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ABSTRACT 
 

Aims: The aim of the study was to analyze the current literature data on the pharmacokinetics and 
pharmacodynamics of phenibut, as well as to evaluate their potential dependence on endogenous 
hydrogen sulfide. 
Materials and Methods: Retrospective analysis of literature data was carried out on the basis of 
data from Scopus, Web of science, PubMed, ScienceDirect, UpToDate databases, as well as using 
the Google search service. When searching for information on the investigated problem, various 
combinations of keywords in Ukrainian and English were used: “phenibut”, “pharmacokinetics”, 
“pharmacodynamics”, “pharmacology”, “hydrogen sulfide”, “H2S”, “mechanism of action”, 
“physiology”, “pathophysiology”. During the processing the search results, either the most recent 
publications (for the last 10 years) or the latest publications on this issue (regardless of the age) 
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were selected. After studying the data of the search results, 38 scientific sources were selected that 
met the terms of the request. 
Results: Despite its promising profile, phenibut is not without certain limitations and problems. Its 
effectiveness in the treatment of anxiety disorders is considered moderate compared to traditional 
anxiolytics such as benzodiazepines. In addition, due to the limited number of studies, its safety 
and potential side effects with long-term use require further study. Overall, phenibut is an 
interesting and promising drug that deserves further investigation, but limitations of its use may be 
related to individual characteristics of pharmacokinetics and pharmacodynamics. In our opinion, the 
cause of such individual characteristics may be certain endogenous factors that vary among 
different people. One of these endogenous modulators includes hydrogen sulfide, which regulates 
a wide range of biochemical and physiological processes. 
Conclusion: The broad and diverse influence of endogenous hydrogen sulfide on the course of 
biochemical and physiological processes in the body prompts the study of its potential modulating 
influence on the pharmacological properties of drugs. A preclinical study of the pharmacokinetics 
and pharmacodynamics of drugs (in particular, phenibut) taking into account the level of hydrogen 
sulfide in the body will allow further optimization of therapeutic schemes by adjusting the 
background level of this transmitter. 

 

 
Keywords: Phenibut; pharmacokinetics; pharmacodynamics; hydrogen sulfide. 
 

1. INTRODUCTION 
 
“Phenibut (beta-phenyl-gamma-aminobutyric 
acid) is a synthetic drug that exhibits anxiolytic, 
nootropic and neuroprotective properties” [1]. 
 
The mechanism of action of phenibut is related to 
the modulation of the level of gamma-
aminobutyric acid in the central nervous system 
[1,2,3]. Unlike classic benzodiazepine anxiolytics, 
phenibut does not only interact directly with 
GABA receptors, but instead stimulates GABA 
metabolism through activation of the vitamin B6-
dependent GABA transaminase enzyme. This 
helps to increase the level of GABA in the 
synaptic cleft, which, in turn, leads to a calming 
effect. 
 
In addition to anxiolytic effects, phenibut also has 
nootropic properties [1,2,3,4]. It can improve 
cognitive functions such as attention, memory 
and learning ability by modulating 
neurotransmitter systems and reducing oxidative 
stress in the brain. This feature makes it 
potentially useful for the treatment of cognitive 
impairment associated with various neurological 
disorders such as Alzheimer's disease, traumatic 
brain injury, and cerebrovascular disease. 
 
The neuroprotective potential of phenibut also 
attracts the attention of researchers [5]. It can 
prevent neuronal damage by inhibiting glutamate 
excitotoxicity and reducing oxidative stress. 
These properties may be useful in the treatment 
of neurodegenerative diseases such as 
Parkinson's disease and Alzheimer's disease, as 

well as in the prevention of brain damage due to 
ischemia or trauma. 
 
Despite its promising profile, phenibut is not 
without certain limitations and problems. Its 
effectiveness in the treatment of anxiety 
disorders is considered moderate compared to 
traditional anxiolytics such as benzodiazepines 
[6, 7]. In addition, due to the limited number of 
studies, its safety and potential side effects with 
long-term use require further study. 
 
