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Abstract

The aim of this paper is as to study real (C1, C2)- Holder valuations on skew polynomials rings.
Let D be a division ring, T be a variable over D,σ an endomorphism of D, δ a σ-derivation of
D and R = D[T ;σ; δ] the left skew polynomial ring over D. We show the set (HV alν(R),≼)
of σ-compatible real Holder valuations which extend as to R a fixed proper real Holder
valuation ⊆ on D, has a natural structure of parameterized complete non-metric, where ≼ is
the partial order given by µ ≼ µ

′
, if and only if µ(f) ≤ µ

′
(f), for all f ∈ R and µ, µ

′
∈ HV alν(R).

Keywords: Krull valuations; (C1, C2)- Holder valuations; skew polynomial ring.

1 Introduction and Preliminaries

Throughout this paper, let D be a division ring, T a variable over D, σ an endomorphism of D, δ a
σ- derivation of D(i.e. for each a, b ∈ R,
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δ(a+ b) = δ(a) + δ(b), δ(ab) = σ(a)δ(b) + δ(a)b ) and
R = D[T ;σ; δ] = {f(T ) = anT

n+ · · ·+a1T +a0|ai ∈ D, i ∈ {0, 1, 2, · · ·n}} left skew polynomial ring
over D [1], such that Ta = σ(a)T + δ(a). A.Granja [2] studied real valuations on skew polynomials
rings, we in paper have generalized to real Holder valuation on skew polynomial rings.

Definition 1.1. A valuation on R = D[T, σ, δ] is a map ν : R → R̄ such that
(V1) ν(f + g) = ν(f) + ν(g) for all f, g ∈ R;
(V2) ν(f + g) ≥ Min{ν(f), ν(g)} for all f, g ∈ R;
(V3) ν(1) = 0 and ν(1) = 0.
where R̄ = R ∪ {∞} is the extended monoid of R by a symbol ∞ satisfying the usual rules
∞ + x = x + ∞ = ∞ for all x ∈ R̄ and x < ∞ for all x ∈ R. If µ(R) = {o,∞}, µ is said
to be trivial, otherwise two-side ideal µ−1(∞) of R is called the support of µ and valuation on
R = D[T, σ, δ] with zero support are called Krull valuations.

Definition 1.2. A (C1, C2)- Holder valuation on R = D[T, σ, δ] is a map such that C1 ≥ 1, C2 ≥ 1
and
(HV1) C−1

1 (µ(f) + µ(g)) ≤ µ(fg) ≤ C1(µ(f) + µ(g)) for all f, g ∈ R;
(HV2) µ(f + g) ≥ C2Min{µ(f), µ(g)} for all f, g ∈ R;
(HV3) µ(0) = ∞, µ(1) = 0.
where R̄ = R ∪ {∞} is the extended monoid of R by a symbol ∞ satisfying the usual rules
∞ + x = x + ∞ = ∞ for all x ∈ R̄ and x < ∞ for all x ∈ R. If µ(R) = {o,∞}, µ is said to
be (C1, C2)- Holder trivial, otherwise two-side ideal µ−1(∞) of R is called the support of µ and
(C1, C2)- Holder valuation on R = D[T, σ, δ] with zero support are called Krull (C1, C2)- Holder
valuations.

Let Hval(R) be the set of functions µ : R → R̄ = R ∪ {∞} satisfying the standard axioms of
Holder- valuations, whose restriction to D is no trivial and is σ-compatible (i.e. µ(σ(a)) = µ(a) for
each a ∈ D).

We consider the partial order ≼ on HV al(R) given by µ ≼ µ
′
if and only if µ(f) ≤ µ

′
(f) for all

f ∈ R and µ, µ
′
∈ HV al(R).

Since µ ≼ µ
′
implies that µ and µ

′
have the same restriction to D (see Remark 2.1 below).

