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Abstract
The project allocation problem is essential in various fields, including academic and organizational settings,
where efficient, stable, and satisfying assignments are crucial for maximizing engagement and productivity. This
paper presents a comparative analysis of three distinct algorithms for project allocation: the Greedy Algorithm,
the Stable Matching Algorithm (Gale-Shapley), and a Score-Based Allocation Method. The Greedy Algorithm
prioritizes computational efficiency, while the Gale-Shapley algorithm focuses on stability, and the Score-Based
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AllocationMethod allows flexibility in balancing multiple criteria. Our findings reveal that while the Stable
Matching Algorithm ensures stable matches, the Score-Based Method optimizes for overall satisfaction based on
different objectives, offering valuable insights into the trade-offs involved in choosing each approach.

Keywords: Project allocation; student preferences; greedy algorithm; stable matching algorithm; score-based allocation;
computational efficiency; stability.
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1 Introduction
The optimal assignment of students to projects is a foundational problem in both educational and professional
settings, where matching participants to preferred options is necessary for enhancing engagement, performance, and
satisfaction. The student-project allocation problem is a specific instance of this matching challenge, where students
express preferences over a set of available projects, and the allocation process must respect various constraints,
such as project capacities and skill requirements. Effective solutions to this problem have the potential to improve
educational outcomes, support students’ career aspirations, and ensure fair and efficient utilization of project resources.

In this paper, we explore three distinct approaches to solving the student-project allocation problem: the Greedy
Algorithm, the Stable Matching Algorithm (often referred to as the Gale-Shapley Algorithm), and a Score-Based
Allocation Method. Each approach offers unique advantages: the Greedy Algorithm prioritizes computational efficiency,
making it suitable for quick allocations in large datasets; the Stable Matching Algorithm, based on Gale-Shapley’s
work, focuses on stability, avoiding any "blocking pairs" where students and projects might prefer each other over
their current matches; and the Score-Based Allocation Method provides flexibility, allowing for custom scoring functions
that can balance criteria such as student satisfaction, fairness, and project preferences. This comparative analysis
highlights the strengths and limitations of each algorithm, aiming to guide practitioners in selecting the most
appropriate approach for specific allocation contexts.

1.1 Background
In educational institutions, particularly at the undergraduate and graduate levels, students are frequently assigned
to project-based courses or research initiatives as part of their curriculum. These projects typically have limited
availability, and students hold preferences for certain projects based on interests, career goals, or skill alignment. The
challenge lies in designing an allocation process that maximally aligns with students’ preferences while respecting
project constraints and ensuring fair access to opportunities.

In practice, student-project allocation is a complex multi-agent problem with competing interests and often incompatible
preferences, making it computationally challenging to find optimal solutions. To address this, institutions commonly
adopt different algorithms to balance between optimality, fairness, and feasibility. For example, a simple greedy
allocation can quickly assign students based on preferences, but it may not result in a stable or fair solution. More
sophisticated approaches, like the Stable Matching Algorithm, aim to produce stable outcomes where no student and
project would prefer each other over their current allocation. Meanwhile, score-based methods allow for nuanced
prioritization based on criteria like academic performance or specific skill sets.

1.2 Objective
The objective of this study is to systematically evaluate the performance of three different algorithms for student-
project allocation. Specifically, we compare the algorithms in terms of computational efficiency, allocation stability,
and overall participant satisfaction. By assessing these aspects, we aim to determine which method best balances the
competing priorities in student-project allocation scenarios and can most effectively accommodate student preferences
and project constraints.
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2 Literature Review
The student-project allocation problem has been extensively studied within the field of operations research, with
applications ranging from education to workforce ass gnments (Roth, 1992; Gale and Shapley, 1962). Recent studies
have also explored hybrid and heuristic approaches, such as genetic algorithms, simulated annealing, and machine
learning techniques, to address complex allocation challenges and improve performance in large datasets (Marinakis
and Marinaki, 2017; Zhu et al., 2019). These approaches show promise in optimizing allocation solutions when
balancing criteria such as stability, fairness, and computational efficiency is critical. The rise of Industry 4.0 has
further emphasized the importance of effective allocation methods, particularly with the integration of Internet of
Things (IoT) and advanced data analytics in production processes (Guo et al., 2020c,b,a).

