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ABSTRACT 
 
The hydrodynamic instability of unmagnetized quantum plasma layer supported by 
magnetized vacuum layer is investigated. The plasma is considered as incompressible, 
inviscid and has exponentially varying density. The relation between square normalized 
growth rate and square normalized wave number is obtained and analyzed. The results 
are shown that, the interface is more stability in the presence of quantum effect beside the 
magnetic field effect. 
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1. INTRODUCTION  
 
The field of quantum plasmas has been introduced since long ago. Klimontovich and Silin [1] 
derived a general kinetic equation for quantum plasmas and studied the dispersion 
properties of electromagnetic waves. Some other developments of that time include the 
equilibrium theory of quantum plasmas using a procedure similar to Feynman's methods in 
field theory [2], dielectric formulation of quantum statistics in random phase approximation 
[3]; and the self-consistent field approach to many-electron problem [4]. For non-equilibrium 
homogenous systems, kinetic equations have been derived by Balescu [5]. Guernsey [6] 
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used an approach originally developed by Bogoliubov to present a unified theory of 
equilibrium and non-equilibrium quantum plasmas. Pines [7] studied the dynamics of 
quantum plasmas with particular attention to the relationship between individual particle and 
collective behavior. A general theory of electromagnetic properties of the electron gas in a 
quantizing magnetic field was also developed treating the electrons quantum mechanically 
[8-9].                                                                           
 
It is well known, the pure classical plasmas has many application in compact astrophysical 
objects such as in white dwarfs and the atmosphere of neutron stars [10] or in the next 
generation intense laser-solid density plasma interaction experiments [11]. But, many-body 
charged particle systems cannot be treated by pure classical physics when the characteristic 
dimensions become comparable to the de Broglie wavelength. This is the case for quantum 
semiconductor devices, like high-electron-mobility transistors, resonant tunneling diodes or 
super-lattices. The operation of these ultra-small devices relies on quantum tunneling of 
charge carriers through potential barriers. So, quantum effects in plasma become important 
in like these environments. 
 
In magnetic fusion research interface problem arise naturally the form the requirement that 
thermonuclear plasma be confined and isolated from the outside world by a vacuum 
magnetic field. The plasma-vacuum interface problem in magneto-hydrodynamics was 
presented by Goedbloed [12]. The Rayleigh-Taylor instability (RTI) of plasma-vacuum 
boundary with the aid of an ideal one-fluid Hall model corresponding to the limit of a large ion 
Larmor radius was studied Velikovich [13]. The stability of gravitational compressible surface 
modes of a plasma-vacuum interface is studied by Grattojn et al. [14] and by Alejandro et al. 
[15]. 
  
In the last years, the hydrodynamic instability on the interface between a vacuum and 
quantum plasma has attracted much attention because of wide applications in many areas 
such as laser physics, plasma spectroscopy, plasma technology, and surface science [16-
18]. For example, plasma and vacuum technologies are used in the microelectronics, 
communications, biomedical and other modern manufacturing industries. Vacuum plasma 
processing is already a well-proven and widely-used technique for etching and surface 
modification in the electronics industry. It is being increasingly used by the aerospace, 
automotive, medical, military and packaging industries for cleaning and surface engineering 
of plastics, rubbers and natural fibers as well as for replacing CFCs for cleaning metal 
components, polypropylene automotive components such as car bumpers, door mirror 
housings and dash board components are plasma treated before painting. 
 
The instability of quantum plasma-vacuum interface is studied of many different models [19-
23].The vacuum- quantum plasma composed of electron, including the effects of a quantum 
statistical Fermi electron temperature and the system is acted upon by an electromagnetic 
field ( ),,( zyx BEE  TM-model) is studied by Lazar et al. [19]. In this model the initial values 

for electric and magnetic field were vanished ( ,000 ==BE Electrostatic model). The same 

model is considered by Mohamed [20], but in his model the initial value of magnetic field was 

taken account ( yeBB 00 =
r

, transverse magnetic field). The previous model under the effect 

of electromagnetic field ( ),,( zyx EBB , TE-model) is studied by Mohamed and Abdel Aziz 

[21]. The instability of the interface between a quantum magneto-plasma composed of 
electrons and positrons, and vacuum are studied by Misra et al. [22]. In this study the 
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external magnetic field lies in the zx − plane making an angle θ  with the z  axis. A 
quantum surface mode at a plasma-vacuum interface with uniform magnetic field is studied 
in quantum electron-hole semiconductor plasma by Misra [23]. In the above studies [19-23] 
the systems had a small-amplitude perturbation, where some terms (higher orders 
derivatives) of the linearized equations are deleted. 
  
