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1. Introduction

In the sixteenth century, the first astronomical telescope to use 
a refractive lens was invented by the great scientist Galileo. 
In 1789, Frederick William Herschel established the 1.22 m  
reflective telescope using specular mirrors. In 1948, the 
famous Hale telescope, which used a reflective mirror two 
hundred inches big, was established in San Diego. In 1976, a 
larger telescope 6 m in diameter and 25 m in length was made 
in Russia. Later on, more powerful telescopes with larger 

sizes were established, e.g. the Giant Magellan Telescope 
(GMT), the Thirty Meter Telescope (TMT), the Hubble Space 
Telescope (HST), the James Webb Space Telescope (JWST) 
and the European Extremely Large Telescope (EELT), which 
joined together many small mirrors. Furthermore, the JWST 
and the EELT are three-mirror anastigmatic, having been built 
with three curved mirrors for minimum optical aberrations and 
to achieve a wide field of view. The advantage of the three-
mirror anastigmatic technique has made its usage popular in 
military and civilian space observation. For example, the three-
mirror anastigmatic Korsch design telescope was used in both 
the Deimos-2 and the DubaiSat-2 Earth observation satellites.

The ability to manufacture curved mirrors accu-
rately enough is still a bottleneck technique regarding the 
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development of telescopes with high resolution and high 
imaging quality. In space optics, the accuracy of state of the art 
optics manufacturing technology has been unable to meet the 
technical requirements of the astronomical telescopes used 
in various NASA projects, e.g. the Astronomical Search for 
Origins (ASO), the Structure and Evolution of the Universe 
(SEU) and the Sun–Earth Connection (SEC). Research 
on new manufacturing techniques and technology in space 
optics is urgent and important for the development of the next 
generation of telescopes. One important factor that reduces 
the imaging accuracy of a telescope is mirror manufacturing 
error, which is defined as the difference between the practical 
parameters of the mirrors and their theoretical values. These 
parameters include the paraxial radius, geometry dimension, 
eccentric errors and surface errors. To improve manufacturing 
accuracy, techniques for measuring the 3D shapes of mirrors 
have become important, because the manufacturing errors 
of mirrors can be computed directly after their shapes are 
known. Although many non-contact measurement techniques 
[1–10] have been developed to measure mirror surfaces, none 
of them are capable of measuring the shapes of mirrors with 
adequate accuracy. Ever since the invention of the telescope, 
there has been a demand for accurate measurements of the 
3D shapes of mirrors both qualitatively and quantitatively 
in order to directly calculate mirror manufacturing errors. 
Unfortunately, these kinds of techniques have been hindered 
by state of the art optical technology and machine vision 
technology.

In 1858, Jean Foucault invented a way of measuring tel-
escope mirrors using a knife-edge test. Unfortunately, it could 
only measure spherical mirrors, and most telescope mirrors 
are aspherical instead of spherical. In addition, the Foucault 
method was only able to provide qualitative results instead of 
quantitative results. To yield quantitative results, it had to be 
combined with other methods, and great effort and consider-
able skills were needed to make accurate judgments. In 1922, 
Vasco Ronchi invented a different technique for measuring 
telescope mirrors, although it was unable to provide quantita-
tive results either. Based on the previous methods, several new 
methods were proposed later, e.g. the star test, the Ross null 
test and the auto-collimation test. However, none of them were 
satisfactory. In the early 1970s, Karl Bath invented an interfer-
ometer to test telescope mirrors with quantitative results and 
it was recognized as the most informative method of the time. 
The Ceravolo interferometer is an alternative method which 
has similar performance. Unfortunately, both interferometers 
are best suited to testing spherical surfaces only. Later on, an 
interferometer was made by ZYGO, which used PV/RMS to 
evaluate the quality of the mirror. However, the complexity 
of the optics rendered PV and RMS incapable of describing 
the mirror quality adequately. Hence, the power spectral den-
sity (PSD), the SlopeRMS, the inverse Hartmann test and the 
structure function (SF) have been widely adopted in mirror 
quality evaluation [11–17]. In [15], the inverse Hartmann 
test was proposed for surface form measurement in spherical 
coordinates with increased dynamic range and resolution. 
However, its accuracy decreased when compared to that in 
rectangular coordinates. In [16], a tutorial about structural 