Several key approaches have been proposed:

• Stable Matching and the Gale-Shapley Algorithm: The Stable Matching Algorithm, developed by Gale
and Shapley (Gale and Shapley, 1962), has been foundational in allocation problems, particularly in contexts
where stability is prioritized. Roth’s work (Roth, 1992) further established the importance of stability in
matching problems, showing how instability can lead to dissatisfaction and inefficiency. In educational settings,
stable matching is used to prevent scenarios where a student-project pair would prefer each other over their
assigned match, promoting a fair and consistent allocation.

• Greedy Algorithms: Greedy algorithms provide a straightforward approach to allocation problems by assigning
students to projects sequentially based on preference rankings. Although simple, greedy methods often lack
the stability of other approaches and may lead to suboptimal allocations where the overall satisfaction of
participants is not maximized. Nonetheless, their computational efficiency makes them appealing for large
datasets and real-time applications (Martin and Roberts, 2004). Extensions of greedy approaches have also
been used in IoT and production quality control systems to balance operational efficiency with resource
constraints Wang et al. (2020); Guo et al. (2019b,a).

• Score-Based Allocation Methods: In cases where students or projects can be ranked based on quantifiable
criteria (such as test scores or prerequisite skills), score-based methods have been proposed as an alternative
to preference-based allocation. These methods assign students based on scores, often prioritizing high-scoring
students for competitive projects (Abdulkadiroglu and Sönmez, 2005). While score-based allocations can
improve fairness by prioritizing merit, they may not fully consider individual preferences, potentially impacting
student satisfaction (Pathak and Sönmez, 2013). Recent studies have applied similar score-based methods to
prioritize tasks in crowdsourcing and co-creation contexts, enhancing the effectiveness of collaborative and
distributed decision-making (Lin et al., 2018; Zhang et al., 2018a).

• Hybrid and Heuristic Approaches: More recent studies have explored hybrid methods that combine
aspects of greedy, stable matching, and score-based approaches to balance trade-offs. For example, heuristic
algorithms such as simulated annealing or genetic algorithms have been used to optimize student-project
allocations by iteratively improving a solution based on defined objectives (Marinakis and Marinaki, 2017).
Hybrid approaches integrating data-driven methods, such as kernel support vector machines and recurrent
neural networks, have also been applied to improve performance in resource-intensive allocation tasks (Zhang
et al., 2018c,b).

In this paper, we build upon this body of research by testing and evaluating three representative algorithms: a Greedy
Algorithm, the Gale-Shapley Stable Matching Algorithm, and a Score-Based Allocation Method. By comparing these
approaches within a controlled framework, we aim to identify which algorithm offers the best balance of efficiency,
stability, and participant satisfaction in the context of student-project allocation.

3 Problem Modeling
3.1 Data structure
The dataset used for testing and evaluating the algorithms was derived from a comprehensive survey conducted
among students during the Fall 2023 semester. This survey captured detailed information about student preferences,
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educational backgrounds, and skills. For a complete description of the survey structure and the data samples used,
please refer to Appendix appendix:datasamples.

The problem can be represented using the following primary data structures:

• Student Preference Lists: Each student has a list of projects ranked in order of preference. Suppose there
are n students and m projects. We represent the students’ preferences using a matrix P ∈ Rn×m, where Pi j
denotes the preference score of student i for project j (the higher the score, the stronger the preference).

• Project Capacity Constraints: Each project has a capacity constraint that indicates the maximum number
of students that can be assigned. This is represented by a vector C ∈ Rm, where C j denotes the maximum
capacity of project j.

• Student Assignment Variables: We introduce a binary decision variable xi j , where xi j = 1 if student i is
assigned to project j, and xi j = 0 otherwise.

3.2 Constraints
The main constraints in the allocation process include:

• Project Capacity Constraint: The number of students assigned to each project must not exceed its capacity,
i.e., for each project j, we have

n∑
i=1

xi j ≤ C j , ∀ j ∈ {1,2, . . . ,m}.

• Student Uniqueness Constraint: Each student can only be assigned to one project, i.e., for each student i,
we have

m∑
j=1

xi j = 1, ∀i ∈ {1,2, . . . ,n}.

• Fairness Constraint: The allocation should aim to minimize envy, ensuring that no student would prefer
another student’s assigned project more than their own. This can be achieved by maximizing overall satisfaction
or minimizing the maximum dissatisfaction.

