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Methodology: Variational approach, namely, the Lagrangian Variational Method (LVM) is
presented. The different results are obtained using standard fourth order Runge-Kutta method for
integration of the system of ordinary differential equation systems.
Results: Dynamics of the different parameters (amplitude, center position, pulse width, chirp,
frequency and phase) has been presented with respect to propagating distance.
Conclusion: This study reveals that the generally parabolic law of nonlinearity terms don’t affect
the energy of the system but influence the pulse phase.

Keywords: Lagrangian approach; generaly parabolic law; super-sech soliton; metamaterial.
2010 Mathematics Subject Classification: 53C25; 83C05; 57N16

1 INTRODUCTION

The metamaterial is a new type of
microstructured material which has been
extensively used and studied during the recent
years. Metamaterials are artificial composite
structures with both negative permittivity and
negative permeability. They also have fascinating
physical properties and spectacular uses [1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Metamaterials
are an emerging technology with applications
in a range of diverse areas. Metamaterials are
artificially engineered materials with properties
not available in natural systems such as negative
permeability and permittivity, display anomalous
behaviour, such as negative refraction,
superlensing, backward wave propagation and
reverse Doppler shifting. Consequently they are

many applications including energy harvesting,
object cloaking, high data rate communications,
sensors and detectors, imaging, anti-vibration,
noise reduction, seismic protection and antennae
[12]. Metamaterials can either be used to
improve the performance of existing applications.
Nowadays, it is possible to use this material
as waveguide in order to optimize the data
transmission. This is precisely the framework
of the present research. This research aims to
study the dynamics of a soliton pulse, super-sech
soliton which is propagated in a metamaterial,
in order to assess the impact of the generally
parabolic law of nonlinearity on the pulse profile
along its path in the metamaterial. The dynamics
of solitons in optical metamaterials is governed
by the model [13, 9, 14, 15, 16, 17, 5, 6]:

iqz + aqtt + b|q|2q = iαqt + iλ(|q|2q)t + iν(|q|2)tq + θ1(|q|2q)tt + θ2|q|2qtt + θ3q
2q?tt. (1.1)

This equation was recently used by Douvagai et al. where they introduced an additional nonlinear
term (1.2). These last ones used the complex envelope ansatz method and the F-expansion method
to solve the generally nonlinear Schrödinger equation (GNLSE) with the additional parabolic law
nonlinearity. Bright and dark soliton solutions are obtained [14].

iqz + aqtt + b(|q|2 + σ|q|4)q = iαqt + iλ(|q|2q)t + iν(|q|2)tq + θ1(|q|2q)tt + θ2|q|2qtt + θ3q
2q?tt (1.2)

Recent work by Biswas et al. has taken this additional term into account [18]. Similarly, Foroutan et
al. studied disturbances of the optical soliton in a metamaterial with an additional anti-cubic nonlinear
term using two approaches: the extented trial equation method and the improved G’/G-expansion
method. The Faroutan equation used is:

iqz + aqtt + (b1|q|−4
+ b2|q|2 + b3|q|4)q = iαqt + iλ(|q|2q)t + iν(|q|2)tq + θ1(|q|2q)tt + θ2|q|2qtt + θ3q

2
q
?
tt. (1.3)

The bright, dark and singular soliton are retrieved in this research [15]. Indeed, apart from the
case of the basic nonlinear Schrödinger equation containing only the terms of second dispersion
and self phase modulation whose exact solution are known, the (GNLSE) family is not completely
integrable and can not be solved exaltly. In literature, diverse numerical and direct methods have
been proposed to construct exact solutions nonlinear partial differential equations modeling the wave
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propagation in various media. The partial differential equations are converted into dimensionless
ordinary equations by employing suitable transformations. Among them, there are the collective
variables method, the method of moments, the Lagrangian variational method (LVM), the G/G’-
expansion method, the trial solution method, the extended tanh function method, the Ricatti approach,
the soliton ansatz method, the collocation method, the homotopy analysis method, the Keller box
method, the geometric approach and so on [7, 19, 20, 21, 22, 23, 24, 25, 16, 26, 27]. In this work, we
extend the model used in [14, 28] by considering the effect of higher-order parabolic law nonlinearity
(1.4) and propose to solve it by Lagrangian variational method. The LVM developed by Anderson
[29] is based on minimization of action. This approach consists in derive a set of ordinary differential
equations of some important quantities of solitary wave. The objective of such a study would be to
exhibit the contribution of these terms on the dynamics of the optical soliton. These terms appear in
the metamaterial context when considered as centrosymmetric materials and high order polarization
vectors are taken into account in the Maxwell equation [28]. The new equation is therefore given by
(1.4) and we called it the general parabolic law nonlinearity Schrödinger equation.

