
*Corresponding author: E-mail: writepep@yahoo.com, perpetual.oladoja@gmail.com;

Asian Journal of Research in Computer Science

7(1): 1-13, 2021; Article no.AJRCOS.63913
ISSN: 2581-8260

A Threshold-based Tournament Resource Allocation
in Cloud Computing Environment

I. P. Oladoja1*, O. S. Adewale1, S. A. Oluwadare1 and E. O. Oyekanmi2

1
Department of Computer Science, the Federal University of Technology Akure, Nigeria.

2Department of Mathematical Science, Achievers University Owo, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author IPO designed the study,
performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Author

OSA supervised the study, validated the data and edited the manuscript draft. Author SAO co-
supervised the study and also edited the manuscript draft. Author EOO was also involved in the
statistical analysis, design of study and literature survey. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/AJRCOS/2021/v7i130169
Editor(s):

(1) Dr. G. Sudheer, GVP College of Engineering for Women, India.
Reviewers:

(1) Radael de Souza Parolin, Federal University of Pampa, Brazil.
(2) A. Ponshanmugakumar, Sri Sairam Institute of Technology, India.

Complete Peer review History: http://www.sdiarticle4.com/review-history/63913

Received 06 October 2020
Accepted 12 December 2020

Published 07 January 2021

ABSTRACT

Cloud computing environments provide an apparition of infinite computing resources to cloud users
so that they can increase or decrease resource consumption rate according to their demands. In
the Cloud, computing resources need to be allocated and scheduled in a way that providers can
achieve high resource utilization and users can meet their applications’ performance requirements
with minimum expenditure. Due to these different intentions, there is the need to develop a
scheduling algorithm to outperform appropriate allocation of tasks on resources. The paper focuses
on the resource optimization using a threshold-based tournament selection probability for virtual
machines used in the execution of tasks. The proposed approach was designed to create metatask
and the proposed algorithm used was Median-Based improved Max-Min algorithm. The
experimental results showed that the algorithm had better performance in terms of makespan,
utilization of resources and throughput. The load balance of tasks was also fairly distributed on the
two datacenters.

Original Research Article

Oladoja et al.; AJRCOS, 7(1): 1-13, 2021; Article no.AJRCOS.63913

2

Keywords: Cloud computing; genetic algorithm; resource allocation; threshold-based tournament.

1. INTRODUCTION

The concept of cloud computing has been
around since the early 1950s, but the term was
not coined then. It was addressed as “Time
sharing systems”. During the period of 1960-
1990, different experts talked about the era of
cloud computing in various books or quotes. In
the early 1990s, the telecommunications
companies began to offer Virtual Private
Networks (VPNs), instead of dedicated
connections, which were standard in
Quality of Service (QoS) but were comparatively
cheaper. This move, aided the advent of
cloud computing which was introduced
around the year 2002 by Amazon. This,
organization can be considered as one of the
pioneers in this field, with their Amazon Web
Services (AWS) and Elastic Compute Cloud
(EC2) [1].

A Cloud is a distributed system, which consists of
a parallel collection of interconnected and
virtualized computers. These computers are
provisioned and seen as one or more integrated
computing resources based on service-level
agreements acknowledged through discussions
between the service provider and consumers.
The computing resources, are virtualized and
allocated as services from providers to users and
this can be allocated dynamically upon the
requirements and preferences of the consumers
[2].

In Cloud Computing Environment, Tasks are sent
to the data center broker (DCB) by the Users.
The broker is responsible for scheduling tasks on
Virtual machines (VM) and also stands as an
intermediary between the Cloud Users and cloud
Providers. A data center is a virtual Infrastructure
for encasing resources and it consists of a
number of Hosts. The proffered tasks are
scheduled according to the scheduling policies
used by the DCB. The DCB communicates
directly with the Cloud controller and
tasks are assigned to Virtual machines in the
Host [3].

There are different types of Scheduling according
to different policies for example, Immediate and
batch scheduling, centralize and distributed
scheduling. Task scheduling is a process of
selecting the best resource accessible for tasks
execution. Task scheduling Algorithms aims at
minimizing the completion time of tasks and also

maximizes resource utilization, to meet user
requirements [4].

