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ABSTRACT 
 

The benefits of biogas as alternative energy to other fossil fuel sources, due to its renewability, 
environmentally friendly nature, health benefits, etc., cannot be overemphasized. There are 
numerous models for predicting biogas production rate from bio-materials, including the modified 
Gompertz equation. These models are primarily dependent on specific biomass parameters. When 
any of these parameters, like the slurry volume, changes, another round of experiments must be 
conducted and curve fitted before biogas yield predictions can be made. This could be time-
consuming and costly. Using experimentally published data, simple empirical models can be 
developed for predicting biogas yields over a range of input parameters. This will eliminate the need 
for always performing experiments before biogas yield predictions can be made. In light of this, 
scarce literature provides explicit models for predicting biogas yield over a range of parameters 
based on published data. This study developed non-linear regression models using published data 
on parameters that affect biogas yields, like the slurry volume, carbon-to-nitrogen ratio, 
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temperature, total solids, volatile solids, hydraulic retention time, and pH. The data covered seven 
readily available bio-wastes, including cow dung, cow dung with plant waste, cow dung with poultry 
dung, poultry dung with grass, pig dung, and plant wastes. On validation of the models, the results 
showed that the models had a relatively low standard error of estimates, Akaike information 
criterion, Schwarz criterion, and Hannan-Quinn information criterion. Furthermore, the coefficients 
of determination, R

2, 
were between 94.62 and 98.93%. The percentage average absolute deviation 

(% AAD) for each model was less than 7 %. The non-linear models were found to adequately 
predict the biogas yields within the limits of the available data set. 

 

 
Keywords: Biogas; non-linear models; bio-wastes; renewable energy. 
 

ABBREVIATIONS 
 

CD : Cow dung 
CO : Co-digestion 
PD : Poultry dung 
FVW : Fruit and vegetable wastes 
C/N : Carbon to Nitrogen ratio 
T : Temperature (oC) 
TS : Total solids (%) 
VS : Volatile solids (%) 
HRT : Hydraulic retention time in D (days) 
BP : Biogas produced in L (litres) 
 

1. INTRODUCTION 
 

Sustainable development has become a global 
priority. Global prosperity and human 
development have always been tied to energy. 
But the health threat imposed by fossil fuel, its 
non-renewable nature, the environmental 
pollution from the constant release of carbon 
dioxide, etc., a cause for global concern, has 
necessitated the search for alternative renewable 
and cleaner energies with a less negative effect 
on the environment. Unfortunately, only about 20 
percent of the global energy requirement is met 
by renewable sources like solar, wind, biomass, 
etc., of which energy from biomass has gained 
significant importance due to its waste volume 
reduction and energy recovery. Consequently, 
the need for a sustainable supply of clean energy 
has increased the quest for alternatively cleaner 
and renewable energy sources that can   mitigate 
climate change effects [1]. To achieve this goal, 
the contribution of renewable energy to the           
total energy supply mix must continue to 
increase significantly and ultimately be the sole 
energy source in the future. Many developed             
countries increasingly utilize solar, wind, nuclear, 
biomass, and geothermal energy sources. Their 
contribution to the total energy mix in those 
countries is increasing significantly. However, 
this is not the case in many developing countries 
where the primary energy source remains            
fossil fuels and biomass. 