iqz + aqtt +

n∑
k=1

bk|q|2kq = iαqt + iλ(|q|2q)t + iν(|q|2)tq + θ1(|q|2q)tt + θ2|q|2qtt + θ3q
2q?tt (1.4)

In equation (1.4), the unknown or dependent variable q = q(z, t) represents the wave profile, while z
and t are the spatial and temporal variables respectively. The first and the second terms are the linear
spatial evolution terms and the group velocity dispersion, while the third term introduces the generaly
parabolic law of nonlinearity, the fourth, fifth and sixth terms represent inter-modal dispersion, self
steepening and the nonlinear dispersion respectively. Finally, the last three terms with θk for k = 1, 2, 3
appear in the context of metamaterials [5].

2 LAGRANGIAN VARIATIONAL METHOD

The main idea of LVM is based on extending Euler-Lagrange least-action principles to dissipative
systems. LVM is used to express the generalized GNLSE in terms of fondamental parameters
(collective variables). This consists in finding the Lagrangian of GNLSE, then choosing any convenient
trial function f (ansatz) assumed to best approximate the behaviour of the pulse in order to derive the
set of variational equations [30, 18, 31, 32, 33, 34, 35]. Let’s write the (1.4) in the form:

iqz + aqtt +
n∑

k=1

bk|q|2kq = ζ, (2.1)

where

ζ = iαqt + iλ(|q|2q)t + iν(|q|2)tq + θ1(|q|2q)tt + θ2|q|2qtt + θ3q
2q?tt (2.2)

is considered as a perturbation term. Let’s consider the equation (2.1) without perturbation term
(ζ = 0) and look for the solution q on the form:

q(z, t) = u(z, t) + iv(z, t), (2.3)

where u and v are real functions. Substituting (2.3) in (2.1), we obtain:

uz + avtt +

n∑
k=1

bk(u
2 + v2)kv = 0, (2.4)

− vz + autt +

n∑
k=1

bk(u
2 + v2)ku = 0. (2.5)
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The equations (2.4) and (2.5) can be deduced respectively from Euler-Lagrange equations given by:

∂L0

∂v
− ∂

∂z

(
∂L0

∂vz

)
− ∂

∂t

(
∂L0

∂vt

)
= 0 (2.6)

∂L0

∂u
− ∂

∂z

(
∂L0

∂uz

)
− ∂

∂t

(
∂L0

∂ut

)
= 0, (2.7)

where the Lagrangian L0 is given by:

L0 =
1

2
(uzv − vzu) +

n∑
k=2

bk−1

2k

(
u2 + v2

)k − a

2

(
u2
t + v2t

)
. (2.8)

When we express respectively u and v as follows: u = 1
2
(q + q∗); v = i

2
(q∗ − q), the Lagrangian L0

can be rewritten as follows:

L0 =
i

4
(qzq

∗ − q∗zq) +
n∑

k=2

bk−1

2k
|q|2k − a

2
| qt |2 . (2.9)

The averaged Lagrangian of equation the without right hand side is defined as:

L =

∫ +∞

−∞
L0dt. (2.10)

Then

L =

∫ +∞

−∞

[
i

4
(qzq

∗ − q∗zq) +
n∑

k=2

bk−1

2k
|q|2k − a

2
| qt |2

]
dt. (2.11)