Let µ, µ
′
∈ HV al(R) be such that µ ≺ µ

′
and let φ ∈ R be such that

µ(φ) < µ
′
(φ) and deg(φ) ≤ deg(φ

′
) for all φ

′
∈ R with µ(φ

′
) < µ

′
(φ

′
). Here, deg(f) denotes the

usual degree of f ∈ R. Since for each µ ∈ HV al(R) and g, f ∈ R,we have

C−2
1 µ(fg) ≤ µ(gf) ≤ C2

1µ(fg),

thus

I(σ, δ, µ, µ
′
, φ) = min{µ(r(φ, g))− µ(g); g ∈ R, 0 ≤ deg(g) < deg(φ)}

≥ µ
′
(φ) > µ(φ),

where

φg = q(φ, g)φ+ r(φ, g),

with deg(r(φ, g)) < deg(φ), and degq(φ, g) = deg(g). i.e the left division of φg by φ( see [3]).

(Note that µ(r(φ, g)) = µ
′
(r(φ, g)) and µ

′
(g) = µ(g),

since deg(r(φ, g)) < deg(φ) and deg(g) < deg(φ)). We call I(σ, δ, µ, µ
′
, φ) the compatibility index of

φ with respect to φ and φ
′
and we point out that I(σ, δ, µ, µ

′
, φ) = ∞ when σ = 1D is the identity

on D and δ = 0.
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2 Ordering Holder Valuations

In this section, we review some concepts about Holder- valuations on rings and we introduce some
notation.

From now we shall make the assumption that every (C1, C2)- Holder valuation on R = D[T, σ, δ] is
σ-compatible

(i.e. µ(σ(a)) = µ(a) for all a ∈ D) and also every real (C1, C2)- Holder valuation on D will be
assumed σ- compatible.
Finally, we denote by deg(f) the usual degree of f ∈ R (here deg(0) = ∞) and we also recall that if
f, g ∈ R, there exist q, r ∈ R such that deg(r) < deg(g) and f = qg + r, i.e. we have a left division
algorithm on R (see [3]).

The rest of the section is devoted to introduce and study a natural partial order ≼ on the set of
real Holder valuations on R: Namely, let µ, µ̄ : R → R̄ be two real (C1, C2)- Holder valuation on R.
We write µ ≼ µ̄ if and only if µ(f) ≤ µ̄(f) for all f ∈ R:
Remark 2.1. Note that if µ ≼ µ̄, then µ(a) = µ̄(a) for all a ∈ D (i.e. µ and µ̄ are extensions to
R of the same Krull (C1, C2)- Holder valuation µ on D) [4]. In particular, µ is trivial on D if and
only if µ̄ is also trivial on D.

Lemma 2.2. If µ is (C1, C2)- Holder valuation on R = D[T, σ, δ], then for each n ≥ 2 we have:
i)

(2C1−n
1 + C2−n

1 + · · ·+ C−1
1 )µ(T ) ≤ µ(Tn) ≤ (2Cn−1

1 + Cn−2
1 + · · ·+ C1)µ(T );

ii)
µ(anT

n) ≥ (2C−n
1 + C1−n

1 + · · ·+ C−2
1 )µ(T ).

Proof. i) By induction on n, ifn = 2, then

2C1
−1µ(T ) = C1

−1((µ(T ) + µ(T ))

≤ µ(T 2) ≤ C1(µ(T ) + µ(T )) = 2C1µ(T ).

Let for n ≥ 2,we have

(2C1−n
1 + C2−n

1 + · · ·+ C−1
1 )µ(T ) ≤ µ(Tn)

≤ (2Cn−1
1 + Cn−2

1 + · · ·+ C1)µ(T ).

then

µ(Tn+1) = µ(TnT ) ≤ C1(µ(T
n + µ(T ))

≤ C1((2C
n−1
1 + Cn−2

1 + · · ·+ C1)µ(T ) + µ(T )) =

= C1(2C
n−1
1 + Cn−2

1 + · · ·+ C1 + 1)µ(T )

= (2Cn
1 + Cn−1

1 + · · ·+ C1)µ(T ).

one sided

µ(Tn+1) = µ(TnT ) ≥ C1
−1(µ(Tn) + µ(T ))
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≥ C1
−1((2C1−n

1 + C2−n
1 + · · ·+ C1

−1)µ(T ) + µ(T )) =

= C1
−1(2C1−n

1 + C2−n
1 + · · ·+ C1

−1 + 1)µ(T ) =

= (2C
1−(n+1)
1 + C1−n

1 + · · ·+ C1
−1)µ(T ).

ii)

µ(anT
n) ≥ C−1

1 (µ(an) + µ(Tn)) = C−1
1 µ(Tn)

≥ C−1
1 (2C1−n

1 + C2−n
1 + · · ·+ C−1

1 )µ(T ) = (2C−n
1 + C1−n

1 + · · ·+ C−2
1 )µ(T ).