In cloud computing, tasks need to be executed
by the resources, to achieve high performances,
optimal completion time, reduce response time
and effective resources utilization. Premised on
these aforementioned objectives, there is need to
develop and propose a scheduling algorithm that
will be used by task scheduler to appropriately
allocate tasks to resources.

2. LITERAURE REVIEW

Saraswathi et al. [5] proposed a dynamic
resource allocation scheme in cloud computing,
where an effective and dynamic utilization of the
resources in cloud can be use to balance the
load and avoid situations like the systems
running slow. The study focused on allocation of
VM to the user, based on analyzing the
characteristics of the job. The limitation of the
work is that the proposed approach left some
jobs idle for a long time, due to the time taken to
create new virtual machines and it was not
implemented in a real time cloud environment.

In Hamed et al. [6], a hybrid genetic algorithm
with a knowledge-based operator for solving the
job shop scheduling problems was proposed.
The study minimized makespan to solve the
problem more effectively and an operation-based
representation was used to enable the
construction of feasible schedules. The study
recommended developing new operators that
further increase the population diversity of the
algorithm and modeling an operator to measure
the population diversity.

In Priya and Babub N.K., [7], a resource
scheduling algorithm with load balancing for
cloud service provisioning was proposed. The
objective of the work was to introduce an
integrated resource scheduling and load
balancing algorithm for efficient cloud service
provisioning. The method constructed a fuzzy-
based multidimensional resource scheduling and
queuing network (F-MRSQN) was used for
efficient scheduling of resources and optimizing
the load for each cloud user requests, with the
efficient evolution of data center. The
effectiveness of F-MRSQN method was
estimated by attaining simulation results for
testing the average success rate and resource
scheduling efficiency and response time. The

Oladoja et al.; AJRCOS, 7(1): 1-13, 2021; Article no.AJRCOS.63913

3

results showed that F-MRSQN method provided
better performance with an improvement of
average success ratio by 9% and reduced the
response time by 20% compared to existing
methods. The work did not investigate privacy-
aware efficient resource scheduling with load
balancing of intermediate data and information in
cloud or by taking privacy preserving as a
metrics with other metrics.

Wang et al., [8] worked on improving task
scheduling with parallelism awareness in
heterogeneous computational environments. The
paper focused on the problem of executing tasks
with deadline constraints with parallelism
awareness where the parallel degree of each
task can be tuned between one or more cores of
the server assigned during execution. The
problem was first modelled as an optimization
problem thereby maximizing the overall utilization
of servers. A scheduling method with parallelism
awareness (SPA) was proposed, where each
core iteratively allocates much resources to task
with the earliest deadline on a server and thereby
reducing the number of decision variables. The
paper introduced a method of calculating the
start time and the finish time for each task into
the optimization problem and transforming the
problem into binary programming. The issue was
then identified in polynomial time, based on
existing task scheduling methods. The study
demonstrated a great performance improvement
in resource utilization, task violations, finish time,
and energy efficiency, when executing tasks in a
heterogeneous computational system using SPA.
The study was limited by the fact that scheduling
designs policies with parallelism awareness, to
improve the efficiency and effectiveness of
computational systems executing tasks online
was not considered.

In Krishnaveni and Prakash [9], an execution
time based sufferage algorithm for static task
scheduling in cloud was proposed. The research
focused developing an efficient algorithm named
Execution Time Based Sufferage Algorithm
(ETSA) that takes into account, the parameters
makespan and also the resource utilization in
scheduling the tasks. The scheduling was vital in
attaining a high-performance schedule in a
heterogeneous-computing system. Existing
scheduling algorithms such as Min-Min,
Sufferage and Enhanced Min-Min, focused only
on reducing the makespan but failed to consider
the other parameters like resource utilization and
load balance. The work was implemented in Java

with Eclipse IDE and a set of Expected Time to
Compute (ETC) matrices was used in the
proposed algorithm. The ETSA delivers better
makespan and resource utilization than the other
existing algorithms. Proposed ETSA, compares
the Sufferage Value (SV) of each task with EXSV
and then take the decision to give out the tasks
to the resource. It also tries to decrease the
makespan with a balanced load across the
resource. It gives better result in terms of
makespan and resource utilization with a
balanced load when compared with existing Min-
Min, Enhanced Min-Min, and Sufferage. The
limitation was that the algorithm was not applied
in actual cloud computing environment
(CloudSim) and other parameters such as
computational cost, storage cost, and deadline of
the tasks was not considered.