Overall, phenibut is an interesting and promising 
drug that deserves further investigation, but 
limitations of its use may be related to individual 
characteristics of pharmacokinetics and 
pharmacodynamics. In our opinion, the cause of 
such individual characteristics may be certain 
endogenous factors that vary among different 
people. One of these endogenous modulators 
includes hydrogen sulfide, which regulates a 
wide range of biochemical and physiological 
processes [8]. 
 

The aim of the study was to analyze the current 
literature data on the pharmacokinetics and 
pharmacodynamics of phenibut, as well as to 
evaluate their potential dependence on 
endogenous hydrogen sulfide. 
 

2. MATERIALS AND METHODS 
 
Retrospective analysis of literature data was 
carried out on the basis of data from Scopus, 
Web of science, PubMed, ScienceDirect, 
UpToDate databases, as well as using the 
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Google search service. When searching for 
information on the investigated problem, various 
combinations of keywords in Ukrainian and 
English were used: “phenibut”, 
“pharmacokinetics”, “pharmacodynamics”, 
“pharmacology”, “hydrogen sulfide”, “H2S”, 
“mechanism of action”, “physiology”, 
“pathophysiology”. During the processing the 
search results, either the most recent 
publications (for the last 10 years) or the latest 
publications on this issue (regardless of the age) 
were selected. After studying the data of the 
search results, 38 scientific sources were 
selected that met the terms of the request. Below 
is an overview and detailed analysis of scientific 
publications on the researched problem. 
 

3. RESULTS AND DISCUSSION 
 

Pharmacokinetics of phenibut: Available 
information on the pharmacokinetics of phenibut 
is quite limited. 
 

“Lapin in his review reports that phenibut is not 
metabolized after intravenous administration to 
rabbits or rats” [9]. “It is also reported that the 
drug is largely excreted unmetabolized in the 
urine by glomerular filtration in rats, rabbits, cats, 
and dogs. In addition, it is noted that phenibut 
was detected in the liver, kidneys, brain, blood 
and urine after intravenous administration, with 
dissipation to trace levels 3 hours after injection”. 
[9]. 
 

In humans, 65% of a 250 mg oral dose of 
phenibut was reported to be unmetabolized and 
excreted in the urine, and its clearance mimicked 
that of creatinine. It was established that the half-
life from plasma is 5.3 hours. 
 

In the review published by Lapin, none of these 
statements are referenced, which precludes 
consideration of primary research [9]. All other 
literature discussing any of these effects cites the 
Lapin publication. 
 
“In the publication of Grinberg et al. It contains 
information that phenibut is detected in the brain 
tissue of rats 1 hour after intraperitoneal 
administration of 100 mg/kg daily for 3 days” [10]. 
 
“Patients report the onset of effects of phenibut 
within 2-4 hours after oral administration, with a 
peak “high” occurring approximately 6 hours after 
administration and a duration of 15 to 24 hours” 
[11]. 
Pharmacodynamics of phenibut: “Phenibut is 
structurally and functionally similar to the GABA 

derivatives, gabapentin and baclofen. Phenibut is 
a GABA agonist that crosses the brain blood 
barrier more readily than GABA itself. This is due 
to the presence of a phenyl group on the beta 
carbon” [12]. “The affinity of phenibut for the 
GABA B receptor is approximately 15 times 
lower than the GABA B agonist, baclofen” [13]. 
 
Baclofen is used to treat anxiety, alcohol 
dependence and muscle spasticity [14], while 
gabapentin is used as an anti-epileptic and also 
to treat neuropathic pain [15]. Like its structural 
analog baclofen, evidence shows that phenibut 
acts as a GABA B receptor agonist [16], and thus 
some of its actions are thought to reflect its 
interactions at the GABA B metabotropic G 
protein-coupled receptor, the primary means of 
inhibitory neurotransmission within the brain. 
Similarly to GABA and its analogs, phenibut was 
shown to reversibly reduce the firing rate of 
isolated cat neurons [17]. 
 