3 SUPER-SECH PARAMETER DYNAMICS

The ansatz function f that we assume in this paper is the super sech soliton [5]:

f = X1sech
m

[
t−X2

X3

]
exp

[
i

(
X4

2
(t−X2)

2 +X5(t−X2) +X6

)]
; (3.1)

where X1 represents the amplitude of the pulse, X2 the temporal position, X3 the width, X4 the chirp,
X5 the frequency and X6 the phase. m is the parameter of the super-sech. In this paper, m is set
equal to 2. Substituting q = f in (2.11), we obtain:

L = L1 +

n∑
k=2

bk−1

2k

∫ +∞

−∞
sech2k

[
t−X2

X3

]
dt, (3.2)

where

L1 =
2

3
X2

1X3X5Ẋ2 +
6− π2

36
X2

1X
3
3 Ẋ4 −

2

3
X2

1X3Ẋ6

− a

90

X2
1

X3
(48 + 60X2

3X
2
5 − (30− 5π2)X4

3X
2
4 ). (3.3)

So for n = 6, the average Lagrangian is:

L =
2

3
X2

1X3X5Ẋ2 +
6− π2

36
X2

1X
3
3 Ẋ4 −

2

3
X2

1X3Ẋ6 +
8

35
b1X

4
1X3

− a

90

X2
1

X3
(48 + 60X2

3X
2
5 − (30− 5π2)X4

3X
2
4 ) +

256

2079
b2X

6
1X3

+
512

6435
b3X

8
1X3 +

71

1251
b4X

10
1 X3 +

127

2948
b5X

12
1 X3; (3.4)
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Ẋj , (j = 1, 2, 3, 4, 5, 6) stands for derivative of Xj with respect to z. Now, let’s come back to the full
equation (2.1) where the term of right-hand side ζ is non zero. When one applies the Euler-Lagrange
equations to (1.4), the variational equations are written as:

∂L

∂Xj (z)
− d

dz

∂L

∂Ẋj (z)
=

∫ +∞

−∞
ζf∗Xj

dt+ c.c. (3.5)

Substituting the expression of the average Lagrangian given in equation (2.11) and the ansatz function
f in ζ, then performing the integration of the right-hand side of (3.5), we obtain the following set of
variational equations:

Ẋ1 = −aX1X4 +
2X3

1X4

35(π2 − 6)

(
(24π2 − 235)θ1 + (24π2 − 157)(θ2 − θ3)

)
, (3.6)

Ẋ2 = 2aX5 − 2α− 24

35

(
(3λ+ 2ν)X2

1 + (6θ1 + 2θ2 − 2θ3)X
2
1X5

)
,

Ẋ3 = 2aX3X4 −
4

35 (−6 + π2)