Biomass is a common bio-energy source, 
especially in many rural communities of 
developing countries. This is due to its 
availability, scalability, abundance, and cost-
effectiveness in generating clean and renewable 
bio-energy compared to other renewable energy 
sources [2]. Another advantage of biomass clean 
energy sources is that they can valorize plant 
and animal waste (which could pose 
environmental and public health issues when not 
properly disposed of) for effective waste 
management. Many biomass fuels produce 
biogas, such as wood, charcoal, agricultural 
residues, household waste [3], animal waste, and 
energy crops [4]. Biogas production, one of the 
most environmentally beneficial technologies for 
bioenergy production [5], plays an essential role 
as an energy source capable of increasing the 
supply stability of gaseous fuels. As a source of 
renewable natural gas, it has been adopted as 
one of the best alternatives for fossil fuels after 
the 1970s world energy crisis. Biogas is a clean 
and renewable fuel produced through a natural 
process in which bacteria convert organic 
materials into a mixture of methane and carbon 
dioxide gases with traces of ammonia and 
hydrogen sulfide [6].  It is a colorless, odorless, 
and flammable gas. It can be collected, with 
special installations, from landfill sites [7]. Many 
technologies, such as incineration and refuse-
derived fuel (RDF), etc., produce energy from 
solid wastes. Among them, anaerobic digestion 
has become a promising technology, particularly 
for recovering energy from the organic fraction of 
solid wastes. According to the department of 
alternative energy development and efficiency 
[8], one cubic meter (m

3
) of biogas comprises 

60% methane, with a heating value of around         
21 mega-joules, an equivalent of 0.6 liters of            
diesel oil or 0.67 liters of gasoline, 0.55 liters         
of fuel oil, 0.46 kg of LPG or 1.2 kWh of 
electricity. As a result, biogas is used for cooking, 
heating, and fuel sources for electric generators, 
automobiles, etc., in many households, farms, 
and public utility systems. 
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Due to its numerous applications, the need to 
accurately predict the amount of biogas obtained 
from a given mass or volume of a substrate 
cannot be overemphasized. Predicting biogas 
yields from the various types of available 
biomaterials is helpful for the efficient design and 
construction of biogas digesters and other 
equipment used for biogas generation. Accurate 
biogas prediction from different biomaterials 
helps optimize the production value chain, 
reducing the associated costs and maximizing 
biogas yield.  Consequently, many scholars have 
tried to find the best ways to optimize the biogas 
yield of different substrates. Unbiased decisions 
in biogas production optimization are guided by 
the development of models commonly referred to 
as Decision support tools (DST). Some of these 
models include the Modified Gompertz model, 
widely used to study growth rate (i.e., used to fit 
growth data), and the first-order kinetic model 
used to model batch Biochemical Methane 
Potential (BMP) data to obtain valuable 
interpretation about hydrolysis kinetics. The 
Logistics model used to predict the methane 
production potential as a function of time, the 3-D 
numerical simulation model based on the 
conservation of mass and energy, and the 
species transport model that predicts biogas 

production from plug-flow anaerobic digesters 
[9].  Also, the Bus well Formula has been used to 
forecast the BMP of various substrates. 
 
However, these models for biogas prediction 
have one common limitation.  Experimentation 
must be conducted to furnish the models with the 
essential information to estimate biogas 
production yield. This means that for any change 
in substrate properties like slurry volume and 
temperature, new sets of experimental analyses 
must always be performed to generate data for 
model curve fitting. This will increase the overall 
costs and time. Furthermore, models for 
predicting biogas yields without recourse to 
experimentation, e.g., regression models based 
on available data, are scarce in the open 
literature. Therefore, this study aims to develop 
time and cost-saving regression models from 
published data for predicting the biogas yields of 
common substrates found in our everyday lives 
without regular experimental analysis. The 
regression models utilize seven parameters that 
significantly influence biogas yields from various 
biomaterial substrates. See Fig. 1. They include 
the slurry volume, temperature, carbon-nitrogen 
ratio, total solids, volatile solids, pH,                        
and hydraulic retention time. 

 

 
 

Fig. 1. Factors affecting biogas yield 
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2. MATERIALS AND METHODS 
 
This study involved the development of non-linear regression models using published biogas data 
from the open literature (see Appendix A). The biogas data was obtained for seven different 
substrates, including cow dung, cow dung with fruit vegetable and plant waste, cow dung with poultry 
dung, poultry dung with grass, grass and fruit vegetable, and plant waste. The input parameters used 
for the prediction of biogas yield include the volume of slurry (L), volatile solids (%), temperature (

o
C), 

pH, total solid (%), carbon-nitrogen ratio, and hydraulic retention time (days). The developed models 
were validated using published empirical results different from those used in building the models. The 
E-view 9 statistical package was used for the analysis. 
 