In order to obviate the challenges identified in the
previous studies, the present research aimed at
designing a threshold-base tournament selection
for resource allocation, improve the load balance
and resource utilization, thereby maximizing the
throughput.

3. SCHEDULING MODEL

The Cloud manager occasionally collects
information about resources availability and the
price for each resource in the database. It
obtains this information from the different cloud
providers and acts as a pricing interface between
them and the users, thereby updating the
database when new information is available. The
architecture has two main actors: the broker and
the user of the cloud. The former adjusts the
configuration options (available clouds, resource
types from each cloud, pricing information, etc.)
before the execution begins; while the latter
receives information from the broker and
specifies a new service to deploy among
available clouds, describing it through a service
description file. The broker is the one who
deploys the services among the available cloud
providers. One of the main components of the
broker architecture in the cloud is the scheduler,
which is responsible for independently making
scheduling decisions based on dynamic pricing
schemes, dynamic user demands, and different
resource types performance. The Scheduler is
responsible for making placement decision and
can also be configured to work with different
scheduling policies based on different
optimization criteria, such as service cost,
service performance, etc [10].

A data center can manage several hosts which in
turn manages virtual machines (VMs) during their
life cycles. The datacenters must have some
characteristics and this characteristic must be
basically for the host so that each datacenter
may have some host. Host is a CloudSim
component that represents a physical computing
server in a Cloud: it is assigned a pre
processing capability (expressed in millions of
instructions per second—MIPS), memory,
storage, and a provisioning policy for allocating
processing cores to VMs.

The datacenter broker has some characteristics
and also have some tasks which is called the
cloudlet(s) in CloudSim frame work. There may
be one cloudlet or set of cloudlets which will be
submitted to the broker and once the broker
the details it then directly interacts with the
datacenters and assign this cloudlet(s) to some
VM(s) which runs on the host. The Host
component implements interfaces that support
modeling and simulation of both single
multi-core nodes. The host can have some set of
VM and these VM must also have the hardware
configurations of the host. In the CloudSim, VM
allocation policy deals with datacenters, while
VM Scheduler policy deals with host. All
processing done inside the CloudSim can either
be time-shared or space-shared, Maheswaran
al. [11].

In Fig. 1, the relationships between the
datacenter, host, broker and virtual machines are
shown:

Fig. 1.

Oladoja et al.; AJRCOS, 7(1): 1-13, 2021; Article no.AJRCOS

4

A data center can manage several hosts which in
turn manages virtual machines (VMs) during their
life cycles. The datacenters must have some
characteristics and this characteristic must be
basically for the host so that each datacenter

Host is a CloudSim
component that represents a physical computing
server in a Cloud: it is assigned a pre-configured
processing capability (expressed in millions of

MIPS), memory,
storage, and a provisioning policy for allocating

The datacenter broker has some characteristics
and also have some tasks which is called the
cloudlet(s) in CloudSim frame work. There may
be one cloudlet or set of cloudlets which will be
submitted to the broker and once the broker has
the details it then directly interacts with the
datacenters and assign this cloudlet(s) to some
VM(s) which runs on the host. The Host
component implements interfaces that support
modeling and simulation of both single-core and

ost can have some set of
VM and these VM must also have the hardware
configurations of the host. In the CloudSim, VM
allocation policy deals with datacenters, while
VM Scheduler policy deals with host. All
processing done inside the CloudSim can either

Maheswaran et

In Fig. 1, the relationships between the
datacenter, host, broker and virtual machines are

Fig. 1. shows the data flow of the cloud simulator
and the activities of the simulator are
represented in the following equations:

��� � = {��}

where UT is user submitted tasks and T is from
1,2, 3…n

Let B = Broker
Let D = Datacenters
Let S= Services needed by users

�ℎ�� �
= �
∘ � �. �. � ����������� �� �ℎ� ���������

��� � =
� • � �. �. �ℎ� ���������� �� ��������

This research used a space-shared policy which
was done inside the broker and this decides
which VM get the tasks. The equations (4, 5 and
6) were used to show the relationship between
the host and Virtual machines.