function analysis is presented and its advantages over Fourier-
based methods were proved. In [18, 19], researchers at the 
University of Arizona used a laser tracker to obtain the direct 
shape measurement for a GMT mirror and they achieved a 
measurement accuracy of 1/4 µm. In [20], ray tracing was 
used to measure the optical aberrations of aspherical lenses. 
All the above methods, except [20], were able to give quanti-
tative results for the surface errors of mirrors, but only indi-
rectly; the paraxial radius, geometry dimension and eccentric 
errors of the mirror were beyond their capabilities.

Although the authors in [20] claimed that their method 
could measure the profile of the surface, only a 1D profile was 
given in the experiments. In [21], a method was proposed to 
measure the 3D profiles of the mirrors with analytic solutions, 
with the potential to achieve zero error accuracy, provided that 
no noise or lens distortion existed. Unfortunately, the system 
noise and the radial lens distortion of the Pico laser projector 
that was used are severe. Consequently, the measurement 
accuracy of [21] is limited. To improve this, the Pico laser 
projector was replaced with an SNF laser, which is free of lens 
distortion and achieves better measurement accuracy [22]. 
However, the measurement accuracy is still not good enough, 
because the noise reduces it significantly. The SNF laser does 
not strictly obey the central projection from which some fun-
damental equations of the system are derived. Consequently, 
the reconstruction results of the system are highly distorted 
and it requires the least deformation principle [22] to re-cali-
brate the system, which is very time consuming.

In this paper, a ray and pattern modeling method is pro-
posed to remove the noise and radial lens distortion as a whole 
by decreasing the degree of freedom of the multiple laser rays 
to one. The proposed method registers the captured pattern 
with the theoretical pattern that replaces the captured pattern 
during the reconstruction. Since the ray and pattern mod-
eling method requires that projected rays obey the principle 
of central projection, it cannot be adopted by the system in 
[22], unless the SNF laser is used with a strictly central pro-
jection. Hence, we choose the Pico laser projection instead 
to generate the required laser rays. The mirror measurement 
system is designed according to the requirement of measuring 
the telescope mirrors. Due to the larger sizes of the mirrors, 
larger diffusive planes and a larger beam splitter are used with 
carefully selected distances. With the proposed ray and pat-
tern modeling method incorporated into the designed system, 
this one-shot projection method was able to achieve 10−13 
mm measurement accuracy for telescope mirrors, which is 
super ior to most state of the art methods.

This paper is organized as follows. Section 2 describes the 
working principle of the mirror measurement system. In sec-
tion 3, a noise analysis is provided and the fundamental pat-
tern modeling method is proposed. The experimental results 
are given in section 4, and section 5 concludes the paper.

2. The system for the one-shot projection method

The designed system for the one-shot projection method is 
illustrated in figure 1. There are three planes p1, p2 and p3 with 
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three cameras c1, c2 and c3 aimed at them, respectively. At the 
beginning of system calibration, the poses of the three cameras 
are estimated with a MATLAB calibration toolbox. The projec-
tion center of the projector is denoted as C and its symmetry 
point relative to the horizontal plane is C′, which denotes the 
projection center of the virtual camera. The horizontal plane p1 
is the imaging plane of this virtual camera and it is defined as 
the reference plane, z  = 0; its origin is at O. A set of laser rays is 
projected from point C and reflected by the mirror plane onto the 
diffusive plane. Based on the reflection law and central projec-
tion theorem, the equations of the reflected rays are the same as 
those projected directly onto the diffusive plane from point C′, 
which is the symmetric point of C relative to the mirror plane, as 
illustrated in figure 1. The central projection from C′ intercepts 
the mirror plane and the diffusive plane in the same way as light 
going through a pin-hole and an image is formed on the image 
plane. Hence, the mirror plane can be treated as the image plane 
of a virtual pin-hole camera. The interception points on the dif-
fusive plane can be treated as objects whose image is formed 

on the mirror plane. With this virtual camera and another real 
camera forming an image of the set of interception points on 
the diffusive plane, the equation of the diffusive plane can be 
determined. This has been described in detail in [21, 22]. With 
the equation of the diffusive plane, the homography between the 
camera and the diffusive plane and the camera coordinates of the 
interception points, the 3D world coordinate of the interception 
point can be computed. When the points on p3 are computed, 
they are mapped to p4. Then, two points intercepting one ray are 
obtained and the ray can be determined uniquely with analytical 
solutions. With the incident rays determined by camera c1, the 
interception points of the projected pattern on the mirror surface 
are computed as the intersections of the incident rays and their 
corresponding reflected rays. For system details, please refer to 
the references [21, 22].