Corollary 2.3. If µ(T ) ≥ 0, then µ(h) ≥ 0 for all h ∈ R.

Proof. Let h ∈ R. Then

h = anT
n + an−1T

n−1 + · · ·+ a1T + a0,

thus

µ(h) ≥ C2Min{µ(anT
n), µ(an−1T

n−1 + · · ·+ a1T + a0)}

≥ C2Min{µ(anT
n), µ(an−1T

n−1), · · ·, µ(a1T ), µ(a0)}.

Hence by assumption and by lemma 2.2 we have µ(aiT
i) ≥ 0

(for i ∈ {0, 1, 2 · ··, n}). so µ(h) ≥ 0.

Next, we shall describe the real (C1, C2)- Holder valuations µ on R whose restriction to D is
trivial. We have the following possibilities:
A) There exists h ∈ R such that µ(h) < 0. Then by corollary 2.3, µ(T ) < 0;
B) µ(h) ≥ 0 for all h ∈ R.

Lemma 2.4. Let µ(h) ≥ 0 for all h ∈ R. Then Aµ = {h ∈ R;µ(h) > 0} is two- side ideal of R
and Aµ = Rf for some irreducible element f ∈ R.

Proof. 1) let h, h′ ∈ Aµ. Then µ(h) > 0 and µ(h′) > 0. Hence,

µ(h+ h′) ≥ C2Min{µ(h), µ(h′)} > 0.

Therefore h+ h′ ∈ Aµ.
2) Let f ∈ R, h ∈ Aµ.Then µ(f) ≥ 0 and µ(h) > 0. Hence,

µ(hf) ≥ C−1
1 (µ(h) + µ(f)) ≥ C−1

1 µ(h) > 0

and

µ(fh) ≥ C−1
1 (µ(f) + µ(h)) ≥ C−1

1 µ(h) > 0.

Thus hf, fh ∈ Aµ.
Therefore Aµ is the two-side ideal of R and Since R is a left principal ideal domain (see [3]), thus
Aµ = Rf for some irreducible element f ∈ R.
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Proposition 2.5. let µ(h) ≥ 0 for all h ∈ R, Aµ = {h ∈ R;µ(h) > 0} = Rf . Then we have :
B1) If Aµ = (0), then µ is a trivial (C1, C2)- Holder valuation on R.
B2) If Aµ ̸= (0), then for all g ∈ R− {0}, such that µ(g) ̸= 0, we have

(2C−n
1 + C1−n

1 + · · ·+ C−2
1 )µ(f) ≤ µ(g) ≤ (2Cn

1 + Cn−1
1 + · · ·+ C2

1 )µ(f).

B2i) If Aµ ̸= (0), µ(f) < ∞, then µ is a Krull no trivial (C1, C2)- Holder valuation of R.
B2ii) If Aµ ̸= (0), µ(f) = ∞, then µ is a trivial no Krull (C1, C2)- Holder valuation.

Proof. B1)If Aµ = (0), then for each h ∈ R − {0}, µ(h) = 0, thus µ is trivial (C1, C2)- Holder
valuation on R.
B2) If Aµ ̸= (0), then f ̸= 0 and for all g ∈ R − {0}, such that µ(g) ̸= 0, we obtain that µ(g) ̸= 0.
Thus, g ∈ Aµ and there exists, h ∈ R−Aµ such that, g = hfn. Hence

C−1
1 (0 + µ(fn)) = C−1

1 (µ(h) + µ(fn)) ≤ µ(g)

= µ(hfn) ≤ C1(µ(h) + µ(fn)) = C1(0 + µ(fn)),

thus by lemma 2.2 we have

(2C−n
1 + C1−n

1 + · · ·+ C−2
1 )µ(f) ≤ µ(g)

≤ (2Cn
1 + Cn−1

1 + · · ·+ C2
1 )µ(f).