Consider H as a set of hosts in the entire system,
where

 � = {ℎ�, ℎ�, ℎ�, … , ℎ�}

N is the total number of the hosts and an
individual host can be denoted as
denote the host number and range from 1 to
Similarly, a set of VMs on each Host
represented as

Fig. 1. Cloud Simulator data flow

; Article no.AJRCOS.63913

Fig. 1. shows the data flow of the cloud simulator
and the activities of the simulator are

n the following equations:

 (1)

is user submitted tasks and T is from

��������� � ��� � (2)

�������� � ��� � (3)

shared policy which
was done inside the broker and this decides

equations (4, 5 and
6) were used to show the relationship between

as a set of hosts in the entire system,

 (4)

is the total number of the hosts and an
individual host can be denoted as ℎ� , where i
denote the host number and range from 1 to N.
Similarly, a set of VMs on each Host ℎ� can be

Oladoja et al.; AJRCOS, 7(1): 1-13, 2021; Article no.AJRCOS.63913

5

� = {��, ��, ��, … , ��} (5)

Here, m is the total number of VMs on the
physical server i. If VM V is deployed on the
present system, then a solution set denoted by

� = {��,��, ��, … … . , ��} (6)

and this represents the mapping solution after
VM V is assigned to each of the Hosts. When the
V is arranged with the Host H, the result is the
mapping structure denoted as S.

VM has instructions (I), Size (S), RAM (M),
Processor (P) and Bandwidth (B) as its
components. Mathematically, this can be
represented as follows:

VM = {I, S, M, P, B} (7)

∀ �� ∃ �| � = {��, ��, … , ��} (8)

���� = ���{��, ��, … , ��} (9a)

���� = ���{��, ��, … , ��} (9b)

Jobs coming into the queue will be in sequence
of 10, 30, nth term and this is done by
using the arithmetic progression method. In
mathematics, an arithmetic progression (AP)
or arithmetic sequence is a sequence of
numbers such that the difference between the
consecutive terms is constant. If the initial
term of an arithmetic progression is �� and the
common difference of successive members
is d, then the nth term of the sequence �� is
given by:

 �� = �� + (� − �)� (10)

where �� is the first term of an arithmetic
progression which is (10), �� is the nth
term of an arithmetic progression, d is the
difference between terms of the arithmetic
progression but in this equation d is (2*10), n is

the number of terms in the arithmetic progression
and m = 1.

4. SCHEDULING ALGORITHM

All tasks in this paper are computational
ones, only the Meta task is considered,
and the tasks are independent of each other.
Each Request (Cloudlet) has size. In order to
efficiently implement the Genetic Algorithm for
the allocation of VM, this work used a reduction
method by reducing the request size by the value
of the highest instruction size from the virtual
machines (resources) that will be used in the
processing.

Therefore, if �� represent the request’s size, the
reduced form is termed as

� = �������(
��

����
∗ 10) (11)

����_1 = ��� (�) (12)

Each virtual machine’s Mips is also converted
into binary form

����_2 = ��� (�/����) (13)

Chromosome is formed by combining request in
binary form (Gene_1) with binary converted,
randomly picked virtual machine.

where BIN is procedure for binary conversion.
����_1 bits are set as the solution (target)
which serves as the fitness criterion for
final best-fit chromosome. In other words, once
the genetic algorithm gets same fitness value
with Gene_1, the iteration is stopped.
This research used a datacenter with 4 hosts
with 10 cloudlets or requests and adopted the
size ranges from 300 MB to 23000 MB [12].
Table 1. shows the configuration of the
datacenter which consist of virtual machines with
their configurations as follows:

Table 1. Virtual machine configuration

VM(ID:0) VM(ID:1) VM (ID: 2) VM (ID: 3)

Mips= 250 Mips =500 Mips =1000 Mips =5000

Size = 10000MB Size =10000MB Size =10000MB Size =10000MB

Ram =512MB Ram =512MB Ram =512MB Ram =512MB

Bandwidth=1000kbps Bandwidth=1000kbps Bandwidth=1000kbps Bandwidth=1000kbps

Pes number =1 Pes number =1 Pes number =1 Pes number =1
Source: Neha, 2014.