2.1 Descriptive Statistics of the Input Data 
 

Table 1. Descriptive statistics of the data used in the model development 
 

Substrate  Slurry 
(L) 

C/N T (
o
C) TS 

(%) 
VS 
(%) 

HRT 
(days) 

pH 

Cow dung Min 0.15 8.10 25.00 1.40 1.10 7.00 6.20 
 Max 17.50 24.00 53.00 87.00 78.85 62.00 9.20 
 Mean 3.20 15.3 34.90 31.10 46.39 34.38 7.19 

Cow dung + Plant waste Min 0.30 8.50 31.00 5.70 9.50 7.00 5.50 
 Max 5.00 40.00 37.00 75.60 91.00 75.00 7.80 
 Mean 1.69 16.58 35.00 42.38 58.04 46.38 7.02 

Cow dung + Poultry dung Min 2.00 15.00 32.00 30.00 20.80 30.00 6.50 
 Max 15.00 26.30 35.00 95.50 65.70 56.00 8.70 
 Mean 4.86 19.44 34.15 63.16 51.24 42.93 7.28 

Poultry dung Min 0.50 3.30 26.00 6.93 14.30 7.00 6.25 
 Max 36.70 19.80 38.00 72.80 86.40 63.00 8.40 
 Mean 17.77 12.20 31.07 37.10 49.73 34.14 7.12 

Poultry dung + Grass Min 0.13 11.80 28.00 9.10 19.24 20.00 6.30 
 Max 5.00 36.54 38.00 78.00 96.35 90.00 8.60 
 Mean 1.51 18.04 33.13 37.72 64.87 39.75 7.18 

Pig dung Min 0.20 5.50 28.00 7.80 8.50 14.00 6.20 
 Max 17.50 22.00 52.00 91.00 93.00 80.00 8.10 
 Mean 6.25 12.85 34.46 27.02 45.80 44.15 6.76 

Plant waste Min 0.02 10.49 30.00 7.70 6.00 12.00 4.00 
 Max 4.00 61.17 60.00 81.08 90.29 77.00 8.20 
 Mean 1.49 18.79 39.14 18.25 35.07 31.14 5.74 

 

2.2 Model Development 
 
Considering the relationship 
 

                                                                                                                        (1) 
 
Where Y is the dependent variable and       ….. are independent variables. This expression could 
be narrowed down to linear and non-linear expressions, as shown below; 
For linear expression, we have 
 

                                                                                                              (2) 
 
While non-linear expression can be polynomial, logarithmic, exponential, or sinusoidal, and the 
simplest logarithmic form is given as: 
 

                                                                                                     (3) 
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The logarithmic function was chosen for this 
study due to its numerous advantages. The 
logarithmic function is represented as: 
 

                           
                                    
                                                              (4) 

 

Where Y is the volume of biogas produced 
and               are volume of slurry (L), 
carbon/nitrogen ratio (C/N), temperature (T), 
total solid (TS), volatile solids (VS), hydraulic 
retention time, and pH, respectively. 
                  are regression 
constants. 

 

2.3 Model Validation 
 

The developed models in this study were 
validated using experimental data from other 
authors. The validation data set differs from the 
ones used in developing the models in this study. 
The statistical error models selected for this 
study include absolute and average absolute 
errors. The error models are given as follows: 
 

                       
         

    
           (5) 

and 

                              
 

 
 
         

    
           (6) 

 