B2i)Let µ(f) < ∞, then by B2 for all g ∈ R− {0}, we have µ(g) < ∞ , µ(g) ̸= 0. Therefore µ is a
Krull (C1, C2)- Holder valuation, but µ is not trivial.
B2ii) Let µ(f) = ∞. Then by B2 for all g ∈ R − {0}, such that µ(g) ̸= 0, we have µ(g) = ∞ .
Therefore µ is trivial, but µ is not Krull (C1, C2)- Holder valuation.

Corollary 2.6. Let µ, µ̄ ∈ Hval(R), µ ≼ µ̄. Then we have:
I) If µ is trivial (C1, C2)- Holder valuation on D, then µ̄ is trivial (C1, C2)- Holder valuation on D.
II) If µ is of type A, then µ̄ can be either of type A or B.
II) If µ is of type B1, then µ̄ can be either of type B1 or B2.
III) If µ is of type B2, then either µ̄ is of type B2i such that, µ(f) < µ̄(f) < ∞ or µ̄ is of type B2ii
such that, µ(f) ≤ µ̄(f) = ∞.

Proof. by remark 2.1 and definition it is clear.

We next set some notation that we shall use throughout the paper and which is similar to some
one of [5]. Let µ, µ̄ ∈ HV al(R) be such that µ ≼ µ̄. We denote by
Φ̄(µ, µ̄) = {φ ∈ R;µ(φ) < µ̄(φ)}: Note that,
Φ̄(µ, µ̄) = {φ ∈ R;µ(φ) < µ̄(φ)} = ∅ if and only if µ = µ̄.
Furthermore, if Φ̄(µ, µ̄) ̸= ∅, we write:
1) d(µ, µ̄) = min{degφ;φ ∈ Φ̄(µ, µ̄)}.
2) Φ(µ, µ̄) = {φ ∈ Φ̄(µ, µ̄); degφ = d(µ, µ̄) and φ is monic}.
3)Λ(µ, µ̄) = {µ̄(φ);φ ∈ Φ(µ, µ̄)} = µ̄(Φ(µ, µ̄)).
4)γ(µ, µ̄) = sup(Λ(µ, µ̄)) ∈ R̄.

Remark 2.7. Note that if φ ∈ Φ(µ, µ̄), then φ is an irreducible left skew polynomial and if

µ
′
∈ HV al(R) with µ ≼ µ̄ ≼ µ

′
, then d(µ, µ̄) ≥ d(µ, µ

′
) and d(µ, µ

′
) ≤ d(µ̄, µ

′
).

Because if φ is not an irreducible left skew polynomial, then there exists f, g ∈ R such that φ = fg,
0 < deg(f) < deg(φ)),0 < deg(g) < deg(φ)), since φ ∈ Φ(µ, µ̄), hence µ(f) = µ̄(f) and µ(g) =
µ̄(g).Thus µ(φ) = (̄µ)(φ), which is contradiction. We finish this section with the following technical
result.

Theorem 2.8. Let µ, µ̄, µ
′
∈ HV al(R) be such that µ ≺ µ̄ ≼ µ

′
. Then the following statements
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hold.
a) µ̄(φ) > µ(φ) for each φ ∈ Φ(µ, µ

′
), in particular d(µ, µ̄) = d(µ, µ

′
) and Φ(µ, µ̄) = Φ(µ, µ

′
)

b)Every totally ordered subset S ⊂ HV al(R) is bounded above.

Proof. a) let there exists φ ∈ Φ(µ, µ
′
), such that µ̄(φ) = µ(φ).Then

µ(φ) < µ
′
(φ), d(µ, µ

′
) = degφ.

onside since µ ≺ µ̄, thus there exists φ
′
∈ Φ(µ, µ̄).