3. Pattern analysis and modeling

3.1. Analysis of the captured pattern

We choose the interception points on the reference plane z  = 0 
and show a zoomed-in view of them in figure 2. It can be seen that 
these five groups of points are not in straight lines as designed. 
In addition, the line appears to be curved if we connect the corre-
sponding points on the same line. This is caused by noise and 
lens distortion. The noise in this imaging system is generated 
during image capturing. It is affected by different influential light 
sources as well as the automatic image processing, which has 
been affected by the unevenly distributed gray-scales of the laser 
points. The radial lens distortion is inherent in the projectors and 
cameras. Both the noise and radial lens distortion decrease the 
calibration accuracy and system measurement accuracy greatly; 
hence, they must be removed for better accuracy.

3.2. Ray modeling and pattern modeling

For the central projection, the angle between any two pro-
jected rays does not change and all the projected rays intersect 

Figure 1. The working principle of the system.

Figure 2. The zoomed-in view of the interception points of the 
incident rays with the horizontal reference plane z  = 0 (the unit of 
the axis is mm).
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at the projection center. This is a fundamental property of the 
projector or camera, on which the proposed modeling method 
is based. The angle between any two rays can be computed by 
the following equation:

x x y y z z x x y y z z

x x y y z z x x y y z z
cos

, , · , ,

, , , ,
ij

i c i c i c j c j c j c

i c i c i c j c j c j c

1
( ) ( )

θ =
− − − − − −

− − − − − −
−

 (1)

where x y z, ,i i i( ) and x y z, ,j j j( ) are the ith interception point 
and the jth interception point on the horizontal reference plane 
z  = 0, as shown in figure 2.

In the ideally designed pattern, each bright point represents 
one projected ray. Along both row and column directions, 
the distance between two adjacent bright points is equal. The 
center of the designed pattern corresponds to the central pro-
jected ray of the projector. The proposed ray modeling method 
is based on the fundamental property of the projector, in which 
the angle between the central ray and any other ray is always 
fixed. Based on this property, we were hence able to determine 
the relative positions of the projected rays though their equa-
tions in the virtual coordinate system. The angle between the 
ith ray and the central ray can be computed by the following 
equation in the virtual coordinate system:

d

D
tani

i1 θ = − (2)

where di denotes the distance between the central point and 
the ith point, and D denotes the distance between the projec-
tion center of the projector and the interception plane that is 
vertical to the central ray. Both di and D are unknowns to be 
solved.

From equation (2), it can be seen that the ratio of di and 
D determines the angle; thus, the scale of them is not impor-
tant. So, we assume the distance di equals the pixel distance 
in the original pattern. Since the distance D is unknown, the 
following searching algorithm is proposed to find it:

Step 1: Choose a set of points (45 points in this research) 
around the center of the projected rays. Compute the 
angles between the chosen rays and the central ray with 
equation (1).

Step 2: Choose the corresponding points from the pattern. 
Compute the angles between the chosen points and the 
central ray based on equation (2) with an initial estimated 
value of D as 1000 in pixels.

Step 3: Compute the total difference of all the angles by the 
following equation:

i

i i

1

44

0  ∑θ θ θ∆ = −
=

 (3)

where i0θ  denotes the angle between the ith ray and the 
 central ray.

Step 4: Find D that makes θ∆  minimum.