3. RESULTS AND DISCUSSION 
 

Table 2 shows the correlation coefficients 
developed for the various substrates in this study 
using equation 4. Appendix B shows the 
statistical analysis results for the developed 
models. The statistical results show that the 
coefficient of determination for the seven models 
was between 0.90 and 0.99. The goodness of fit 
for cow dung, cow dung with plant waste, and 
cow dung with poultry dung were 0.99. That of 
poultry with grass, pig dung, and plant waste was 
0.95, 0.95, and 0.96, respectively. Poultry dung 
had the least goodness of fit of 0.9. The 
goodness of fit indicates how well the model can 
match the given data. From the results, the 
regression models for cow dung, cow dung with 
plant waste, and cow dung with poultry had the 
best goodness of fit compared to the other 
models. The fact that the coefficient of 
determination for all the models was 0.9 and 
above indicates that the models could predict the 
biogas yield for 90% and above of the given 
data. Furthermore, the statistical analysis results 
showed low values of the standard error of 
estimate or regression for all the models. The 
standard error of estimate or regression tells us 

how wrong or right the regression model is on 
average [10]. The smaller the values of standard 
errors of estimate, the better the model. For this 
study, the standard error of estimate of the 
regression models for cow dung, cow dung with 
plant waste, cow dung with poultry dung, poultry 
dung, poultry dung with grass, pig dung, and 
plant waste were 0.35, 2.16, 0.18, 1.52, 0.52, 
0.34, and 1.62, respectively. These results 
indicate that the model for cow dung with poultry 
dung gave a better prediction (least standard 
error of estimate of 0.18), followed by the pig 
dung and cow dung models, respectively. The 
model for the cow dung with plant waste gave 
the highest standard error of estimate (2.16). 

 
To further ascertain the accuracy and reliability of 
the developed models, the Akaike information 
criterion (AIC), the Schwarz criterion (SC), and 
the Hannan – Quin criterion (HQC) were 
calculated for each model. See Appendix B. The 
AIC and HQC allow us to ascertain the model 
with a better fit. The lower the AIC and HQC, the 
better the fit. The SC helps screen and select the 
best model among several models. The lower the 
SC, the better the model. For this study, the AIC 
for the models was 1.04 for cow dung, 4.69 for 
cow dung with plant waste, -0.25 for cow dung 
with poultry dung, 3.82 for poultry dung, 1.84 for 
poultry dung with grass, 0.97 for pig dung, and 
4.10 for plant waste. Likewise, the HQC for the 
models was 1.01 for cow dung, 4.71 for cow 
dung with plant waste, -0.28 for cow dung with 
poultry dung, 3.80 for poultry dung, 1.87 for 
poultry dung with grass, 0.99 for pig dung, and 
4.12 for plant waste. Also, the SC results for the 
models were 1.41 for cow dung, 5.07 for cow 
dung with plant waste, 0.12 for cow dung with 
poultry dung, 4.12 for poultry dung, 2.24 for 
poultry dung with grass, 1.35 for pig dung, and 
4.49 for plant waste. The AIC, HQC, and SC 
results show a similar trend with the standard 
error of estimate results for the models 
developed in this study. These results indicate 
that the model for cow dung with poultry dung 
gave a better prediction (least standard error of 
estimate, AIC, HQC, and SC), followed by the pig 
dung and cow dung models, respectively. The 
model for the cow dung with plant waste gave 
the highest standard error of estimate AIC, HQC, 
and SC. The relatively low standard errors of 
estimate, AIC, HQC, and SC indicate that the 
developed models in this study are adequate and 
reliable for predicting biogas yield from the bio-
materials considered, given the data set limits 
from which the models were developed. Fig. 2 
shows the SER, AIC, HQC, and SC variation for 
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the various biomaterials materials considered in 
this study. 

 
The models' reliability in this study was further 
ascertained by comparing the estimated biogas 
yields with published experimental results. The 
results of the validation are presented in Tables 3 
to 9. The results show that the cow dung with 
plant waste model was more accurate because it 
had the least % AAD of 0.18.the model for the 
poultry dung was the least accurate due to the 
relatively high % AAD of 6.60 compared to the 
other models. The poultry dung with grass, cow 
dung, plant waste, cow dung with poultry dung, 
and pig dung models showed decreasing 
accuracy with % AADs of 1.13, 1.37, 1.71, 2.10, 
and 3.05, respectively. From the results, the 
biogas yield models had average absolute 
deviations of less than 7 %, indicating that they 
are relatively accurate, reliable, and adequate for 
predicting biogas yield from the biomaterials 
considered in this study. 
 
