can be described by linear sinusoidal
waves, and the surf zone, where the breaking waves are modelled empirically. The breakerline is
fixed at x = xb but in general could vary.

In the shoaling zone wave field, we use an equation set consisting of a wave action equation, combined
with the local dispersion relation and the wave kinematic equation for conservation of waves. The
mean flow field is then obtained from a conservation of mass equation for the mean flow, and a
momentum equation for the mean flow driven by the wave radiation stress tensor. In the surf zone,
we use a standard empirical formula for the breaking wave field, together with the same mean flow
equations.
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2 Basic Governing Equations

The basic set of equations used in this paper are

ω2 = g κ tanh κh (2.1)

kt +∇ω = 0 , (2.2)

Et +∇ · (cgE) = 0 , (2.3)

that is (i) dispersion relation, (ii) conservation of waves equation and (iii) wave action equation.
The second set of the basic equations are

∂ζ̄

∂t
+

∂

∂xi
(H̄Ui) = 0 (2.4)

H̄
∂Ui

∂t
+ H̄Uj

∂Ui

∂xj
= − ∂

∂xj
Si j − g(ζ + h)

∂ζ̄

∂xj
(2.5)

that is, the mass conservation equation and mean momentum equation respectively where the
radiation stress acts as the driving force of the waves define as follows:

Si j = cgikj
E

ω
+ δi jE[

cg
c

− 1

2
] . (2.6)

These equations have been derived outside the surf zone. Inside the surf zone we also use the mean
mass and momentum equations but follow the conventional literature and replace the radiation
stress tensor by an empirically determined quantity [16].

Previously in our work elsewhere we constructed the longshore current driven by the radiation stress
in the surf zone when this forcing has no alongshore modulation, that is there is no y-dependence
in the radiation stress. In that case the frictional effects are necessary for the longshore current to
exist, and the weaker the friction the stronger is the current. Also in the inviscid rip-current model
constructed see [17], we have demonstrated that there is a longshore component of the rip current
system, namely Z(x) [17] which does not need friction in order to exist. Hence here we are not
concerned with any frictionally determined currents, but only with how the frictional terms might
modify the already constructed inviscid solution. Before proceeding note that the friction terms are
not invoked in the shoaling zone, and so the solution there remains unchanged.

2.1 Fundamentals of friction in the nearshore

The full momentum equations with the frictional terms included are in [16]

H[U
∂U

∂x
+ V

∂U

∂y
] = −g H ∂ζ

∂x
− [τx] + τ ′x (2.7a)

H[U
∂V

∂x
+ V

∂V

∂y
] = −g H ∂ζ

∂y
− [τy] + τ ′y . (2.7b)

Here the radiation stress terms are given by [2.6],

τx =
∂S11

∂x
+
∂S12

∂y
and τy =

∂S21

∂x
+
∂S22

∂y
. (2.8)

(2.9)

The terms τ ′y and τ ′x are lateral mixing terms which describe the afore-mentioned frictional effects,
and are expressed as follows in [18] and [16]

τ ′y = νevxx, τ
′
x = νeuxx where νe = ν0g

1/2h3/2 . (2.10)
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Next we recall that the steady-state mean mass equation (2.4) can be solved using a transport
stream function ψ(x, y) in the expressions so that

U = − 1

H

∂ψ

∂y
and V =

1

H

∂ψ

∂x
. (2.11)

Next, again eliminating the pressure, we obtain the mean vorticity equation in the frictional regime

ψx(
Ω

H
)y − ψy(

Ω

H
)x = [

τx
H

]y − [
τy
H

]x + µ0[[h
3
2 (
ψx

h
)xx]x + [h

3
2 (
ψy

h
)xx]y], (2.12)

where τx =
3

2
Ex , τy =

1

2
Ey .

For convenience we have set µ0 = g1/2ν0. The radiation stress terms are evaluated as before, and
so finally equation (2.12) becomes

ψx(
Ω

H
)y − ψy(

Ω

H
)x =

(h1/2Ey)x
h3/2

+ µ0[[h
3
2 (
ψx

h
)xx]x + [h

3
2 (
ψy

h
)xx]y] . (2.13)

As before Ω is defined by

Ω = Vx − Uy = (
ψx

H
)x + (

ψy

H
)y . (2.14)

As before the wave forcing is given by the expression, that is,

E = E0 cos Ky + F0 sin Ky +G0(x), (2.15)

so that the wave forcing term in (2.13) again simplifies to

(K cos Ky)
(h1/2F0)x
h3/2

− (K sin Ky)
(h1/2E0)x
h3/2

. (2.16)