“In a comprehensive set of experiments 
conducted in rodents Dambrova et al. examined 
the comparative pharmacological activity of 
optical isomers of phenibut” [13]. “Administration 
of racemic phenibut and its R-enantiomer 
showed dose-dependent decreases in open field 
activity, increased analgesia in the 
antinociception test and decreased immobility 
during the forced swim test. Pretreatment with a 
GABA B antagonist blocked these effects. The S-
enantiomer showed low to no effects. Results are 
congruent with the antidepressant and anxiolytic 
properties of phenibut. GABA B agonists such as 
baclofen are used to treat spasticity however, 
much higher doses (30- fold higher) of phenibut 
were needed to impact muscle function than 
were needed to affect open field behavior. Given 
its minimal effect on muscle function, the authors 
hypothesize that an unexplored potential clinical 
avenue for phenibut may be in treating disorders 
wherein muscle relaxation is not required”[13]. 
  
“Radioligand binding studies conducted within 
the same set of experiments as above showed 
that baclofen, racemic phenibut and R-phenibut 
demonstrated an affinity for GABA B receptors, 
with Ki constants of 6±1, 177±2 and 92±3 μM, 
respectively, while the S-enantiomer did not bind 
to GABA B receptors” [13]. Phenibut’s actions on 
GABA B receptors have been shown to activate 
an outward-rectifying potassium current, 
suppressing the generation of action potentials 
[18], highlighting its depressant properties. 
Importantly however, although phenibut binds 
directly to the GABA B receptor [13], phenibut 
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also has high affinity for the α2–δ subunit of 
voltage dependent calcium channels (VDCCs) 
[19], which is the same mechanism associated 
with the anti-nociceptive properties of 
gabapentin. “Data show that the binding affinity 
of R-phenibut for the α2–δ subunit of the VDCC 
is 4 times higher than its affinity for the GABA B 
receptor. Calculated Ki values of 23±6 μM, 39±5 
μM and 156±40 μM were observed for R and S-
phenibut and baclofen, respectively. Further, in 
rodent models testing the anti-nociceptive effects 
of R-phenibut, it was shown that antagonism of 
the α2–δ subunit of the VDCC blocked the anti-
nociceptive effects of phenibut while GABA B 
antagonism did not” [19]. In other words the anti-
nociceptive effects were not mediated by 
phenibut’s activity at the GABA B receptor, rather 
its effects at the α2–δ subunit of the VDCC. 
Thus, in line with its structural similarity to 
gabapentin, phenibut also behaves in a 
functionally similar manner and may be a 
suitable candidate to treat neuropathic pain. 
 
Lapin discusses actions of phenibut at the GABA 
A receptor, which is a major mechanism of action 
of benzodiazepines [9]. However, there is no 
available literature showing that phenibut has 
actions at the GABA A receptor. In other 
literature discussing phenibut’s actions at the 
GABA A receptor Lapin is cited, however, the 
primary study cited by Lapin was not accessible. 
 
Hydrogen sulfide: Hydrogen sulfide (H2S) was 
first synthesized in 1777 by the Swedish chemist 
Carl Wilhelm Scheele. 
 
“Hydrogen sulfide is widely distributed in the 
environment and is a flammable, colorless gas 
with a sharp “rotten egg” smell. In nature, this 
gas is formed during the breakdown of proteins 
that contain sulfur-containing amino acids. 
Hydrogen sulfide is a highly toxic compound, 5 
times more toxic than CO. Entering the body in 
high concentrations, this compound can inhibit 
the processes of tissue respiration, inhibiting 
cytochrome c oxidase” [20]. “However, more than 
30 years ago it became known that hydrogen 
sulfide is synthesized by almost all living 
organisms. Since the end of the 80s of the 20th 
century, interest in hydrogen sulfide has 
increased significantly due to the establishment 
of its involvement in the regulation of 
physiological functions in animals and humans. 
Today, this compound belongs to the family of 
gas transmitters, which includes nitrogen 
monoxide (NO) and carbon monoxide (CO). 
Hydrogen sulfide is involved in the regulation of 

vascular tone, neuromodulation, cytoprotection, 
inflammation, apoptosis, and other processes” 
[21, 22, 23]. 
 