3.3 Objective function
The objective function to be maximized varies depending on the algorithm. We can define different objective functions
corresponding to different allocation strategies:

• Greedy Algorithm: This algorithm aims to maximize immediate student satisfaction. The objective function
can be expressed as:

max
n∑

i=1

m∑
j=1

Pi j · xi j ,

where Pi j represents the preference score of student i for project j, and xi j is the assignment variable.

• Stable Matching Algorithm: The goal of this algorithm is to avoid any blocking pairs, thereby ensuring a
stable match. A stable match is defined as one in which, for any unassigned student i and project j, if i prefers
j and j has the capacity, then j should not prefer another assigned student more than i.

• Score-Based Allocation: This method seeks to maximize a weighted score, which could include factors such
as student satisfaction, project preferences, and overall fairness. The objective function can be defined as:

max
n∑

i=1

m∑
j=1

w ·Pi j · xi j +
m∑

j=1

n∑
i=1

w′ ·Q ji · xi j ,

where w and w′ are weights, and Q ji denotes the preference score of project j for student i.

These mathematical formulations provide a formal framework for analyzing and solving the project allocation problem,
allowing for a systematic evaluation and optimization of the allocation outcomes.
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4 Algorithms Overview

4.1 Greedy algorithm
The Greedy Algorithm is a straightforward approach that iteratively assigns each student to their most preferred
project with available capacity. Although simple, it often fails to find globally optimal solutions, especially in complex
scenarios.

4.2 Stable matching algorithm
The Stable Matching Algorithm, introduced by (Gale and Shapley, 1962). specifically the Gale-Shapley Algorithm, is
designed to avoid instability in the allocation. It ensures that no student-project pair would rather be matched with
each other than with their current assignments, thus avoiding "blocking pairs".

4.3 Score-based allocation
The Score-Based Allocation method assigns a score to each possible allocation, based on a predefined scoring function.
The method then selects the allocation with the highest total score, aiming to balance various objectives like satisfaction
and fairness.

5 Greedy Algorithm

5.1 Algorithm description
The Greedy Algorithm begins by sorting the students based on their preference rankings. It then allocates each
student to their highest-ranked available project, moving down the list until all students are assigned or all projects
are filled.

5.2 Pseudo-code

Algorithm 1: Greedy Algorithm for Project Allocation
Data: Students’ preferences, Project capacities
Result: Assignment of students to projects

1 Sort students by preference ranking;
2 for each student s in sorted list do
3 for each project p in s’s preference list do
4 if p has available slots then
5 Assign s to p;
6 Update capacity of p;
7 break

8 return Final assignment
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5.3 Analysis
The Greedy Algorithm is computationally efficient, with a time complexity of O(S ×P), where S is the number of
students and P is the number of projects. However, it may result in suboptimal allocations because it does not
consider the overall fairness or stability of the match. It prioritizes immediate assignment based on preferences,
which can lead to scenarios where some students are left with less desirable projects if their top choices are already
filled.

6 Stable Matching Algorithm

6.1 Algorithm description
The Stable Matching Algorithm, commonly referred to as the Gale-Shapley Algorithm, is designed to find a stable
matching between students and projects. In the context of student-project allocation, a matching is considered stable
if there is no student-project pair who would both prefer to be matched with each other over their current assignments.
This algorithm ensures that no "blocking pairs" exist, making it a widely used method in scenarios where stability is
a key concern.

The algorithm operates by iterating over the students, allowing each to "propose" to their most preferred project that
has not yet rejected them. Projects, in turn, tentatively accept the most preferred students up to their capacity and
reject the rest. This process continues until all students are matched to projects, resulting in a stable outcome.

6.2 Pseudo-Code

Algorithm 2: Stable Matching Algorithm (Gale-Shapley)
Data: Students’ preferences, Projects’ capacities
Result: Stable assignment of students to projects

1 Initialize each project as unfilled;
2 while there exists an unassigned student do
3 Select the next unassigned student s;
4 for each project p in s’s preference list do
5 if p has available slots then
6 Assign s to p;
7 Update capacity of p;
8 break;

9 else if p prefers s over its least preferred current assignment then
10 Replace the least preferred student in p with s;
11 Reassign the replaced student;
12 break;

13 return Final stable assignment

6.3 Analysis
The Stable Matching Algorithm has a time complexity of O(S×P) in the worst case, where S is the number of students
and P is the number of projects. It guarantees that the final allocation is stable, meaning there are no student-project
pairs that would both prefer to be matched with each other over their current assignments. However, stability may
come at the cost of overall satisfaction; students might not get their top choice, especially in cases where preferences
are highly competitive.
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Moreover, the outcome is sensitive to the order in which students make their proposals. Depending on the specific
implementation (student-proposing vs. project-proposing), the final allocation may be biased in favor of either the
students or the projects.

