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ABSTRACT 
 

This paper (the second of two sibling papers) continues the tutorial exposition presented in the first part 
of indicators derived from the ubiquitous two-by-two contingency table (confusion matrix). The 
indicators considered herein are those given in the context of clinical testing or binary classification. 
We present a pedagogical program that computes all important indicators based on knowledge of 
either (a) the set of four entries of the contingency table      ,     ,     ,      , or (b) the set of true 

(pre-test) prevalence, sensitivity, and specificity             ,        . The paper presents a potpourri 

of test cases to reveal and unravel many of the properties and inter-relationships  among the indicators 
studied. All our test cases confirm the theoretical results and arguments in the sister paper. In 
particular, these test cases collectively assert that the Matthews correlation coefficient (MCC) is the 
most reliable single metric derivable from the contingency matrix. A concise classification of types of 
prediction is given in terms of the set of four basic indicators        ,             ,        or in terms of 

MCC alone. 
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1. INTRODUCTION 
 

A contingency table (Also called a confusion 
matrix) is a powerful tool in data analysis 
employing matrix format for comparing two 
categorical variables [1-12]. This table (albeit 
very simple) can be used, and is still being used 
[12], to derive an amazingly huge number of 
metrics or indicators in terms of its four entries, 
called True Positives, False Positives, False 
Negatives, and True Negatives and denoted  
         ,     , and     , where the subscripts    

are used to assert the notion that a test   is 
assessed, judged or measured relative to a 
reference or standard  test  . One of the derived 
indicators, the Index of Association (Matthews 
Correlation Coefficient (MCC)) is noted to be the 
most reliable single metric derivable from the 
contingency matrix [13-16]. The aim of this paper 
is to extend our earlier work in the sister paper [12] 
and supplement the existing tutorials on quantities 
derivable from the contingency table [17-27]. The 
exposition used herein is a novel one as it 
presents a good number of carefully-selected test 
cases, and then provides pedagogical comments 
on the results obtained for each test case. These 
comments are ultimately summarized in a single 
table. 
 

The organization of the rest of this paper is as 
follows. Section 2 is a brief primer about the 
metrics and indicators considered. Section 3 
presents a pedagogical program that computes 
all important indicators based on knowledge of 
either (a) the set of the four entries of the 
contingency table      ,      ,     ,      , or (b) 

the set of true (pre-test) prevalence, sensitivity, 
and specificity             ,         . Section 3 

also offers a potpourri of test cases to reveal and 
unravel many of the properties and inter-
relationships among the aforementioned metrics 
and indicators. These test cases collectively assert 
the claim that the Matthews correlation coefficient 
(MCC) is the most reliable single metric derivable 
from the contingency matrix. The results obtained 
are summarized in a concise classification of the 
types of prediction in terms of the set of four basic 
indicators        ,             ,        or in terms 

of MCC alone. Section 4 concludes the paper.  
 

2. METRICS AND INDICATORS 
CONSIDERED HEREIN 

 

Table 1 (borrowed from the sibling paper [12] 
and originally adapted from [4]) lists some of the 

measures or indicators commonly used in 
diagnostic testing or binary classification. The 
table expresses each of these quantities in terms 
of the four elements of the contingency matrix, 
states its range of values, and identify the value 
for perfect testing or classification. Many 
quantities have ranges [        , but a few belong 

to [     ) or [           . Direct measures and 
indicators are highlighted in a greenish color, 
while inverse ones are shown with a reddish 
color. Pre-test quantities are designated neither 
way since they are test-independent. 
 