Hydrogen sulfide is a short-lived molecule with a 
half-life of several minutes. In aqueous solutions 
at pH 7.4, 20-30% of hydrogen sulfide exists in 
an undissociated form and 70-80% – in the form 
of hydrogen sulfide anion (H2S ↔ Н+ + HS–; 
pKa=6.89), which is partially transformed into 
sulfide-anion (S2–). H2S has high lipophilicity and 
dissolves twice as easily in lipid membranes 
(partition coefficient – 2.06) than in water [24]. 
 
The main substrates for endogenous hydrogen 
sulfide in tissues are sulfur-containing amino 
acids – L-cysteine and L-homocysteine, the main 
enzymes producing it are the pyridoxal 
phosphate-dependent enzymes cystathionine-β-
synthase, cystathionine-γ-lyase, as well as 
cysteine aminotransferase. 
 
The main reactions that ensure the formation of 
hydrogen sulfide in animal and human tissues 
include [25]: 
 

1) Desulfurization of L-cysteine to pyruvate 
with the participation of cystathionine-γ-
lyase. 

2) Condensation of L-homocysteine with L-
cysteine and desulfurization of L-cysteine 
to L-serine with the participation of 
cystathionine-β-synthase. 

3) Transamination of L-cysteine with α-
ketoglutarate with the participation of 
cysteine aminotransferase with the 
formation of 3-mercaptopyruvate, from 
which H2S is further released with the 
participation of 3-mercaptopyruvate 
sulfurtransferase. 

 
In the body, hydrogen sulfide acts as a signaling 
molecule, a gas transmitter, for which no specific 
receptors have been found. The molecular 
targets of H2S are various ion channels, 
receptors, enzymes and proteins that regulate a 
wide range of biochemical and physiological 
processes [8]. 
 
The content of H2S in the blood plasma of 
animals (rats) and humans is about 50-80 µM 
[23], while H2S is contained in larger amounts in 
tissues, and its concentration in different organs 
varies quite a lot. Various pathological conditions 
are associated with disturbances in the content 
and production of H2S in tissues. A decrease in 
the basal content of H2S in the blood plasma is 
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noted in patients with arterial hypertension, 
coronary heart disease, deep vein thrombosis of 
the lower extremities, Alzheimer's disease, and 
hyperhomocysteinemia [26, 27, 28]. In contrast, 
in many cases, the level of hydrogen sulfide 
increases, for example, in diabetes, pancreatitis, 
peritonitis, and shock states [28, 29]. 
 
Equally interesting is the ability of hydrogen 
sulfide to modulate the body's response to 
inflammation (reduction of swelling, reduction of 
pain intensity, reduction of neutrophil infiltration 
in the center of inflammation) [30] and to 
stimulate angiogenesis (stimulation of endothelial 
cell proliferation) [23, 31]. 
 
It is also known about the participation of 
hydrogen sulfide in the course of neurotrauma 
and a number of psychiatric and 
neurodegenerative diseases, in particular, 
anxiety disorders, depression, and manic-
depressive psychosis [32, 33, 34, 35, 36]. 
 
Thus, by modulating the course of many 
physiological processes in the body both by 
direct activation or modulation of channels, 
receptors and enzymes, and by modulating the 
activity of enzymes with the help of intracellular 
signaling, hydrogen sulfide changes the 
conditions in which drugs act, and, therefore, 
their pharmacokinetic features and 
pharmacological effects [37, 38]. In our opinion, 
the study of the pharmacological                         
features of drugs depending on the background 
level of hydrogen sulfide in the body is promising 
both from a scientific and a practical point of 
view. 
 

4. CONCLUSION 
 
The broad and diverse influence of endogenous 
hydrogen sulfide on the course of biochemical 
and physiological processes in the body prompts 
the study of its potential modulating influence on 
the pharmacological properties of drugs. A 
preclinical study of the pharmacokinetics and 
pharmacodynamics of drugs (in particular, 
phenibut) taking into account the level of 
hydrogen sulfide in the body will allow further 
optimization of therapeutic schemes by adjusting 
the background level of this transmitter. 
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