7 Score-Based Allocation

7.1 Algorithm description
The Score-Based Allocation method introduces a scoring function that evaluates the quality of each possible assignment
based on multiple factors, such as student preferences, project demands, and overall fairness. The algorithm then
searches for the assignment that maximizes the total score.

This method is flexible and allows for the incorporation of various metrics into the scoring function, providing a
way to balance different objectives (e.g., satisfaction, fairness, diversity). Unlike the Greedy Algorithm or Stable
Matching, which focus on immediate satisfaction or stability, the Score-Based Allocation method can optimize for a
more comprehensive goal.

7.2 Pseudo-Code

Algorithm 3: Score-Based Allocation
Data: Students’ preferences, Projects’ capacities, Scoring function
Result: Optimal assignment of students to projects

1 Initialize an empty assignment;
2 for each possible assignment do
3 Calculate the total score using the scoring function;
4 if current score is higher than the previous best then
5 Update the best assignment;

6 return Assignment with the highest score

7.3 Analysis
The time complexity of the Score-Based Allocation method depends on the complexity of the scoring function and
the number of possible assignments. In general, it may be computationally expensive (O(S!×P!) in the worst case),
especially for large-scale problems, because it requires evaluating every possible assignment. However, heuristics
and optimization techniques, such as dynamic programming or genetic algorithms, can be employed to reduce the
computational burden.

The main advantage of this approach is its flexibility. By adjusting the scoring function, the algorithm can be tailored
to prioritize different criteria, making it suitable for scenarios where multiple objectives must be balanced. However,
finding the right balance in the scoring function can be challenging and may require domain expertise.

8 Results and Conclusion

8.1 Algorithm comparison
We compared the three algorithms based on several criteria, as summarized in Table 1.

• Computational Efficiency: The Greedy Algorithm is the most computationally efficient, followed by the
Stable Matching Algorithm. The Score-Based Allocation, while flexible, can be computationally intensive.
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Table 1. Comparison of algorithms: Greedy, stable matching, and score-based allocation

Criteria Greedy Algorithm Stable Matching Algorithm Score-Based Allocation

Computational Efficiency High Medium Low
Stability Low High Depends on scoring function
Satisfaction High (immediate) Medium High (tunable)

• Stability: The Stable Matching Algorithm guarantees a stable match, making it ideal in situations where
stability is crucial. The Greedy Algorithm does not guarantee stability, and the Score-Based Allocation’s
stability depends on the scoring function.

• Satisfaction: The Greedy Algorithm often maximizes immediate satisfaction but may not lead to an optimal
overall outcome. The Score-Based Allocation can be tuned to maximize satisfaction across different criteria,
potentially offering a better overall solution.

8.2 Project capacity utilization
To evaluate the capacity utilization of each project under different algorithms, we plotted the ratio of assigned
students to project capacity. Fig. 1 shows the utilization ratio for each project under the Greedy, Gale-Shapley,
and Score-Based algorithms.

Fig. 1. Project capacity utilization by algorithm

As shown in Fig. 1, all three algorithms manage to utilize project capacities effectively, with minor differences in
utilization ratios. The Greedy algorithm tends to slightly overfill certain projects, leading to maximum utilization in
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some cases. The Score-Based algorithm, however, provides a more balanced approach, ensuring that all projects are
adequately filled without exceeding capacities. The Gale-Shapley algorithm shows stable utilization across projects
but may underutilize certain ones due to its emphasis on stability over strict capacity optimization.

8.3 Preference satisfaction and unassigned students
In addition to capacity utilization, we evaluated each algorithm based on the average and median preference ranks of
assigned projects, as well as the number of unassigned students. Fig. 2 summarizes these metrics for each algorithm.