D arg min .
D

θ= ∆ (4)

After the distance D is found, iθ  for each ray can be mod-
eled by equation  (2). They are denoted as modeled rays 
R i, 1, 2, .45i

m   = …  in this piece of research. To compare the 
modeled rays with the practically projected rays, we com-
pute the angle between the central ray and any other ray by 
equations  (1) and (2) respectively. The results are shown in 
figure  3. The computed angle of equation  (1) is denoted as 
‘original’ and the computed angle of equation (2) is denoted 
as ‘modeled’. As can be seen, the angles obtained from these 
two different methods match well, but with obvious differ-
ences, caused by noise and lens distortion.

If the plane that intercepts the projected rays is known, 
the interception pattern can be determined. To find the inter-
ception plane, we propose the following pattern modeling 
method:

Step 1: Use the plane ax by cz 1+ + =  to intercept the mod-
eled rays R i, 1, 2, .45i

m   = … . Then compute the distances 
between the central point and a set of points around it,

Figure 3. The modeled angles versus the original angles (the unit 
of the vertical axis is degrees and the unit of the horizontal axis is 
ordinal numbers).

Figure 4. The modeled points after registration versus the original 
points (the unit of the axis is mm).
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d x x y y z z .i i i i
m m

0
m 2 m

0
m 2 m

0
m 2( ) ( ) ( )= − + − + − (5)

Step 2: For the captured pattern, compute the distances 
between the central point and the same set of points as 
those used in step 1 by the following equation:

d x x y y z z .i i i i
p p

0
p 2 p

0
p 2 p

0
p 2( ) ( ) ( )= − + − + − (6)

Step 3: Compute the total difference of all the distances by the 
following equation:

d d d d .i i i
m p∑ ∑∆ = ∆ = − (7)

Step 4: Find the optimal interception plane P a b c, ,(     ) that 
makes d∆  minimum:

P darg min .
P

= ∆ (8)

The intercepted points are computed in a virtual coordinate 
system instead of the world coordinate system. Registration 
is thus needed between the original points and the intercepted 
points to convert the coordinates correctly. We register the two 
sets of points based on the least square errors by finding the 
transformation matrix A that makes the sum of square errors, 
dr minimum:
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d x x y y z zr

i
i i i i i i

1

44
p p 2 p p 2 p p 2( ) ( ) ( )∑= − + − + −

=

 (10)

A darg min
A

r= (11)

where ω is a constant and the transformation matrix A is 
defined as:

A

a a
a a

a a
a a

a a
a a

a a
a a

.

11 12

21 22

13 14

23 24

31 32

41 42

33 34

43 44

 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= (12)

Figure 4 shows the modeled points after registration (in 
blue circles) versus the original points (in red dots). As can be 
seen, the registration method works very well. For the mod-
eled points, each group is in straight lines, which indicates 
that the noise and radial lens distortion have been removed 
successfully. For a better view of the noise and radial lens dist-
ortion removal effect, the differences in the x and y coordi-
nates for these 45 points before pattern modeling are plotted 
and shown in figures  5(a) and (b). The differences in the x 
and y coordinates for these 45 points after pattern modeling 
are plotted and shown in figures 6(a) and (b). It can be seen 
that the differences after pattern modeling vary regularly 
according to the designed pattern, and the noise (random vari-
ation) has been eliminated successfully. In addition, it can be 
seen that the differences in the adjacent points on the same 
lines constitute straight lines, which indicates that the lens 
distortion of the Pico laser projector and camera has been 
removed successfully.

After ray and pattern modeling, the captured patterns are 
replaced with the modeled patterns, and the system is cali-
brated in the same way as described in [21]. It is then possible 
to measure the mirror surface in real time using the calibrated 
system with a single projection.

4. Experimental results

Figure 7 shows the system. Camera c1 is aimed at the hori-
zontal screen, p1, which is placed on top of a metric lab jack 
whose height can be adjusted flexibly. The rays are produced 
by a Pico laser projector and they are reflected by the mirror 
surface onto the beam splitter that splits the rays into two. Half 

Figure 5. The differences in the adjacent points before pattern modeling; (a) differences in the x coordinates; and (b) differences in the y 
coordinates (the unit of the vertical axis is mm and the unit of the horizontal axis is ordinal numbers).
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of the rays pass through and create an image on the diffusive 
plane, p2; half of the rays are reflected and create an image on 
the diffusive plane, p3. Two cameras, c2 and c3, synchronic-
ally record the images on the two diffusive planes, p2 and p3 
at 60 frames s−1.