((
−307 + 36π2) θ1 + (−85 + 12π2) (θ2 − θ3))X2

1X3X4,

Ẋ4 = −2aX2
4 +

672a

35(π2 − 6)X4
3

− 1

(π2 − 6)X2
3

(
144b1
35

X2
1 +

1024b2
231

X4
1 +

3072b3
715

X6
1

+
568b4
139

X8
1 +

1648b5
425

X8
1 +

288

35
λX2

1X5) +
4

175

X2
1

X4
3

(
(30π2 − 245)X4

3X
2
4 − 360X2

3X
2
5 − 3168

)
θ1

+
4

175

X2
1

X4
3

(
(30π2 − 245)X4

3X
2
4 − 360X2

3X
2
5 − 864

)
(θ2 + θ3),

Ẋ5 = −2 (X1X4 + 2X5) aX5

X1
+

4αX5

X1
− 4

35

X1X5

(
24π2X5 − 13X1X4 − 144X5

)
π2 − 6

+
4

35

X1X5

(
72π2X5 − 91X1X4 − 432X5

)
θ1

π2 − 6
− 48

35
(X1X4 − 3X5)λX1

+
4

35

X1X5

(
24π2X1X4 + 24π2X5 − 157X1X4 − 144X5

)
θ2

π2 − 6
− 48

35
(X1X4 − 2X5) νX1,

Ẋ6 =
1

35

35aX2
3X

2
5 − 56a

X2
3

+
30

35
b1X

2
1 +

512

693
b2X

4
1 +

896

1365
b3X

6
1 +

497

834
b4X

8
1

+
309

500
b5X

10
1 +

1

350

X2
1

X2
3

(
(30π2 − 245)X4

3X
2
4 − 840X2

3X
2
5 + 928

)
θ1

− 2

35
(6λ+ 24ν)X2

1X5 +
1

350

X2
1

X2
3

(
(30π2 − 245)X4

3X
2
4 − 120X2

3X
2
5 + 928

)
(θ2 + θ3).

4 RESULTS AND DISCUSSION

The numerical study of the evolution of the different parameters of the super-sech soliton momentum
has been made in order to appreciate the impact of the generally parabolic law nonlinearity terms on
the dynamics of such an pulse in a metamaterials. The different results are obtained using standard
fourth order Runge-Kutta method for integration of the system of ordinary differential equation systems.
The dynamics of the system have been presented in Figure2 for the following parameter values:
a = 0.1, b1 = −20, α = −0.25, λ = 0.1, ν = 0.1, θ1 = −0.01, θ2 = −0.02, θ3 = −0.3, b2 = 0.001,
b3 = 0.1, b4 = 0.1, b5 = 2.

The analysis of this curve shows that the amplitude, the pulse width, the chirp and the frequency slip
vary periodically as a function of z. Indeed, it should be noted that the choice of the initial condition is
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of paramount importance for such a study. These parameters have been chosen so that the super-
sech soliton propagates itself without attenuation. The variationals equations Ẋ1, Ẋ2, Ẋ3 obtained
are identical to those of Veljkovic et al. [5]. This explains the resemblance of the representative
curves of the amplitude, the center position and the pulse width. The terms of high order added to
the equation don’t influence the evolution of these parameters (Ẋ1, Ẋ2, Ẋ3). On the other hand the
variationals equations: Ẋ4, Ẋ5, Ẋ6 are functions of the terms of high order introduced and show
dissimilarities. The different terms bk, k = 1, ...6, rather influence the parameters of the pulse phase.
This confirms the absence of these terms in the expression that describes the variation of the energy
(4.3). A comparison of our results to those obtained in literature [5, 10] gave excellent agreement. As
the pulse width propagates, the amplitude X1, the pulse width X3, the frequency X5 and the chirp
X4 vary periodically.

A particular attention has been drawn on the energy of the system. The energy is defined as:

L =

∫ +∞

−∞
|q|2 dt. (4.1)

In the case of the super-sech soliton, one has:

E =
4X2

1X3

3
. (4.2)

The evolution of the energy is given by:

dE

dz
=

[
θ1

(
192− 32π2

35(−6 + π2)

)
+ (θ2 − θ3)

(
−976 + 128π2

35(−6 + π2)

)]
X4

1X3X4. (4.3)

Figure 1: Variation of energy
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Figure 2: Variation of normalized pulse parameters( X1-soliton amplitude, X2-
center position of the soliton, X3-pulse width, X4-soliton chirp, X5-soliton frequency,
X6-soliton phase) with propagation distance

5 CONCLUSION

This paper presents lagrangian variational
approach for super sech soliton dynamics in
optical metamaterials. The optical soliton
dynamics is governed by the generalized
nonlinear Schrödinger equation including
generally parabolic law of nonlinearity. This
equation is solved by lagrangian approach where
a six paramater (amplitude, center position,
pulse width, chirp, frequency and phase) super-
sech soliton test function has been used to
approximate the exact solution. Numerical
simulations have made it to represent these
parameters graphically as a function of the
propagation distance. This study reveals that the
generally parabolic law of nonlinearity terms don’t
affect the energy of the system, but affect the
pulse phase. Finally, the analysis of these results
revealed that the choice of the initial condition
is crucial for such a study. A comparison with
other results gave excellent agreement. This
work could be proposed in telecommunication

to optimize the transmission of information. The
results with those additional laws of nonlinearity
will be reported in future.
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