Fig. 2. Preference satisfaction and unassigned students by algorithm

From Fig 2, we observe that:

• Average Preference Rank: The Score-Based algorithm achieves the lowest average rank, suggesting higher
satisfaction in terms of students receiving projects closer to their top preferences. The Gale-Shapley algorithm,
while stable, results in a higher average rank, indicating that students may not always receive their most
preferred projects.

• Median Preference Rank: Both the Greedy and Gale-Shapley algorithms show similar median ranks, while
the Score-Based algorithm achieves a slightly better median rank, which highlights its flexibility in optimizing
satisfaction.

• Unassigned Students: All three algorithms perform similarly in terms of the number of unassigned students,
indicating that the algorithms are equally effective in maximizing assignments. However, the Score-Based
algorithm marginally reduces the number of unassigned students by better utilizing project capacities and
balancing preferences.

8.4 Final choice
The choice of algorithm ultimately depends on the specific needs and constraints of the allocation scenario. Our
findings offer practical guidance: the Stable Matching Algorithm is ideal for scenarios where stability and fairness
are paramount, such as in educational institutions seeking to prevent preference conflicts. The Greedy Algorithm,
with its computational efficiency, suits scenarios requiring quick, satisfactory solutions with minimal resources. The
Score-Based Allocation Method, while computationally intensive, offers flexibility, making it applicable for complex
scenarios where multiple criteria must be balanced, such as workforce allocations or specialized project assignments
in industry. This comparative analysis provides practitioners with a robust framework for selecting algorithms that
align with their unique allocation requirements.

• For scenarios where stability is paramount (e.g., avoiding blocking pairs), the Stable Matching Algorithm is
the best choice.
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• In situations where computational efficiency is the priority, and a quick, satisfactory solution is needed, the
Greedy Algorithm is suitable.

• For complex scenarios requiring a balance of multiple objectives, the Score-Based Allocation offers the most
flexibility, albeit at the cost of increased computational complexity.
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A Appendix
A.1 Data Samples
We utilized the 2023 Fall semester student survey data, which was specifically designed to gather detailed information
for the project allocation process. The survey was meticulously crafted to capture a broad range of student preferences,
educational backgrounds, skills, and availability. Below is an overview of the survey structure:

• Personal Information:

– Last Name, First Name: Basic identification details of the students.

– Email: Contact information, used for correspondence.

• Registration Status:

– Students were asked whether they were already successfully registered for the course, with options
including "Yes," "No," or "Other."

• Educational Background:

– The students were required to specify their educational background, choosing from a list that included
various engineering disciplines, management, data science, and more.

– Major (Program): Students selected their current major from options like "Management of Technology
and Entrepreneurship," "Mechanical Engineering," "Electrical and Electronical Engineering," and others.

– MTE Minor: Students indicated whether they were pursuing a minor in "Management of Technology
and Entrepreneurship" or another field.

• Skills Assessment:

– Students self-rated their proficiency in various skills on a scale from Basic (1), Good (2), to Excellent (3).
The skills included "Business Economics," "Prototyping (Hardware)," "Prototyping (Software)," "System
Engineering," and "Design Thinking."

• Availability (Schedule):

– Students were asked to indicate their general availability for team meetings throughout the week,
specifying availability across different time slots from Monday to Friday.

• Project Choices:

– Students were asked to rank their top five project preferences from a list of ten projects, with each choice
corresponding to a different industry partner or project focus. Examples of these projects included:

* Boschung Mecatronic AG - FAST IoT: A project focused on IoT solutions for fast data transmission.

* Datwyler - Electrically Conductive Rubber for Strain Sensors: Development of innovative materials
for sensor applications.

* Logitech - Eco-Design Plastic: Exploring sustainable materials for product design.

* ZF-Group - Next Generation Battery Electric Fuel Cell Commercial Vehicle: Advancing energy
solutions for commercial vehicles.

These survey responses provided crucial inputs for the student-project allocation algorithms. The preference rankings,
along with the students’ educational backgrounds and skill levels, were used to develop a matching strategy that
maximizes overall satisfaction and project success rates. The data was instrumental in testing and refining the
algorithms discussed in this report, ensuring they could handle real-world scenarios effectively.

Sample datasets used in this analysis are provided as supplementary material to this report, including anonymized
student preference lists and project capacities.
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A.2 Code Implementation
Here we provide sample implementations of the discussed algorithms in Python. The code includes functions for
reading input data, processing the allocation, and outputting the results.
————————————————————————————————————————————————————————————-
© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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