Thus again we observe that the unmodulated term G0(x) plays no role here at all. In order to
match at x = xb with the expression Y = sin Ky for the streamfunction in the shoaling zone, we
should try for a solution of (2.12) of the form

ψ = E(x) cos Ky + F (x) sinKy +G(x) . (2.17)

Note that, comparing this with the analogous expression,

ψ = F (x) sin Ky +G(x), x < xb (2.18)

in the friction-free case we see that here the term E(x) is purely due to friction. Next, equation
(2.17) yields

Ω = Ẽ cos Ky + F̃ sin Ky + G̃, (2.19)

where F̃ , Ẽ and G̃ are the differential operators

Ẽ = (
Ex

h
)x − K2E

h
(2.20)

F̃ = (
Fx

h
)x − K2F

h
(2.21)

G̃ = Zx, Z =
Gx

h
. (2.22)

The left-hand side of equation (2.13) contains terms in cos 2Ky, sin 2Ky, cos Ky, sin Ky, 1, while
the right-hand side contains only terms in cos Ky, sin Ky, 1. Equating the appropriate coefficients
on each side we get that

Fx
F̃

h
− Ex

Ẽ

h
− F (

F̃

h
)x + E(

Ẽ

h
)x = 0, (2.23a)
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Ex
F̃

h
− F (

Ẽ

h
)x − E(

F̃

h
)x + Fx

Ẽ

h
= 0, (2.23b)

Gx
F̃

h
− (

G̃

h
)xF =

(h1/2F0)x
h3/2

+
µ0

K
[[h

3
2 (
Ex

h
)xx]x −K2[h

3
2 (
E

h
)xx]], (2.23c)

E(
G̃

h
)x −Gx

Ẽ

h
= − (h1/2E0)x

h3/2
+
µ0

K
[[h

3
2 (
Fx

h
)xx]x −K2[h

3
2 (
F

h
)xx]], (2.23d)

E(
F̃

h
)x − Fx

Ẽ

h
+ Ex

F̃

h
− F (

Ẽ

h
)x =

2µ0

K
[h

3
2 (
Gx

h
)xx]x. (2.23e)

The boundary conditions are analogous to those imposed in the friction free case, that is the inviscid
regime. That is, at x = 0 where h = 0 both mass transport fields U, V should vanish, that is from
(2.11), ψ = constant and ψx/h = 0, which implies that

(E,F )

h
=

(Ex, Fx)

h
= 0 , G = constant,

Gx

h
= 0 , at x = 0 . (2.24)

As before there are also the matching conditions for E,F,G and G separately at the breakerline,
that is, we now have that

Fx(xb)

F (xb)
=
Xx(xb)

X(xb)
, Ex(xb) = Gx(xb) = 0 . (2.25)

Equations (2.23a, 2.23b, 2.23c, 2.23d, 2.23e) form five equations for only three unknowns. Hence
in general there is unlikely to be an exact solution, and instead we seek an approximate solution.
First, we note that when µ0 = 0 (the frictionless case) there is an exact solution, as then we can
satisfy (2.23c) with E = 0, and then provided we also set E0 = 0, equations (2.23d, 2.23e) are also
satisfied, leaving only (2.23a) for F and (2.23c) for G. This of course is just the procedure we have
followed above. Hence we shall regard the frictional terms as a perturbation on this and so treat
ν0 as a small parameter, noting that ν0 is dimensionless. Thus we infer that E = 0(ν0), and for
consistency we must then also choose E0 = O(ν0); indeed we will set E0 = 0 for simplicity.

It now follows that to leading order in ν0, F is given again by the frictionless solution, so that it
satisfies the inviscid solution

(
Fx

h
)x − K2F

h
= ChF (2.26)

again. Indeed, since E = O(ν0), the error incurred for F is O(ν20 ) from (2.23a). Next we see that
the frictional term in (2.23c) is O(ν20 ), so that also G is again given by the frictionless solution see
[17], with an error of O(ν20 ). It remains to determine the leading order term for E. For this purpose
we can use (2.23e), since the alternative equation (2.23d) generates only a term for E which is
O(ν20 ). Then, using the above estimates for F,G we see that (2.23e) becomes

ChE − Ẽ =
2µ0

KF
h5/2Zxx , (2.27)

that is ChE − (
Ex

h
)x +

K2E

h
=

2µ0

KF
h5/2Zxx , (2.28)

on using (2.20), where a constant of integration has been set to zero. Here the right-hand side can
be regarded as known, and is given by the expression

F (CGx − (
G̃

h
)x) =

(h1/2F0)x
h3/2

(2.29)

Note that equation (2.29) is from the frictionless case, that is, the inviscid solution for Z = Gx/h.
Thus we see that the essential outcome of the frictional terms is to introduce into the surf zone an
extra component E(x) cosKy which, in the longshore direction, is out-of-phase with the component
proportional to sinKy in the shoaling zone.
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2.2 Applications To Quadratic Depth Profile

Now for the quadratic depth profile, where h = βx2, in which case F is given by

F ≈ A0x
3(1− x6

3x6b
) (2.30)

and Z is given by

Z =
45gβ2γ2x2b

16A0
(
x2

x2b
− 1

sin[2/
√
3]

sin[
2x3√
3x3b

]). (2.31)

Again we note that the equations (29) and (30) are both found in the inviscid solution [20].