Oladoja et al.; AJRCOS, 7(1): 1-13, 2021; Article no.AJRCOS.63913

6

A binary coding with 6-bit strings (S) is used for
each variable (Gene (G)).

��

� ≤ �� ≤ ��
� (14)

��

� is the lower limit which can be represented
with 6-bit string as 000000 while the upper limit
gene that could be generated is 111111. The
combination of the two makes 12-bits of a
chromosome, � ≤ 10, 10 is the population size of
the individual to be reproduced or generated.
This size is used to give enough search space
for possible solutions (called individuals) and
move towards the optimal one. 10 individuals are
generated randomly. For instance, assuming
population size is 5, and the cloudlet of size
22626 MB is to be executed, using equations 11
and 12. The binary form of the cloudlet will be
101101. An example of the generated population
is shown in Fig. 2.

In this paper a threshold-based tournament
selection was used. The selection involves
randomly picking two individuals from the
population and staging a tournament to
determine which one gets selected. To get a
parent, samples are made from the population in
k times (with replacement), where k is the
tournament size and 5 is assigned to it in
irrespective of the population size.

The two individuals entered into crossing
process using selection probability in equation 15
for the best-fit probability. A floating-point random
value is generated, if the value is greater or
equal to the selection probability (in equation 15),
the fitter candidate is selected, otherwise if the
value is equal to the second value, that is in
equation 16 then the weaker candidate is
chosen. The probability parameter provides a
convenient mechanism for adjusting crossover
process. In practise it is always set to be greater
than 0.5 in order to favour fitter candidates. In
this paper, the selection probability � was set to
be:

� =
∑ �� ×���

���

��
 (15)

� = � × (1 − �) (16)

The selection probability (P):

� = �

� ��� � ≥ 0.5

� ��� � ≥ �

� (17)

where n is 6 which signifies the 6-bit Strings (S)
and Sj is the string bit at index j. The tournament
was extended to involve second individual to
cater for the case when threshold limit of the first
best is exceeded and the second value is
therefore taken to be � ∗ (1 − �) [13]. This
procedure is repeated until all the population
members have been exhausted. The Best-fit
value for crossing was 0.7 while 0.2 was taken
as the second-fit value for crossing. Once the
random number generated is greater or equal to
best-fit value, the value at the ith random of
individual-1 is used to replace the index value of
the new solution after crossing. If the second fit
value is the same with the random number
generated, the value at the ith index of the
individual- 2 is used to replace the corresponding
ith index value in the new solution. At each
tournament crossover, the final solutions are
displayed. These are then mutated based on
mutation rate of 0.015. Mutation is an operator
used in genetic algorithm and its function is to
maintain diversity from one generation of
population of genetic algorithm chromosomes to
the next and this involves altering one or more
gene values in a chromosome from its initial
state. According to Paulo Gaspar [14], using
larger mutation rates prevents the genetic
algorithm from converging quickly in order to find
an optimal solution. Using small mutation rate
leads quickly to good results, 0.015 was
therefore used. From the result in Fig. 4, the
target solution is a combination of gene_1 and
gene_2 with gene_1 (which is the first 6 bits
string) as the request or job size binary value and
gene_2 (which is the last 6 bits string) as the
virtual machine’s binary value is then set to the
lower limit value (that is, 000000).

5. ALGORITHM FOR META-TASK

COMPUTATION

The approach used in achieving this, is by
calculating the median of the average value of
the completion time of the resources in each
datacenter used in this paper. The minimum out
of the two datacenters is calculated and the
corresponding resource (virtual machine) was
used to process the meta-task. With this
approach, it was discovered that there is a close-
form load balancing with respect to the
makespan metric in the two datacenters.

Median-based meta-task scheduling algorithms

1. Let R represent resource
2. Let D represent Datacenter

Oladoja et al.; AJRCOS, 7(1): 1-13, 2021; Article no.AJRCOS.63913

7

3. Let C represent Completion time
4. Let J represent the Job/Cloudlet processed
5. �� is the resource at index � where � =

{1,2,3,4}
6. �� is the datacenter at index � where

� = {1,2}
7. ��,� is the completion time of resource at

index � in datacenter �
8. ��,� is the number of cloudlets processed by

resource at index � in datacenter �
9. Calculate the Average completion time by a

resource is given by
��,�

��,�

10. the median is found from the set of average
values of the completion time across the
number of resources used at each
datacenter by ordering the set from lowest
to highest and finding the exact middle.