Modeling biogas yield from various biomass 
substrates requires a good amount of quality 
data. The significance of developing such models 
is the low cost and response time needed to 
estimate the amount of biogas generated from a 
particular substrate without recourse to 
experimental analysis. One limitation of this 
study is the small volume and range of available 
data for developing and validating the 
correlations. This was mainly because 

experimental works on biogas production 
considering the slurry volume, carbon to  
nitrogen ratio, temperature, percentage volatile 
solid, percentage total solid, hydraulic           
retention time, and pH in one fell swoop are         
very limited in the open literature. These factors 
are known to affect biogas yields and should         
be included as independent variables for         
biogas yield modeling. Consequently, 
researchers should be more inclined to conduct 
biogas yield experiments incorporating 
measurable factors like slurry volume, carbon to 
nitrogen ratio, temperature, percentage           
volatile solid, percentage total solid, hydraulic 
retention time, and pH for each biomass          
used. This will further increase the amount         
of data output required for building new models   
and tuning the coefficients of existing ones. 
 
Also, the interdependency of the seven 
independent variables (slurry volume, carbon to 
nitrogen ratio, temperature, percentage            
volatile solid, percentage total solid, hydraulic 
retention time, and pH) should be investigated. 
This study is necessary to understand            
how specific parameters influence biogas 
production in the presence of others, and           
as such, the highly influential parameters 
responsible for biogas production could                    
be identified. Identifying such parameters could 
help optimize the biogas yield model while 
reducing the independent variables required           
for biogas prediction. 

 

  
 

Fig 2. Schwarz criterion (SC), Hannan-Quin criterion (HQC), Akaike information criterion (AIC), 
and standard error of regression for the various bio-material models 
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Table 2. Model coefficients 
 

Substrate Model Coefficients 

                         

Cow dung -1.8616 1.2021 -0.7865 0.4741 1.5192 -0.7914 -0.3818 1.1585 
Cow dung + Plant waste -2.0738 3.3394 -0.3048 0.5264 -0.1882 1.5840 0.5149 -2.1537 
Cow dung + Poultry dung -2.4304 1.8770 0.9456 -0.9709 0.1040 1.9646 0.0474 -2.0036 
Poultry dung 0.1082 0.4804 -0.5226 0.4332 -0.0716 1.7866 0.0412 -3.4867 
Poultry dung + Grass 0.2610 0.5528 1.6154 -0.3107 -0.2084 0.1877 0.8529 -3.5323 
Pig dung 0.4208 1.1156 -0.5791 -0.0101 -0.1101 0.3071 -0.0171 -0.3208 
Plant waste 8.7733 0.6039 -3.4020 1.2024 -1.4337 -2.2955 1.3134 -5.2441 
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Furthermore, an artificial intelligence (AI) model 
can be developed for predicting biogas yield   
from various biomass waste materials. Presently, 
literature on AI-based models for predicting 
biogas yield from multiple substrates is not           
only limited but is very scarce. AI models are 
better than regression models and could help 
deepen the frontiers of biogas prediction 
modeling. Artificial intelligence can play an 
essential role in ensuring the efficiency and 
sustainability of biogas production. The 

simulation and optimization of the biogas 
production process improve the understanding of 
the process parameters for optimal efficiencies 
and production rates. Artificial intelligence 
models show that reliability can be improved by 
modeling complex, non-linear relationships 
between input and output sets (system 
responses) and revealing hidden patterns 
between data sets. AI models have been 
observed to exhibit human characteristics 
acquired through learning. 