3. DISPLAY AND COMMENT ON TEST 
CASES 

 
We implemented all the equations of Table 1 in a 
program to compute all the metrics and 
indicators therein based on knowledge of either 
(a) the set of four entries of the contingency table 
     ,     ,     ,      , or (b) the set of true (pre-

test) prevalence, sensitivity, and specificity 
            ,         . Techniques of solving 

ternary problems of conditional probability [1-12] 
were incorporated to attain the needed 
computations.  Table 1 shows fifteen sets of input 
values used to test our program, which were 
carefully selected to reveal certain theoretical 
aspects stressed in [12]. Figs 1-15 display 
snapshots of computer outputs obtained for the 
various test cases. Each of these figures was 
included for a reason, and every figure (except 
one) has two versions supplied by the two sets of 
inputs to yield the same output. Many useful 
comments are included within the captions of 
these figures. The results obtained for the four 
basic indicators are checked for consistency in 
Table 3 according to the novel tests introduced in 
[8-10].  
 
All our test cases confirm the theoretical results 
and arguments in the sister paper [12]. In 
particular, they assert that the MCC is the most 
reliable single metric that can be derived from the 
contingency table, and that all the four basic 
indicators                     and       must be 

high for the MCC to be high. This is in line with the 
fact that the MCC has attracted the attention of the 
diagnostic testing and the machine learning 
communities as a method that summarizes the 
contingency matrix into a single value. Table 4 
summarizes the results of this paper in a concise 
classification of the types of prediction in terms of 
the set of four basic indicators 
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       ,             ,        or in terms of MCC 

alone. This summary attests once more to the 
powerfulness of MCC. The sister paper [12] 
ponders whether novel composite indicators might 

share this powerfulness, and proposes three novel 
indicators for this purpose, namely, the arithmetic 
mean, the harmonic mean, and the signed 
geometric mean of informedness and markedness. 

 
Table 1. Commonly used quantities pertaining to diagnostic testing (borrowed from  the sister 
paper [12] and originally adapted from [4]). Direct measures and indicators are highlighted in a 

greenish color, while inverse ones are shown with a reddish color. Pre-test quantities are 
designated neither way 

 

Measure or indicator Formula in terms of entries of the 
contingency matrix 

Range Perfect 
value 

Sensitivity (True Positive Rate 
(TPR), Recall, Probability of 
Detection) 

                        [0.0, 1.0] 1.0 

Specificity, Inverse recall 
(True Negative Rate (TNR)) 

                        [0.0, 1.0] 1.0 

Precision (Positive Predictive 
Value (PPV)) 

                        [0.0, 1.0] 1.0 

Inverse precision (Negative 
Predictive Value (NPV)) 

                        [0.0, 1.0] 1.0 

False Negative Rate (FNR)                           

       

[0.0, 1.0] 0.0 

False Positive Rate (FPR) (Fall-
Out, False Alarm) 

                           

       

[0.0, 1.0] 0.0 

False Discovery Rate (FDR)                

                 

[0.0, 1.0] 0.0 

False Omission Rate (FOR)                

                 

[0.0, 1.0] 0.0 

Likelihood Ratio for Positive 
Test 

                           [0.0,  )   

Likelihood Ratio for Negative 
Test 

                           [0.0,  ) 0.0 

Diagnostic Odds Ratio                               [0.0,  )   

Inverse of the DOR      
                           [0.0,  ) 0.0 

Youden’s Index (Informedness)            +                    1.0 

Markedness          +                   1.0 

Error of the First Kind             [0.0, 1.0] 0.0 

Error of the Second Kind             [0.0, 1.0] 0.0 

Total Diagnostic Error                   [0.0, 1.0] 0.0 

Diagnostic Accuracy                   [0.0, 1.0] 1.0 

Pre-Test Prevalence                     [0.0, 1.0]   

Pre-Test Odds                               [0.0,  )   

Post-Positive-Test Odds                               [0.0,  )   

Post-Negative-Test Odds                               [0.0,  ) 0.0 

   score                                   .                                       [0.0, 1.0] 1.0 

Index of Association or 
Matthews Correlation 
Coefficient (MCC)         

                        

                             

                              

           1.0 
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Table 2. Various sets of contingency-matrix entries to test the program 
 