11. Get the minimum out of the two middle
numbers from the respective datacenter is
calculated

12. Use the resource where this middle number
(value) can first be found in the
corresponding datacenter is chosen as the
best-fit resource that will process the meta-
task.

6. SIMULATION EXPERIMENT AND
RESULT ANALYSIS

Fig. 3. shows the crossover computation of the
two individuals at each tournament. The outcome
of the crossover on the two individuals can either
affects the New-solution or leave the solution
intact, (i.e., nothing happens to it). The New-
solution is gotten by merging the 6-bit string of

cloudlet size and VM but the VM bits will be in
lower bits (000000) all through. The condition for
the change on new solution is based on the
selection probability which was discussed in
equation (15,16 and 17). The set of Final
solutions at each tournament will then proceeded
for mutation.

Fig. 4 shows the mutation computation of the
final solutions from the crossover in Fig. 3. The
mutation uses a conditional value of 0.015
adopted from Paulo Gaspa [14]. This value was
said to be highest, but in this paper, the condition
was taken to be lesser or equal to the value
(0.015). At index 9 for a final solution of
“011100100000”, mutation occurred with a value
of 0.006 which is less than 0.015. A random bit-
string is then generated which is either 1 or 0 to
replace the bit value at that index. In this case
the bit-string generated are both 0s and are used
to replace the value at each index. At the end of
the whole tournament which involves series of
crossover and mutation, the last value of the
mutation is then taken as the best solution. It
should be noted that the solution was the
merging of gene_1 and gene_2 which in order
words are cloudlet size and virtual machine
respectively. The 6-bit string for virtual machine
is the last 6 bits for the New-solution are
reconverted to decimal number (base 10). If the
value at the end of the conversion is zero (0),
then no virtual machine is found for the
processing of the cloudlet and therefore such
cloudlet will be dispatched to meta-task queue
else the cloudlet is dispatched to the available
virtual machine for processing.

Samples of Generated Population

001100100001
001100100000
001100100010
011100100000
001100101010

Fig. 2. Examples of generated populations

Table 2. Simulation of meta-tasks on VM with minimum completion time

Cloudlet

ID

Status Data

CenterID

VMID Time CloudletLength Start

Time

FinishTime

0 SUCCESS 2 1 6 3100 5 11

15 SUCCESS 2 1 5 2350 11 16

27 SUCCESS 2 1 3 1800 16 19

39 SUCCESS 2 1 3 1200 19 22

49 SUCCESS 2 1 2 1000 22 24

Oladoja et al.; AJRCOS, 7(1): 1-13, 2021; Article no.AJRCOS.63913

8

Fig. 3. Crossover implementation

Mutated Individuals
Indv for mutation: 011100100001
Indv for mutation: 011100100001
Indv for mutation: 011100100001
Indv for mutation: 011100100001
Indv for mutation: 011100100001
Indv for mutation: 011100100001
Indv for mutation: 011100100001
Indv for mutation: 001101000010
Indv for mutation: 001101000010
Indv for mutation: 001101000010
Indv for mutation: 001101000010
Indv for mutation: 001101000010
Indv for mutation: 001101000010
Indv for mutation: 001101000010
Indv for mutation: 011100100000
Indv for mutation: 011100100000
Indv for mutation: 011100100000
Indv for mutation: 011100100000
Randmutate: 0.006 Set gene index 9 to 0
Indv for mutation: 011100100000
Randmutate: 0.01 Set gene index 10 to 0
Indv for mutation: 011100100000
Indv for mutation: 011100100000
Indv for mutation: 001100100000

Fig. 4. Mutation implementation

Oladoja et al.; AJRCOS, 7(1): 1-13, 2021; Article no.AJRCOS.63913

9

Table 3. Calculation of VM with minimum completion time using median-based improved max-
min

VM No of Job

done in DC 1
LFT of VM
in DC 1

AVG of LFT
of VM in DC
1

No of Job
done in
DC 2

LFT of VM
in DC 2

AVG of LFT
of VM in DC
2

0 6 68 11.3 5 35 7.0
1 1 23 23.0 2 5 2.5
2 8 46 5.8 6 20 3.3
3 10 177 17.7 7 39 5.4

Fig. 5. Completion time of VM in datacenter 1 and 2 using median based-improved max-min

Table 4. Gant chart for scheduled tasks on datacenters 1 and 2 using Median-based Improved

Max-Min algorithm (MIMM)

The Graph of completion time of virtual machine
in datacenter 1and 2 after meta-tasks has been
executed using Median Based-Improved Max-
Min method is shown in Fig. 5.