Hence by remark 2.4 we have degφ
′
= d(µ, µ̄) ≥ d(µ, µ

′
) = deg(φ).

Therefore φ
′
= qφ+ r with q, r ∈ R and deg(r) < deg(φ).

We have deg(q) < deg(φ
′
) = d(µ, µ̄). Thus µ̄(q) = µ(q), since µ̄(φ) = µ(φ), so µ̄(qφ) = µ(qφ).

onside
deg(qφ) = deg(φ

′
) = d(µ, µ̄), hence µ(qφ) < µ̄(qφ), which is contradiction.

by remark 2.7 we have d(µ, µ̄) ≥ d(µ, µ
′
), one sided let there exists φ ∈ ϕ(µ, µ′), such that d(µ, µ′) =

deg(φ), thus by assumption we have µ̄(φ) > µ(φ), so φ ∈ ϕ̄(µ, µ̄), thus d(µ, µ̄) ≤ deg(φ) = d(µ, µ′).

Therefore d(µ, µ′) = d(µ, µ̄), by definition ϕ it is clear that Φ(µ, µ̄) = Φ(µ, µ
′
).

b) let µ∗ : R → R̄ be given by µ∗(f) = sup{µ∗(f);µ∗ ∈ S} . Since S is a totally ordered set,
thus µ∗ is well defined. We shall now show that µ∗ ∈ HV al(R), and hence µ∗ is an upper bound of
S. We only need to statements (HV1) and (HV2) of Definition of(C1, C2)- Holder valuation for µ∗.
Since S ⊂ HV al(R), thus C−1

1 (µ∗(f) + µ∗(g)) ≤ µ∗(fg) ≤ C1(µ∗(f) + µ∗(g)) for all µ∗ ∈ S.Thus
C1(µ∗(f) + µ∗(g)) is upper bound for µ∗(fg), therefore µ∗(fg) ≤ C1(µ∗(f) + µ∗(g)) ≤ C1(µ

∗(f) +
µ∗(g)). Onside let ϵ > 0, therefore µ∗(f) − ϵ/2, µ∗(g) − ϵ/2 are not upper bound, thus there exist
µ1, µ̄1 ∈ S such that, µ∗(f) − ϵ/2 ≤ µ1(f), µ

∗(g) − ϵ/2 ≤ µ̄1(g). Since S is totally ordered set, we
can also assume without loss of generalityµ1 ≼ µ̄1. therefore µ∗(f)− ϵ/2 ≤ µ̄1(f),

µ∗(fg) ≥ µ̄1(fg) ≥ C−1
1 (µ̄1(f) + µ̄1(g))

≥ C−1
1 (µ∗(f)− ϵ/2 + µ∗(g)− ϵ/2) = C−1

1 (µ∗(f) + µ∗(g))− C−1
1 ϵ/2

. since ϵ is arbitrary element, put ϵ = 1/n. so,

µ∗(fg) ≥ C−1
1 (µ∗(f) + µ∗(g))− C−1

1

ϵ

2n
.

since µ∗(fg), µ∗(f), µ∗(g) ∈ R and R is metric space,thus

lim
n−→∞

µ∗(fg) ≥ lim
n−→∞

C−1
1 (µ∗(f) + µ∗(g))− lim

n−→∞
C1

−1 1

2n
.

Therefore

µ∗(fg) ≥ C−1
1 (µ∗(f) + µ∗(g)).

Also

µ∗(f + g) ≥ µ̄1(f + g) ≥ C2Min{µ̄1(f), µ̄1(g}

≥ C2Min{µ∗(f)− ϵ/2, µ∗(g)− ϵ/2}.

Let µ∗(f) ≤ µ∗(g).Then

µ∗(f)− ϵ/2 ≤ µ∗(g)− ϵ/2.

Thus
µ∗(f + g) ≥ C2(µ

∗(f)− ϵ/2),

6
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put ϵ =
1

n
. hence

lim
n−→∞

µ∗(f + g) ≥ lim
n−→∞

C2(µ
∗(f))− lim

n−→∞
C2/2n.