TP TN FP FN Comments Displayed 
in Figure 

10 990 0 0 Perfect prediction 1 
500 500 0 0 Perfect prediction 2 
9 900 90 1 Low MCC 3 
90 800 100 10 Medium MCC 4 
250 250 250 250 Equal entries, zero MCC 5 
90 9009 891 10 Gigerenzer et al. [16], Rushdi & Rushdi [3, 6] 6 
9 900 1 90 Low MCC 7 
90 800 10 100 Medium MCC 8 
400 400 100 100 Medium MCC 9 
0 1000 0 0 Many NaN results 10 
35 35 15 15 Mirror image of case 15 11 
4 76 19 1 Chicco et al. [16] 12 
95 0 5 0 Chicco  [13] 13 
90 1 5 4 Chicco  [13] 14 
15 15 35 35 Negative MCC 15 
63 72 28 37 https://en.wikipedia.org/wiki/Receiver_operating_characteris

tic 
 

16 
77 23 77 23 17 
24 12 88 76 18 
76 88 12 24 19 

 
Table 3. Checking consistency among our sets of the four prominent diagnostic indicators. 

According to the scheme in [8-10], when the sets are consistent they are depicted as 
uncolored entries, and when they are somewhat problematic they are highlighted in yellow. If 

the sets are obviously inconsistent they are labelled as orange, and finally if they are 
dramatically inconsistent, they are highlighted in red. The results of all our cases are 

wonderfully uncolored (i.e., consistent). There is only some lack of information when original 
values are missing or an undefined 0/0 is encountered. The diagnostic checking difference 
(DCD) is admirably equal to 0.0000 in all cases, while the diagnostic checking ratio (DCR) 

deviates from 1.0000 by no more than 0.0004 
 

# Original Values Checking Values Computed Values 

                                                                

1a 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 

3a 0.9000 0.9091 0.0909 0.9989 0.0000 1.0001 0.9008 0.9098 0.0902 0.9989 

4a 0.9000 0.8889 0.4737 0.9877 0.0000 1.0001 0.9003 0.8893 0.4728 0.9877 

5a 0.5000 0.5000 0.5000 0.5000 0.0000 #DIV/0! 0.5000 0.5000 0.5000 0.5000 

6a 0.9000 0.9100 0.0917 0.9989 0.0000 1.0001 0.9007 0.9106 0.0911 0.9989 

7a 0.0909 0.9989 0.9000 0.9091 0.0000 0.9999 0.0902 0.9989 0.9008 0.9098 

7b 0.0909 0.9989 0.9008 0.9091 0.0000 1.0000 0.0909 0.9989 0.9008 0.9091 

8a 0.4737 0.9877 0.9000 0.8889 0.0000 0.9999 0.4728 0.9877 0.9003 0.8893 

8b 0.4737 0.9877 0.9003 0.8889 0.0000 1.0000 0.4736 0.9877 0.9003 0.8889 

9a 0.8000 0.8000 0.8000 0.8000 0.0000 1.0000 0.8000 0.8000 0.8000 0.8000 

10  1.0000  1.0000 0.0000 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 

11a 0.7000 0.7000 0.7000 0.7000 0.0000 1.0000 0.7000 0.7000 0.7000 0.7000 

12a 0.8000 0.8000 0.1739 0.9870 0.0000 0.9999 0.7998 0.7998 0.1741 0.9870 

12b 0.8000 0.8000 0.1739 0.9870 0.0000 0.9999 0.7998 0.7998 0.1741 0.9870 

13a 1.0000 0.0000 0.9500  0.0000 #DIV/0! #DIV/0! 0.0000 #DIV/0! #DIV/0! 