Calculations of the desired metrics

The cloudsim 3.0 version has a pre-defined cost
value for resources used. These are stated as
follows:

the cost of using processing in VM resource is
 3.0

the cost of using memory in VM resource is 0.05

the cost of using storage in VM resource is 0.001

In total the cost is 3.051 and it is uniform across
the two datacenters

Oladoja et al.; AJRCOS, 7(1): 1-13, 2021; Article no.AJRCOS.63913

10

i.) �������� ���� = 3.051 ∗ 68 + 3.051 ∗
23 + 3.051 ∗ 46 + 3.051 ∗ 177

= 207.47 + 70.17 + 140.35 + 540.03
= 958 in data center 1

ii.) �������� ���� = 3.051 ∗ 35 + 3.051 ∗
5 + 3.051 ∗ 20 + 3.051 ∗ 39
= 106.79 + 15.08 + 61.02 + 118.99
= 303 in data center 2.

i.) �������� ����������� =
∑ ���� ����� �� �������� � �� ������ ��� �����

���

�������� ×�
 %

where n is the number of resources (VM).

For datacenter 1

RU = (68+23+46+177) / (68 * 4) = 314/272

= 1.15%

For datacenter 2

RU = (35+5+20+39) / (58 *4) = 99/232
= 0.43%

ii.) Throughput

For median-based improved max-min algorithm

Throughput = 25/68 = 0.37����/����

Therefore, the throughput for datacenter 1=
0.37jobs/secs.

For datacenter 2 the throughput

= 24/58 = 0.43jobs /secs.

Table 5. Comparison of cost in both datacenters

Datacenter 1 Cost Datacenter 2 Cost
VM0 207.47 VM0 106.77
VM1 70.17 VM1 15.08
VM2 140.35 VM2 61.02
VM3 540.03 VM3 118.99

Fig. 6. Graph of against VMs

Comparison with other Algorithms:

Table 6. Comparison of Makespans in Datacenter 1 and 2

Algorithms Datacenters
DC1 DC2

IMM 68 24
ACO 65 20
MIMM 68 58

Oladoja et al.; AJRCOS, 7(1): 1-13, 2021; Article no.AJRCOS.63913

11

Fig. 7. The graph of the makespans

Fig. 8. Graph of throughput against the different allgorithms

Table 7. Comparison of throughput in
datacenter 1 and 2

Algorithms Datacenter

DC1 DC2
IMM 0.37 1.04
ACO 0.46 1
MIMM 0.37 0.43

Table 6, shows the makespans of both
datacenter 1 and 2. IMM depicts the improved
max-min, ACO depicts the ant colony
optimization while MIMM is the median-based
improved max min.

From Fig. 7, it shows that there is fairness in the
distribution of cloudlets using the median-based
improved max-min.

Table 7 shows the comparison of the different
algorithms used to compare with the Median-
based improved Max-Min algorithm used in this
paper.

The calculations of the throughput of the different
algorithms is plotted in the graph above to show
the total number of jobs completing execution per
unit time.

7. CONCLUSION

This paper focused on the resource scheduling
challenges and load balancing that cloud
computing is facing today. Several resource
scheduling algorithms were compared with
respect to the cloud workload as an answer for
the dynamic scalability of resources. The

Oladoja et al.; AJRCOS, 7(1): 1-13, 2021; Article no.AJRCOS.63913

12

simulation result showed that the median-based
improved Max-Min scheduling maximizes the
makespan with load balancing and guarantees
the high system availability in system
performance. The median-based improved Max-
Min algorithm was compared with improved max-
min and ACO. Experimental results show that the
new algorithm has a better quality of system load
balancing and the utilization of system resources
than others.