 
Table 3. Validation of the cow dung model 

 

Authors Slurry 
(L) 

C/N T(
o
C) TS (%) VS 

(%) 
HRT 
(days) 

pH Actual 
(L) 

This 
study (L) 

AAD 
(%) 

[11] 4.5 18.1 35 22.4 46.4 30 9.2 0.73 0.74 1.37 

 
Table 4. Validation of the cow dung with plant waste model 

 

Authors Slurry 
(L) 

C/N T(
o
C) TS 

(%) 
VS 
(%) 

HRT 
(days) 

pH Actual 
(L) 

This 
study (L) 

AAD 
(%) 

[12] 2.0 16.0 35 62.0 45.0 60 7.2 5.50 5.51 0.18 

 
Table 5. Validation of the cow dung with poultry dung model 

 

Authors Slurry 
(L) 

C/N T(
o
C) TS 

(%) 
VS 
(%) 

HRT 
(days) 

pH Actual 
(L) 

This 
study (L) 

AD (%) 

[13] 3.0 20.0 34 95.4 65 56 7.0 2.24 2.31  3.12  

[11] 4.5 22.0 35 83.16 39.2 30 7.0 1.86 1.88  1.08  

         % AAD 2.10 

 
Table 6. Validation of the poultry dung model 

 

Authors Slurry 
(L) 

C/N T(
o
C) TS 

(%) 
VS 
(%) 

HRT 
(days) 

pH Actual 
(L) 

This 
study (L) 

AD (%) 

[14] 0.4 9.2 35 28.0 19.0 75 7.2 0.23 0.22  4.35  

[15] 4.0 10.1 35 12.0 50.8 35 7.6 2.94 3.20  8.84  

         % AAD 6.60 

 
Table 7. Validation of the poultry dung with grass model 

 

Authors Slurry 
(L) 

C/N T(
o
C) TS 

(%) 
VS 
(%) 

HRT 
(days) 

pH Actual 
(L) 

This 
study (L) 

AD (%) 

[16] 0.50 17.7 28 9.1 79.6 52 7.5 1.550 1.549  0.06  

[17] 2.50 14.8 30 62.0 85.0 35 6.4 2.280 2.230  2.19  

         % AAD 1.13 

 
Table 8. Validation of the pig dung model 

 

Authors Slurry 
(L) 

C/N T(
o
C) TS 

(%) 
VS 
(%) 

HRT 
(days) 

pH Actual 
(L) 

This study 
(L) 

AAD 
(%) 

[18] 7.0 9.8 35 22.5 28.2 60 6.3 6.22 6.03  3.05 
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Table 9. Validation of the plant waste model 
 

Authors Slurry 
(L) 

C/N T(
o
C) TS 

(%) 
VS 
(%) 

HRT 
(days) 

pH Actual 
(L) 

This 
study (L) 

AD (%) 

[19] 0.30 14.0 37 11.0 84 50 8.2 0.0093 0.0094 1.08 
[20]  0.20 19.1 60 15.0 14 30 7.0 0.2140 0.2090 2.34 

         % AAD 1.71 

 

4. CONCLUSION 
 

The benefits of biogas as an alternative to fossil 
fuel due to its renewable sources, 
environmentally friendly nature, health benefits, 
etc., cannot be over-emphasized. In this study, 
seven (7) non-linear regression models for 
predicting biogas yields from a wide variety of 
commonly available and abundant waste 
biomaterials, including cow dung, cow dung with 
plant waste, cow dung with poultry dung, poultry 
dung, poultry dung with grass, pig dung, and 
plant waste were developed. Factors affecting 
biogas yields like slurry volume, carbon to 
nitrogen ratio, temperature, percentage of volatile 
solids, percentage of total solids, hydraulic 
retention time, and pH were the independent 
variables for the model development. The 
relatively low values of the AIC, SC, HQC, and 
SER statistical criteria for ascertaining the 
reliability of regression models indicated that the 
models in this study are adequate. Furthermore, 
the model validation results showed that all the 
models had a percentage average absolute 
deviation (AAD) of less than 7%. The low 
percentage AAD shows that the models are 
relatively accurate. However, the developed 
models are valid for the input data ranges from 
which they were developed.  
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APPENDIX A 
 

Table A1.  Data for cow dung with poultry dung as co-substrate correlation 
 

CD CO Slurry 
volume  

C/N T(
o
C) TS 

(%) 
VS 
(%) 