14a 0.9574 0.1667 0.9474 0.2000 0.0000 1.0004 0.9575 0.1669 0.9473 0.1998 

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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# Original Values Checking Values Computed Values 

                                                                

15a 0.3000 0.3000 0.3000 0.3000 0.0000 1.0000 0.3000 0.3000 0.3000 0.3000 

16a 0.6300 0.7200 0.6923 0.6606 0.0000 1.0001 0.6300 0.7200 0.6923 0.6606 

17a 0.7700 0.2300 0.5000 0.5000 0.0000 #DIV/0! 0.7700 0.2300 0.5000 0.5000 

18a 0.2400 0.1200 0.2143 0.1364 0.0000 0.9996 0.2401 0.1200 0.2142 0.1364 

19a 0.7600 0.8800 0.8636 0.7857 0.0000 1.0000 0.7599 0.8800 0.8636 0.7858 
 

 
 

Fig. 1a. First test case with input of contingency matrix entries. This is a case of perfect 
prediction with negatives more than positives (low prevalence). Except for pre-test prevalence 
and pre-test odds (which are test-independent), all outcomes are as anticipated in Table 1 for 

perfect prediction 
 

 
 

Fig. 1b. First test case with input of pre-test prevalence, sensitivity, and specificity. This is a case 
of perfect prediction with negatives more than positives (low prevalence). Except for pre-test 
prevalence and pre-test odds (which are test independent), all outcomes are as anticipated in 

Table 1 for perfect prediction 
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Fig. 2a. Second test case with input of contingency matrix entries. This is a case of perfect 
prediction with negatives equal to positives (prevalence equal to one half). Again, all outcomes 
are as anticipated in Table 1 for perfect prediction (except for pre-test prevalence and pre-test 

odds, which are test-independent) 

 

 
 

Fig. 2b. Second test case with input of pre-test prevalence, sensitivity, and specificity. This is a 
case of perfect prediction with negatives equal to positives (prevalence equal to one half). Again, 

all outcomes are as anticipated in Table 1 for perfect prediction (except for pre-test prevalence 
and pre-test odds, which are test independent) 
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Fig. 3a. Third test case with input of contingency matrix entries. This is a case of a very low PPV, 
a very high NPV, moderately high sensitivity and specificity and a relatively low MCC 

 

 
 
Fig. 3b. Third test case with input of pre-test prevalence, sensitivity, and specificity. This is a case 

of a very low PPV, a very high NPV, moderately high sensitivity and specificity, and a relatively 
low MCC. Each numerical value in this figure is the same as the corresponding one in Fig. 3a (to 

within permissible round-off errors) 
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Fig. 4a. Fourth test case with input of contingency matrix entries. This is a case of a low (but not 
very low) PPV, a very high NPV, moderately high sensitivity and specificity, and a relatively 

medium MCC 

 
 

Fig. 4b. Fourth test case with input of pre-test prevalence, sensitivity, and specificity. This is a 
case of a low (albeit not very low) PPV, a very high NPV, moderately high sensitivity and 

specificity, and a relatively medium MCC. Each numerical value in this figure is the same as the 
corresponding one in Fig. 4a (to within permissible round-off errors) 
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Fig. 5a. Fifth test case with input of contingency matrix entries. This is the equal-entry case with a 
zero MCC 

 
 

Fig. 5b. Fifth test case with input of pre-test prevalence, sensitivity, and specificity. This is the 
equal-entry case with a zero MCC. Each numerical value in this figure is the same as the 

corresponding one in Fig. 5a (to within permissible round-off errors) 
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Fig. 6a. Sixth test case with input of contingency matrix entries. This is the celebrated example of 
Gigerenzer et al. [17] and Rushdi & Rushdi [3, 6], with a poor PPV (apparently despite, but actually 

because of, high sensitivity and specificity, as well as very high NPV) and a low MCC 
 

 
 