The experimental results gathered through
cloudSim 3.0 clearly demonstrated that the
proposed framework has better performance in
terms of throughput, distribution and utilization as
compared to existing scheduling algorithms. The
results also showed the fairness in the utilization
of the resources used in the two datacenters and
the cost of resources decreased with increasing
number of cloudlets.

For future work, scheduling algorithms that
inspect the dynamic behavior of the resources
and algorithms that allow tasks to be preempted
according to a given priority and dynamically
adapt the scheduling algorithm will be
considered. Secured optimal resource allocation
algorithms and frame work could be explored to
strengthen the cloud computing paradigm.

Also, devising a strategy of dynamic resource
allocation which will reduce the overall energy
consumption rate of the datacenters in the Cloud
could be considered.

Furthermore, the Vm Scheduler policy and
cloudlets policy can also be alternated.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Atrey A, Jain N, Iyengar N, Ch. SN. A
Study on Green Cloud Computing, IJGDC.
2013;93-102.

2. Shubhangi, Mehrotra. Resource allocation
and scheduling in the cloud. International
Journal of Emerging Trends & Technology
in Computer Science (IJETTCS).
2012;1(1).
Available: www.ijettcs.org

3. Himani, Harmanbir SS. Comparative
analysis of scheduling algorithms of
cloudsim in cloud computing. International

Journal of Computer Applications.
2014;97(16):0975-8887.

4. Chawda P, Chakraborty PS. An improved
min-min task scheduling algorithm for load
balancing cloud computing. International
Journal on Recent and Innovation Trends
in Computing and Communication.
2016;4:60-64.

5. Saraswathi AT, Kalaashri YRA,
Padmavathi S. Dynamic Resource
Allocation Scheme in Cloud Computing,
Elsevier Procedia Computer Science.
2015;47:30–36.

6. Hamed Piroozfard, Kuan Yew Wong,
Adnan Hassan. A hybrid genetic algorithm
with a knowledge-based operator for
solving the job shop scheduling problems.
Journal of Optimization; 2016.

7. Priya, Babub NK. Moving average fuzzy
resource scheduling for virtualized cloud
data services. Journal of Computer
Standards and Interfaces. 2018;50:251-
257.

8. Bo Wang et al. Improving task scheduling
with parallelism awareness in
heterogeneous computational
environments. Future Generation
Computer System. 2019;94:419-429.

9. Krishnaveni H, Sinthu Janita Prakash V.
Execution time based sufferage algorithm
for static task scheduling in cloud.
Advances in Big Data and Cloud
Computing, Advances in Intelligent
Systems and Computing. 2019;750.

Available:https://doi.org/10.1007/978-981-
13-1882-5_5.

10. Rodrigo N. Calheiros, Rajiv Ranjan, Anton
Beloglazov, C´esar AF. De Rose,
Rajkumar Buyya. CloudSim: a toolkit for
modeling and simulation of cloud
computing environments and evaluation of
resource provisioning algorithms.
Published online 24 August 2010 in Wiley
Online Library (wileyonlinelibrary.com);
2010.

DOI: 10.1002/spe.995.

11. Maheswaran M, Ali sh, Jay siegel H,
Hensgen D, Freund RF. Dynamic mapping
of a class of independent tasks onto
heterogeneous computing systems.
Journal of Parallel and Distributed
Computing. 1999;59:107-131.

12. Neha Gupa, Parminder Singh. Load
Balancing Using Genetic Algorithm in
Mobile Cloud Computing. International

Oladoja et al.; AJRCOS, 7(1): 1-13, 2021; Article no.AJRCOS.63913

13

Journal of Innovations in Engineering and
Technology (IJIET). 2014;4(1).
ISSN: 2319-1058.

13. Daniel W. Dyer. Tournament Selection:
Selection Strategies & Elitism; 2010.
Copyright Accessed on 18-10-2018.Url:
Available:https://watchmaker.Uncommons.
Org/manual/ch03s04.Html.

14. Paulo Gaspar. Why is the mutation rate in
genetic algorithms very small.
Vishwakarma Institute; 2018.
Available:https://www.Researchgate.Net/p
ost/why_is_the_mutation_rate_in_genetic_
algorithms_very_small.

© 2021 Oladoja et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sdiarticle4.com/review-history/63913