Thus

µ∗(f + g) ≥ C2µ
∗(f)) = C2Min{µ∗(f), µ∗(g)}.

Therefore

µ∗(f + g) ≥ C2Min{µ∗(f), µ∗(g)}.

3) For each µ∗ ∈ S, we have µ∗(0) ≥ µ∗(0) = ∞, thus µ∗(0) = ∞. Therefore µ∗ ∈ Hval(R).

3 Augmented and Limit Valuations and MacLane Key
Polynomials

We begin by introducing some notation. For each g ∈ R we denote by q(φ, g), r(φ, g) the unique
elements of R such that φ.g = q(φ, g)φ+r(φ, g) with deg(r(φ, g)) < deg(φ),and degq(φ, g) = deg(g),
i.e. the left quotient and the left rest in the left division of φ.g by φ. Throughout this section,
µ, µ̄ ∈ HV al(R) will be two fixed real Holder valuations such that µ ≺ µ̄, Since Φ(µ, µ̄) ̸= ∅, we
also fix φ ∈ Φ(µ, µ̄). Next technical result relates the properties of the left division by φ with the
order ≼.

Lemma 3.1. With the above assumptions and notation, let g, f ∈ R be such that 0 ≤ deg(g) <
deg(φ) < deg(f). The following statements hold.

(i) µ̄(g) = µ(g) = µ̄(q(φ, g)) = µ̄(q(φ, g)) < C1µ(r(φ, g))− µ̄(φ)

(ii) Let φn.g = g
(n)
n φn + g

(n)
n−1φ

n−1 + · · ·+ g
(n)
0 ,such that deg(gii) < deg(φ),

0 ≤ i ≤ n− 1 and deg(g
(n)
n ) = deg(g). Then

C−2
1 µ̄(g

(n)
n φn) ≤ µ̄(φn.g) ≤ C2

1 µ̄(g
(n)
n φn) ≤ C2

1 µ̄(g
(i)
i φi) for 0 ≤ i ≤ n− 1.

Proof. (i)We have deg(g) < deg(φ) and deg(r(φ, g)) < deg(φ) and

deg(q(φ, g)) = deg(g). Thus µ̄(r(φ, g)) = µ(r(φ, g)) and µ̄(q(φ, g)) = µ(q(φ, g)) = µ(g) = µ̄(g).
Suppose that µ̄(q(φ, g)) ≥ C1µ(r(φ, g))− µ̄(φ).
Hence, µ̄(q(φ, g).φ) ≥ C−1

1 (µ̄(q(φ, g)) + µ̄(φ)) ≥ C−1
1 C1µ(r(φ, g)) = µ̄(r(φ, g))

and µ̄(r(φ, g)) ≥ C2min{µ̄(q(φ, g).φ), µ̄(φ.g)} = C2µ̄(q(φ, g).φ).
So, µ̄(q(φ, g).φ) ≥ C2µ̄(q(φ, g).φ), which is a contradiction.

The result follows.

(ii) Since C−2
1 µ̄(fg) ≤ µ̄(gf) ≤ C2

1 µ̄(fg) for each µ̄ ∈ HV al(R),then the result easily follows from
(i).

Proposition 3.2. We assume all assumptions and notation 0f lemma 3.1 and let I(σ, δ, µ, µ̄, φ) =
min{C1µ(r(φ, g)−µ(g); g ∈ R, 0 ≤ deg(g) < deg(φ)}.Then I(σ, δ, µ, µ̄, φ) ∈ R̄ and I(σ, δ, µ, µ̄, φ) ≥
µ̄(φ) > µ(φ).

7
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Proof. By lemma 3.1(i) we have that C1µ(r(φ, g))− µ̄(φ) ≥ µ(g) with 0 ≤ deg(g) < deg(φ). Thus,
C1µ(r(φ, g))− µ(g) ≥ µ̄(φ) ≥ µ(φ), for all g ∈ R, with 0 ≤ deg(g) < deg(φ).so, I(σ, δ, µ, µ̄, φ) ∈ R̄
and
I(σ, δ, µ, µ̄, φ) ≥ µ̄(φ) > µ(φ)

In this section, we shall define left key skew polynomials for Krull (C1, C2)- Holder valuations
in a similar way as in [5]. In fact, our concept of left key skew polynomial coincides with MacLane’s
one [5] when we only consider the polynomial ring in one variable with coefficients in a commutative
field, (i.e. when D is a commutative field, σ = 1D and δ = 0 [6].