Fig. 6b. Sixth test case with input of pre-test prevalence, sensitivity, and specificity. This is the 
celebrated example of Gigerenzer et al. [17] and Rushdi & Rushdi [3, 6], with a poor PPV and a 

low MCC. Each numerical value in this figure is the same as the corresponding one in Fig. 6a (to 
within permissible round-off errors) 
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Fig. 7a. Seventh test case with input of contingency matrix entries. This is a case with a poor 
sensitivity and a low MCC. The poor sensitivity does not contradict (but actually results from) a 

combination of high predictive values with a very high specificity 
 

 
 

Fig. 7b. Seventh test case with input of pre-test prevalence, sensitivity, and specificity. This is a 
case with a poor sensitivity and a low MCC. Each numerical value in this figure is the same as the 

corresponding one in Fig. 7a (to within permissible round-off errors) 



 
 
 
 

Rushdi and Alghamdi; AJMPCP, 4(3): 26-50, 2021; Article no.AJMPCP.68420 
 

 

 
37 

 

 

 
 

Fig. 8a. Eighth test case with input of contingency matrix entries. This is a case with intermediate 
sensitivity and MCC 

 

 
 

Fig. 8b. Eighth test case with input of pre-test prevalence, sensitivity, and specificity. This is a 
case with intermediate sensitivity and MCC 
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Fig. 9a. Ninth test case with input of contingency matrix entries. This is a case with ‘reasonable’ 
direct metrics and an intermediate MCC 

 

 
 

Fig. 9b. Ninth test case with input of pre-test prevalence, sensitivity, and specificity. This is a case 
with ‘reasonable’ direct metrics and an intermediate MCC 
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Fig. 10. Tenth test case with input of contingency matrix entries. This is an extreme case in 
which most computed values are undefined, and designated as NaN or Not a Number (ليس رقما). 

We deliberately used the Arabic script for NaN to alert the reader that computations are 
incomplete. Since sensitivity is undefined, this figure is not duplicated 

 

 
 

Fig. 11a. Eleventh test case with input of contingency matrix entries. This is a case with 
somewhat ‘reasonable’ direct metrics and a low MCC 
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Fig. 11b. Eleventh test case with input of pre-test prevalence, sensitivity, and specificity. This is a 
case with somewhat ‘reasonable’ direct metrics and a low MCC 

 

 
 

Fig. 12a. Twelfth test case with input of contingency matrix entries. This is a case with a poor PPV 
and a low MCC. The poor PPV does not contradict (but actually results from) a combination of 

high sensitivity and specificity with a very high NPV 
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Fig. 12b. Twelfth test case with input of pre-test prevalence, sensitivity, and specificity. This is a 
case with a poor PPV and a low MCC. The poor PPV does not contradict (but actually results from) 

a combination of high sensitivity and specificity with a very high NPV 
 

 
 

Fig. 13a. Thirteenth test case with input of contingency matrix entries. This is an extreme case in 
which many computed values are undefined, and designated as NaN or Not a Number (ليس رقما).  

Unlike Fig. 10, this figure can be duplicated since none of sensitivity, specificity and pre-test 
prevalence is undefined  
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Fig. 13b. Thirteenth test case with input of pre-test prevalence, sensitivity, and specificity. This is 
an extreme case in which many computed values are undefined, and designated as NaN or Not a 

Number. Unlike Figs. 10 and 13a, this figure has a true English screen in which the standard 
notation (NaN) replaces its Arabic equivalent  (ليس رقما). 

 

 
 

Fig. 14a. Fourteenth test case with input of contingency matrix entries. This is a case with a poor 
specificity, a poor NPV and a low MCC 
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Fig. 14b. Fourteenth test case with input of pre-test prevalence, sensitivity and specificity. This is 
a case with a poor specificity, a poor NPV and a low MCC 

 

 
 

Fig. 15a. Fifteenth test case with input of contingency matrix entries. This is a case with a 
negative MCC and a negative informedness (Youden’s index)  
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Fig. 15b. Fifteenth test case with input of pre-test prevalence, sensitivity, and specificity. This is a 
case with a negative MCC and a negative informedness (Youden’s index) 