Figure 8(a) shows the designed pattern projected by the 
Pico laser projector onto a horizontal diffusive plane. The 
brightest point in the center denotes the central marker. A 
Dragonfly camera captures the projected pattern, as shown in 
figure 10(b). As can be seen, the line appears to be curved if 
we connect the bright points on the same line, which is caused 
by the lens distortion of both the Pico laser projector and the 
Dragonfly camera. These camera coordinates were trans-
formed into world coordinates (as demonstrated in figure 2) 
and then modeled by the proposed method to remove both the 
noise and radial lens distortion. Figures 9(a) and (b) show the 
modeled coordinates (in red) versus the original coordinates 
(in blue). It can be seen that the modeled coordinates and the 
original coordinates match well. The aim of the pattern mod-
eling method is to eliminate the random variations (noise) and 
radial lens distortion while keep the pattern ideal.

We use the flat mirror to evaluate the measurement acc-
uracy of this one-shot projection method. We compute the root 
mean square errors between the reconstructed points and the 
modeled points by the following equation:

∑

∑

∑

=

−

−

−
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=
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⎢
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( )

 (13)

where Ex denotes the error in the x coordinate, Ey denotes 
the error in the y coordinate and Ez denotes the error in the  
z coordinate. (X Y Z, ,i i i

r r r) denotes the ith reconstructed point 

and (X Y Z, ,i i i
m m m) denotes the ith modeled point. Suppose the 

flat mirror is ideal, then Zi
o is constant for each point. Xi

o and 
Yi

o are computed by camera c1 as follows.
We determine the homography between camera c1 and the 

horizontal reference plane z 0=  using the MATLAB calibra-
tion toolbox:

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
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⎡
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⎢
⎢

⎤

⎦
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1
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f 0 C
0 f C

0 0 1

r r T
r r T
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y y

0 1 x

3 4 y
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  (14)

where Zc is a scalar. fx and fy are the focal lengths in the x 
and y direction respectively. C C,x y( ) is the principal point of 
camera c1. r r T r r T r r T, , ; , , ; , ,x y z0 1 3 4 6 7[                 ] are the extrinsic 

Figure 6. The differences in the adjacent points after pattern modeling; (a) differences in the x coordinates; and (b) differences in the y 
coordinates (the unit of the vertical axis is mm and the unit of the horizontal axis is ordinal numbers).

Figure 7. The developed system.
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parameters between the horizontal reference plane z 0=  and 
the image plane of camera c1. Then (Xo

i , Y o
i ) is computed as:

 = −

⎡

⎣

⎢
⎢
⎢

⎤
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Y
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H
u
v
1

o
i

o
i 1

i

i (15)

where u v,i i( ) is the camera coordinate of the ith point. 
After (Xi

o, Y Z,i i
o o  ) is determined, (X Y Z, ,i i i

m m m) is determined 
by equations (3)–(15) as described in the above section, which 
could be summarized as:
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⎥
⎥
⎥
⎥
⎥

= (16)

where M is the affine pattern modeling matrix.

Firstly, we compute the errors from the reconstruction of 
the flat mirror without pattern modeling. The measurement 
accuracy of the developed system is 0.2254 mm in the x coor-
dinate, 0.1977 mm in the y coordinate and 0.0825 mm in the  
z coordinate. The reconstructed points versus the original 
points are shown in figure 10(a), where the blue circles denote 
the original points and the red crosses denote the reconstructed 
points.

Secondly, we compute the errors from the reconstruction of 
the flat mirror with pattern modeling of the world coordinates 
in p1, p2 and p3. The reconstruction measurement accuracy is 
0.0332 mm in the x coordinate, 0.0278 mm in the y coordinate 
and 0.0113 mm in the z coordinate. The reconstructed points 
versus the original points are shown in figure  10(b), where 
the blue circles denote the original points and the red crosses 
denote the reconstructed points.

Thirdly, we reconstruct the convex mirror to show the 
strength of the proposed pattern modeling method visually. 

Figure 8. The designed pattern and the captured pattern; (a) the pattern designed in the computer; (b) the pattern captured by the camera 
(the unit of the axis is pixels).