HRT(D) PH BP 
(L) 

Authors 

CD PD          

1 1 4.5 18.60 35 65.3 20.8 30 8.3 0.320 [11] 

1 4 4.5 26.30 35 79.7 42.5 30 7.1 2.800 [11] 

9 1 4.5 15.20 35 63.2 32.0 30 7.6 0.800 [11] 

1 1 3.0 20.00 34 95.5 65.7 50 6.5 2.960 [13] 

1 2 3.0 21.00 34 95.0 65.0 56 7.5 2.050 [13] 

1 1 3.0 21.00 34 95.0 62.0 56 7.1 2.200 [13] 

1 3 2.0 17.00 32 34.0 52.0 50 6.9 0.902 [14] 

1 1 2.0 20.88 32 36.0 52.0 53 8.7 0.800 [14] 

3 1 2.0 17.00 35 38.0 65.0 50 7.0 0.906 [14] 

1 3 2.0 20.88 35 34.0 58.0 50 7.0 0.800 [14] 

 
Table A2. Data for cow dung correlation 

 

Slurry volume  C/N T(
o
C) TS (%) VS (%) HRT (Days) PH BP (L) Authors 

4.00 15.0 33 37.0 17.0 14 6.2 0.51 [3] 

2.00 12.0 35 45.2 73.0 60 6.8 0.42 [12] 

2.00 17.0 35 42.0 78.3 60 7.1 0.38 [12] 

2.00 17.2 35 87.0 63.3 60 7.5 1.26 [12] 

3.00 18.1 34 61.5 75.7 56 7.4 2.07 [13] 

0.25 8.2 37 34.1 19.5 14 7.2 0.182 [21] 

0.25 8.2 37 34.1 19.5 14 8.5 0.234 [21] 

0.80 12.8 30 9.2 71.4 20 6.8 0.167 [22] 

0.80 18.2 30 10.9 70.4 20 6.8 0.17 [22] 

 
Table A3.  Data for cow dung with fruit/vegetable/plant waste as co-substrate correlation 

 

CD CO Slurry 
volume  

C/N T(
o
C) TS (%) VS (%) HRT(D) PH BP (L) Authors 

CD FVW          

3 1 2.0 13.10 35 65.4 62.2 60 6.2 9.00 [12] 

3 1 2.0 8.50 35 63.5 67.3 60 7.1 10.70 [12] 

1 1 2.0 13.10 35 75.6 53.0 60 7.3 6.50 [12] 

1 1 2.0 16.10 35 67.2 61.2 60 7.2 7.56 [12] 

3 1 0.3 16.0 35 62.5 45.0 60 7.5 0.12 [12] 

1 3 0.7 11.40 35 26.5 52.1 35 7.4 0.20 [23] 

1 6 0.7 18.14 35 25.8 52.3 35 7.6 0.18 [23] 

1 9 0.7 15.40 35 24.8 52.1 35 7.6 0.12 [23] 

1 12 0.7 12.60 35 26.6 52.2 35 7.2 0.15 [23] 

1 1 2.5 40.00 31 28.0 91.0 75 6.5 2.75 [24] 
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Table A4. Data for poultry dung correlation 
 

Slurry C/N T(
o
C) TS (%) VS(%) HRT(D) PH BP (L) Authors 

3 10.3 32 12 54.7 56 7.8 2.6 [13] 
4 10.5 35 37 25.2 34 8.4 0.381 [15] 
4 10.5 35 37 25.2 34 8.4 0.381 [15] 
0.5 15.14 38 24 14.3 21 7.5 0.095 [25] 
36.7 15 28 63.8 40.76 21 7.2 9. 95 [26] 
36.7 15 26 68.5 55.56 7 7.6 5.69 [26] 
36.7 15 28 69.8 62.6 14 7.5 8.89 [26] 
36.7 15 28 72.8 65.5 28 7.0 10.86 [26] 
4 3.3 32 50.1 38.8 35 6.4 0.21 [27] 
15 10.3 28 50.5 64.3 18 6.4 3.7 [28] 