 

 
 

Fig. 16a. Sixteenth test case with input of contingency matrix entries. This is a case of somewhat 

good prediction, with sensitivity (considerably) greater than the False Positive Rate (1.0   
specificity) and diagnostic accuracy greater than 0.5, but the MCC is below 0.5 
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Fig. 16b. Sixteenth test case with input of pre-test prevalence, sensitivity, and specificity. This is a 
case of somewhat good prediction, with sensitivity (considerably) greater than the False Positive 

Rate (1.0   specificity) and diagnostic accuracy greater than 0.5, but the MCC is below 0.5. 
 

 
 

Fig. 17a. Seventeenth test case with input of contingency matrix entries. This is a case on the 

random guess line, with sensitivity equal to the False Positive Rate (1.0   specificity) and 
diagnostic accuracy equal to 0.5, but with a zero MCC and a zero informedness (Youden’s index) 
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Fig. 17b. Seventeenth test case with input of pre-test prevalence, sensitivity, and specificity. This 

is a case on the random guess line, with sensitivity equal to the False Positive Rate (1.0   
specificity) and diagnostic accuracy equal to 0.5, but with a zero MCC and a zero informedness 

(Youden’s index) 
 

 
 

Fig. 18a. Eighteenth test case with input of contingency matrix entries . This is a case below the 

random guess line, with sensitivity less than the False Positive Rate (1.0   specificity) and 
diagnostic accuracy less than 0.5, and with a negative MCC and a negative informedness 

(Youden’s index) 
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Fig. 18b. Eighteenth test case with input of pre-test prevalence, sensitivity, and specificity. This is 
a case below the random guess line, with sensitivity less than the False Positive Rate (1.0 - 
specificity) and diagnostic accuracy less than 0.5, and with a negative MCC and a negative 

informedness (Youden’s index) 
 

 
 

Fig. 19a. Nineteenth test case with input of contingency matrix entries. This is a case in which 
prediction decisions in Fig. 18 are reversed. It is a mirror image of the case in Fig. 18 with the 

values of sensitivity, specificity and accuracy replaced by their complements to 1.0, while MCC 
switched sign. This proves that the output of a consistently bad predictor could simply be 

inverted to obtain a good predictor 
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Fig. 19b. Nineteenth test case with input of pre-test prevalence, sensitivity, and specificity. This is 
a case in which prediction decisions in Fig. 18 are reversed. It is a mirror image of the case in Fig. 
18 with the values of sensitivity, specificity and accuracy replaced by their complements to 1.0, 

while MCC switched sign. This proves that the output of a consistently bad predictor could 
simply be inverted to obtain a good predictor 

 
Table 4. Types of prediction in terms of the four basic indicators and in terms of Mathew 

Correlation Coefficient, borrowed from the sister paper [12] 
 

 Direct Basic Indicators 

                    ,        
Mathew Correlation 

Coefficient    

Perfect Prediction                     

      +             

                                 

       

Good Prediction                         

          +             

          

Random-Guessing-Like 
Prediction 

                    

      +             

      

Bad Prediction                         

          +             

           

Completely-contradictory 
Prediction 

                    

      +             

                                 

       

 
4. CONCLUSIONS 
 
This paper dealt with indicators derived of the 
ubiquitous two-by-two contingency table 
(confusion matrix) that has widespread 
applications in many fields, including, in particular, 

the fields of binary classification and clinical or 
epidemiological testing. The paper presented a 
variety of these indicators, and stressed the fact 
that among these the Index of Association 
(Matthews Correlation Coefficient) has particular 
advantages. The paper presented a potpourri of 
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test cases to reveal and unravel many of the 
properties and inter-relationships  among these 
indicators.  The tests serve as further verification of 
the utility of the Matthews Correlation Coefficient 
as the most informative single metric that can be 
derived from the contingency table. 
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