Figure 9. The modeled coordinates versus the original coordinates: (a) the x coordinate; and (b) the y coordinate (the unit of the vertical 
axis is mm and the unit of the horizontal axis is ordinal numbers).
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Figure 11(a) shows one reconstructed convex mirror without 
pattern modeling; the noise ruined the reconstruction severely. 
Figure 11(b) shows the reconstructed convex mirror with three 
patterns modeled. As can be seen, there is a noise threshold 
that determines whether the proposed structured light method 
can work effectively. Only when all noise in the three pat-
terns involved is eliminated can the proposed structured light 
method work well. From these experimental results, it was 
possible to verify both the strength of the proposed pattern 
modeling method and the one-shot projection method.

Fourthly, we evaluate the accuracy of the one-shot pro-
jection method in reconstructing a mirror with known form. 
Since the form of the mirror was known, it was possible to 
model the camera coordinates in c2 and c3 based on the known 
form and reduce the noise. We computed the errors from the 
reconstruction of the planar mirror with pattern modeling of 
the camera coordinates in c2 and c3 and the world coordi-
nates in p1, p2 and p3. The measurement accuracy becomes 
3.4681  ×  10−14 mm in the x coordinate, 6.6771  ×  10−14 mm 

in the y coordinate and 2.4653  ×  10−14 mm in the z coordi-
nate respectively. At first glance, the measurement acc uracy 
seems extremely unlikely. A further thought reveals that 
when all the involved patterns are modeled, both the calibra-
tion stage and the reconstruction stage can be assumed to be 
free of noise and lens distortion. In addition, the reconstruc-
tion error is computed between the reconstructed points and 
the modeled points instead of the original points that could 
introduce random noise. The reconstruction error is close to 
zero, but not exactly equal to zero as in our simulation results 
with MATLAB [22], which is caused by the unideal hard-
ware used here. Another adverse factor caused by the unideal 
hardware is shape distortion. Hence, the selected hardware 
should be as precise as possible to achieve the highest meas-
urement accuracy. Since the telescope mirrors had known 
forms, e.g. spherical, planar and parabolic, we were always 
able to model the camera coordinates in c2 and c3 while 
measuring their shapes. Currently, the measurement acc uracy 
of the system for the planar telescope mirror is 10−13 mm,  

Figure 10. An illustration of the reconstruction error (a) without modeling; and (b) with modeled world coordinates on the three diffusive 
planes (the unit of the axis is mm).

Figure 11. A reconstruction of the convex mirror (a) without modeling; and (b) with modeled world coordinates on the three diffusive 
planes (the unit of the axis is mm).
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which indicates that the system is capable of measuring the 
flatness of the telescope mirror robustly. However, what we 
have achieved is only the first step in a long march. Our 
future work will include: (1) the adoption of better hardware 
to increase measurement accuracy further, and (2) evaluation 
of the accuracy of measuring other forms of telescope mir-
rors thoroughly.

To compare the measurement accuracy of this one-shot 
projection method with state of the art methods, we com-
pared it with the state of the art literature for available quanti-
tative results and show the comparisons in table  1. As can 
be seen, the measurement accuracy of the one-shot projec-
tion method is significantly better than the state of the art 
methods. Furthermore, some state of the art methods, e.g. 
[19], were unable to measure the 3D profiles of the mirror 
like this method could. Thus, the advantages of the one-shot 
projection method over other state of the art methods have 
been proved.

5. Conclusion

It is important and challenging to accurately measure the 3D 
shapes of mirrors for telescope manufacturing. This paper 
aims to improve a previously proposed one-shot projection 
method and allow it to be capable of accurately measuring the 
profiles of mirrors, which is essential for the direct measure-
ment of manufacturing errors for the mirror. A ray and pattern 
modeling method was proposed to remove the noise and radial 
lens distortion by replacing the captured pattern with a theor-
etical pattern that was computed by registering the captured 
pattern with the designed pattern. The experimental results 
showed that the proposed ray and pattern modeling method 
were able to increase the measurement accuracy of the one-
shot projection method from 0.1 mm to 10−13 mm. Hence, the 
effectiveness of both the proposed modeling method and the 
one-shot projection method has been verified.
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