 
Table A5.  Data for poultry dung with grass as co-substrate correlation 

 

CD CO Slurry C/N T(
o
C) TS (%) VS(%) HRT(D) PH BP (L) Authors 

PD Grass          

3 2 0.50 15.9 28 9.1 77.10 52 7.3 1.33 [16] 
3 2 0.50 14.8 28 9.1 77.60 52 7.5 0.93 [16] 
1 1 2.50 17.8 37 50.0 89.00 35 7.1 2.36 [17] 
1 2 2.50 22.4 37 78.0 83.00 35 7.6 2.00 [17] 
3 1 0.50 18.2 38 23.8 19.24 20 6.8 0.77 [25] 
1 1 0.50 15.0 30 25.1 20.50 20 6.3 0.60 [25] 
1 3 0.50 11.8 30 25.9 21.13 20 6.6 0.33 [25] 
1 2 0.13 12.0 37 56.0 51.00 30 8.6 0.17 [29] 
3 1 5.00 36.5 37 33.5 96.35 36 7.0 0.48 [30] 
2 1 2.50 19.5 37 71.0 79.00 90 7.4 0.46 [30] 

 
Table A6. Data for pig manure (dung) correlation 

 

Slurry C/N T(
o
C) TS (%) VS (%) HRT(D) PH BP (L) Authors 

0.50 22.0 30 9.1 68.0 52 7.0 0.235 [16] 
0.50 22.0 30 9.1 64.5 52 6.8 0.240 [16] 
7.00 9.8 35 26.3 25.0 40 6.2 7.230 [18] 
7.00 9.8 35 26.5 25.0 80 8.1 4.100 [18] 
0.25 5.5 37 23.0 20.0 14 6.9 0.250 [21] 
0.25 5.5 37 28.0 22.0 14 6.5 0.385 [21] 
5.00 8.1 52 7.8 8.5 29 6.5 5.300 [31] 
0.20 10.0 36 91.0 93.0 38 6.5 0.125 [32] 

 
Table A7.  Data for fruit/vegetable/plant waste substrate correlation 

 

Slurry C/N T(
o
C) TS (%) VS (%) HRT(D) PH BP (L) Authors 

4.00 10.49 33 12.0 73.0 14 5.2 0.260 [3] 
4.00 14.70 33 7.7 26.4 14 7.1 0.294 [3] 
4.00 13.50 37 9.1 26.0 35 5.2 7.240 [15] 
4.00 13.00 37 8.0 30.0 35 5.6 4.840 [15] 
0.20 17.10 60 15.2 13.8 30 6.9 0.322 [20] 
0.25 14.79 37 9.2 18.7 14 5.6 0.443 [21] 
0.25 11.30 37 19.7 18.8 14 4.8 0.783 [21] 
0.25 12.80 38 19.7 17.0 14 4.5 0.781 [21] 
2.50 16.00 30 18.0 20.0 77 5.7 2.690 [24] 
0.25 34.00 35 8.3 53.0 42 5.0 0.403 [33] 
0.02 11.08 37 21.6 6.0 12 4.0 0.003 [34] 
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APPENDIX B 
 

Table B1. Statistical parameters for the regression models 
 

Statistical Analysis Parameters 

Substrate R
2
 Standard Error 

of Estimate 
(SER) 

Akaike 
Information 
Criteria (AIC) 

Schwarz 
Criterion 
(SC)   

Hanna- Quin 
Criterion 
(HQC)   

Cow dung 0.99 0.35 1.04 1.41 1.01 
Cow dung + Plant waste 0.99 2.16 4.69 5.07 4.71 
Cow dung + Poultry dung 0.99 0.18 -0.25 0.12 -0.28 
Poultry dung 0.90 1.52 3.82 4.12 3.80 
Poultry dung + Grass 0.95 0.52 1.84 2.24 1.87 
Pig dung 0.95 0.34 0.97 1.35 0.99 
Plant waste 0.96 1.62 4.10 4.49 4.12 
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