With the notation as in the previous sections, let µ ∈ Hval(R) be a Krull (C1, C2)- Holder real
valuation.

Definition 3.3. For any f, g ∈ R we say f is µ-equivalent to g, if µ(f − g) > µ(f) = µ(g) and We
shall denote it by f ∼µ g or simply by f ∼ g when no confusion can arise.Moreover we say that g
is left µ-divisible by f, if there exists h ∈ R such that g ∼µ hf .

Definition 3.4. A non-zero element φ ∈ R is a left key skew polynomial for µ, if it satisfies the
following conditions:
(K.1) Irreducibility. Let f, g ∈ R be such that fg is left µ-divisible by φ, then one of the factors is
left µ-divisible by φ.
(K.2) Minimal degree. For all f ∈ R such that f is left µ-divisible by φ, we have deg(φ) ≤ deg(f).
(K.3) Monicity. The leading coefficient of φ is 1.
(K.4) Compatibility.
µ(φ) < min{C1µ(r(φ, g))− µ(g) ; g ∈ R; 0 ≤ deg(g) < deg(φ)}
where φ.g = q(φ, g)φ+ r(φ, g) with deg(r(φ, g)) < deg(φ),and degq(φ, g) = deg(g)
For a left key skew polynomial φ ∈ R, we write
I(σ, δ, µ, µ̄, φ) = min{C1µ(r(φ, g)− µ(g); g ∈ R, 0 ≤ deg(g) < deg(φ)}
and we call I(σ, δ, µ, µ̄, φ) the left compatibility index of φ with respect to µ. Thus, the compatibility
property means

I(σ, δ, µ, µ̄, φ) > µ(φ).

In a similar way as in proposition 3.2, we have the following result.

Proposition 3.5. We consider all the assumptions and notation mentioned above and let φ be
a left key skew polynomial for µ and τ ∈ R̄ be such that I(σ, δ, µ, µ̄, φ) ≥ τ > µ(φ) , µτ (g) =
min{C1(µ(gi) + iτ); 0 ≤ i ≤ r} for each g ∈ R, where g =

∑r
i=o giφ

i with deg(gi) < deg(φ),
0 ≤ i ≤ r. Then µτ ∈ HV al(R). Furthermore, µ ≤ µτ and µτ (f) = C1µ(f) for each f ∈ R such
that deg(f) < deg(φ).

Proof. Note that µτ (0) = C1µ(0) = ∞ and we have that Hv(1) is satisfied.Next, we show that
(Hv(2),Hv(3)) are satisfied. in fact, let f, g ∈ R such that f =

∑r
i=o fiφ

i ,g =
∑r

i=o giφ
i

with deg(fi) < deg(φ) , deg(gi) < deg(φ), 0 ≤ i ≤ r.

Thus, f +g =
∑r

i=o(fi+gi)φ
i and we have µτ (f +g) = C1(µ(fi+gi)+ iτ) for some i consequently,

µτ (f + g) ≥ C1C2min{µ(fi) + iτ), µ(gi) + iτ)} =
C2min{C1(µ(fi) + iτ), C1(µ(gi) + iτ)} ≥ C2min{µτ (f), µτ (g)}and also

C−1
1 (µτ (f) + µτ (g)) ≤ µτ (fg) ≤ C1(µτ (f) + µτ (g)).Hence, µτ ∈ HV al(R).

For each f ∈ R such that deg(f) < deg(φ) ,we have that f = f and it
follows that µτ (f) = C1(µ(f) + 0τ) = C1µ(f).
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For each g ∈ R there exists i ∈ {0, 1, · · ·, r} such that

µτ (g) = C1(µ(gi) + iτ) ≥ C1(µ(gi) + iµ(φ)) ≥ C1(µ(gi) + µ(φi))

≥ C1C
−1
1 µ(giφ

i) = µ(giφ
i) ≥ µ(g).