We follow the same procedure as for the linear depth profile, in which the right-side is approximate
in the limit x → 0. In that case F ∝ x3, Z ∝ x2 and so the right-hand side is proportional to x2

that is,

h5/2Zxx

F
≈ 45gγ2β9/2x2

8A2
0

. (2.32)

Also the particular solution of (2.28) is proportional x6,

Ep ≈ −5g3/2ν0γ
2β11/2x6

8KA2
0

. (2.33)

The homogeneous equation is

Exx − 2

x
Ex −K2E = Ch2E, (2.34)

or, putting u = x3

9Euu − λE − K2E

u4/3
= 0 , (2.35)

where λ = Cβ2 as in the inviscid solution. But unlike the linear depth case, there are apparently
no solutions available in terms of known special functions. However, again for simplicity we seek
just an approximation as x → 0, in which case the solution which satisfies the boundary condition
(2.24) is

Eh ≈ u = x3 .

Finally we need to combine Eh, Ep to satisfy the boundary condition at (2.25) at x = xb so that

E =
5g3/2ν0β

11/2x6b
8KA2

0

(−x
6

x6b
+

2x3

x3b
). (2.36)

Also we invoke G from the inviscid solution and is given by

G =
45gγ2β3x5b

16A0
(
x5

5x5b
+

1

2
√
3 sin[2/

√
3]

cos[
2x3√
3x3b

]− 1

5
− 1

2
√
3 tan[2/

√
3]
) . (2.37)

Thus we get from (16,35, 29, 36) in x < xb that the normalized streamfunction ψn is again given
by, that is,

ψn =
F (x)

F (xb)
sinKy +R

G(x)

G(0)
+ S

E(x)

E(xb)
cosKy , for 0 < x < xb , (2.38)

where R is now given by

R =
135gβ3γ2x2b

32A2
0

(
1

2
√
3 sin[2/

√
3
− 1

5
− 1

2
√
3 tan[2/

√
3]
) . (2.39)
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while

S =
15ν0g

3/2β11/2x3b
16KA3

0

. (2.40)

But we recall from (2.39) that

R = −2.1gβ3x2b
A2

0

,

and so now we can write

S = S̃|R|3/2 , where S̃ =
0.1(signA0)ν0β

K
. (2.41)

Note that it increases with β but decreases with K. Using Kxb = 0.2 as in the inviscid regime, and
again estimating ν0βxb ≈ 0.01, we infer that a suitable value is S̃ = 0.005, which is much smaller
than for the case of the linear depth profile.

The normalized streamfunctions (37) are again plotted for the same values of R = −0.02, R = −0.1,
R = −0.5 and R = −2 used in the inviscid regime respectively. In contrast to the figures in the
invsicid case, we again see that the rip-currents in the frictional regime [7, 19, 20, 21] are modified.
But in contrast to the linear depth profile case, the frictional effect is much less discernible.

Fig 1. Plot of the rip current streamlines for a quadratic depth profile, given by

equation (2.38) where F (x) and G(x) are equations (2.30) and (2.37) respectively for

R = −0.02 and S̃ = 0.005
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Fig 2. As for figure 2.2 but R = −0.1 and S̃ = 0.005

Fig 3. As for figure 2.2 but R = −0.5 and S̃ = 0.005
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Fig 4. As for figure 2.2 but R = −2 and S̃ = 0.005

3 Conclusion

These flows take place in the shallow surf zone and frictional effects could be expected to be
significant. It was nice to see frictionally effects discussed more carefully. However, no new effects
appeared but the point can now be made that friction does not destroy the vortex. The underlying
problem is of interest and the finding of a free vortex is new and interesting. From the fore-going,
it was observed that frictional effects modify rip-currents on a linear depth profile more than on
the counterpart quadratic depth profile. Obviously, this can be as a result of the differences in
the beach types. As wave forcing is large there is an improved output of the longshore component
of the rip-currents . Overall this means that with large R the near-shore current system and its
circulation becomes noticeable in the region.
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