Proposition 3.6. With the above assumptions and notation, let φ ∈ R be a monic left skew
polynomial. Then φ is a left key skew polynomial for µ if and only if there exists µ̄ ∈ HV al(R)
such that µ ≺ µ̄ and φ ∈ ϕ(µ, µ̄).

Proof. The necessary condition is consequence of Proposition 3.5.

Conversely, suppose that there exists µ̄ ∈ HV al(R) such that µ ≺ µ̄ and φ ∈ ϕ(µ, µ̄).By the fact
that monicity and compatibility properties with respect to µ are verified for every φ ∈ ϕ(µ, µ̄), we
only need to prove the minimality degree and irreducibility properties with respect to µ that is,
φ.In fact if f ∈ R is left µ-divisible byφ and deg(f) < deg(φ), then µ(f − hφ) > µ(f) = µ(hφ).
Since, µ(f) = µ̄(f) and µ(hφ) < µ̄(hφ) and we obtain that µ̄(f) = µ(f)
< min{µ̄(f − hφ), µ̄(hφ)}, on side µ̄(f) ≥ C2min{µ̄(f − hφ), µ̄(hφ)}, which is a contradiction.
In order to see the irreducibility property with respect to µ, let f, g ∈ R be such that fg is left
µ-divisible by φ and assume that neither f nor g are left µ-divisible by φ. Thus there exist h ∈ R
such that µ(fg − hφ) > µ(fg) = µ(hφ),and write f = q1φ + r(f) and g = q2φ + r(g) with
0 ≤ deg(r(f)) < deg(φ), deg(r(g)) < deg(φ). By the fact that f is not left µ-divisible by φ, we
have that µ(r(f)) ≤ µ(f). Moreover, if µ(r(f)) < µ(f), then µ̄(r(f)) = µ(r(f)) < µ(f) ≤ µ̄(f)
and µ̄(r(f)) = µ(r(f)) = µ(q1φ) < µ̄(q1f), which is a contradiction. Hence, µ(r(f)) = µ(f) and
by similar methods as above we obtain that µ(r(g)) = µ(g). Note that fg − hφ = k + r(f)r(g),
where k = q1φq2φ + r(f)q1φ + q1φr(g) − hφ. Since µ(fg − hφ) > µ(fg) ≥ C−2

1 µ(r(f)r(g)) ≥
C−4

1 µ̄(r(f)r(g)), then µ(k) ≥ C−2
1 µ(r(f)r(g)) ≥ C−4

1 µ̄(r(f)r(g)), and we have that µ̄(fg − hφ) ≥
µ(fg − hφ) > µ̄(r(f)r(g)) and µ̄(k) > µ(k) > C−4

1 µ̄(r(f)r(g)), which is a contradiction.

We finish this paper with the following example.

Example 3.7. Let D = C(X,σ) be the Ore quotient ring of C[X,σ, 0] = C[X,σ], where σ is the
conjugation automorphism on C. Note that D is a division ring. Let δ be the inner derivation
on D associated with i ∈ C (i.e. δ(a) = ia − ai for each a ∈ D.) Thus δ(X2n+1) = 2iX2n+1,
and δ(X2n) = 0. We write R = D[T, 1D, δ] = D[T, δ], let us also write degX the usual degree in
C[X,σ] and denote by ν the valuation −degX on D. We have ν(δ(P (X))) ≥ ν(P (X)) for each
P (X) ∈ C[X;σ]. In particular, ν(δ(a)) ≥ ν(a) for each a ∈ D. Thus, we can consider µ0 : R −→ R
the extension of ν given by µ0(T ) = 0. (See [5], Proposition 4.5)

We note that T − i is a central element of R, since δ is the inner derivation associated with i. By
the fact that T − i has degree one, it is easy to check that T − i is a left skew key polynomial for
µ0 and obviously I(1D, δ, µ0, T − i) = ∞.
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