In this paper, the classical RTI model in refs. [12,13] will be again studied in quantum 
plasmas. The surface of discontinuity ( 0=z ) has considered between infinitely conducting 

plasma in the half-space 0<z and a vacuum in the other half-space 0>z ,that has been 

permeated by a uniform horizontal magnetic field ( xeBB
rr

00 = ). Here, we use a system of 

Cartesian coordinates, where −z axis in the vertical direction. A gravitational acceleration 

),0,0( gg =  directed from the plasma towards the vacuum. In all the above studies (19-

22), the perturbation was very slow. So, the higher derivatives that rise in the system 
considerable are neglected. In our analysis the perturbation will be superabundant (high-
speed), such that the system cannot return to the initial case (i. e. The system will remain in 
a permanent disturbance case). Thus all the terms, which will rise in the linearized 
equations, will be considered.  
 
2. GOVERNING EQUATIONS AND LINEAR PERTURBATIONS   
 
For incompressible quantum plasma as a fluid of electrons and immobile ions the relevant 
equations may be written as (see refs. [19 -26]) 
 

QgP
t

rrrr
++−=







 ⋅+ ∇∇
∂
∂ ρρ UU ,      (1)  

 

0U =⋅∇
r

,        (2)  
 

0U =






 + ∇⋅
∂
∂ ρ

r

t
,        (3) 

  

interface at thezyx uuu
t yx

=







++

∂
∂

∂
∂

∂
∂ η      (4) 

 

Here ),,(U zy uuux

r
is the velocity, ρ is the density, p thermal pressure, g

r
is the 

gravitational acceleration. A quantum effect in equation (1) is represented by Bohm Potential 

(












∇∇=
ρ

ρρ
22

2 iemm
Q h
r

), em  is the electron mass and im  the ion mass. η   is the 

displacement which  is a function of yx, and t . The pressure term in Eq. (1) contains both 
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the Fermion FP , and the thermal tP . For high temperature plasmas, it is simply thermal 

pressure tP . However, for very low temperature plasma by assuming that the ions behave 

classically in the limit FeF PP
i

<< (where 
iFP  is the ion Fermi temperature and 

eFP  is the 

electron Fermi temperature), the pressure effects of quantum electrons are relevant only. In 
this situation the Fermi pressure which is contribution of the electrons obeying the Fermi-
Dirac equilibrium is of most significance. The Fermi pressure increases with increase in 

number density and is different from thermal pressure ( 3

5
3

2
22

8
3

5
4

n
m

PF 















=

π
π h

,  n  is the 

number density). In our study, we consider the case of high temperature plasmas, so the 
thermal pressure ( PPt = ) plays a vital role.   

 
Now, if we wish to study quantum plasma-vacuum system with an interface need to 

supplement Eqs. (1)-(4) with the equations describing the vacuum magnetic field B
r

:  
 

0=⋅∇ B
v

, 0=×∇ B
r

.         (5)  
 
These equations are all that is left from Maxwell’s equations when the displacement current 

is negligible. So that ϕ∇=B
r

 may be obtained as the gradient of a scalar ϕ  which 
satisfies the equations 
 

0=∇ ϕ2 , 0=∇×∇ ϕ .       (6)  
 
The dynamic boundary condition across the interface of plasma-vacuum is  
 

><=><
µ

2B
sP ,            (7) 

 

the brackets >< is the jump across the interface, sP  the pressure through the two layers 

and µ  is magnetic permeability. The condition on the magnetic field at the interface with a 
perfect conductor is 
 

0== ∇⋅⋅ ϕnBn
rvr

,        (8)  
 

where n
r

 is the unit vector which is the outward normal to the surface. This vector is defined 

by ),,( tyxzf η−= .  According to nonlinear Fourier perturbation and elaborated by 

Callebaut, where every physical quantity (say X ) can be expanded in a series ε :  
 

...........................XεXεXεXX 3
3

2
2

10 ++++=      (9)  
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where ε  is the amplitude of the first order term at all times, t)exp(εε 0 ω= and 0ε  is its 

amplitude at t = 0 and σω i-  =  is the frequency of perturbations or the rate at which the 
system departs from equilibrium thee initial state (Plasma frequency). Here, in our example 

of RTI, we consider the plasma layer is initially at rest. This means that 00U =

r
 and 0

0
=η . 

 
Then, the linearized equations of quantum plasma layer (by Eqs. (1)- (4)) may be written as 
 

11110 U QgP
rrr

++−= ∇ ρωρ ,       (10)  

 

01U =⋅∇
r

,        (11) 
 

 0)( 011 U =⋅+ ∇ ρρω
r

,       (12)  

 

011 =
=

zzuηω ,         (13)  

 

where 1Q
r

 is given by  
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.          (14)  

Now, where ),,( 1111U zy uuux=
r

, ),0,0( gg =
r

, ),,( 1111 zy QQQxQ =
r

, ),,(
zyx ∂

∂
∂
∂

∂
∂=∇ and 

the fluid is arranged in horizontal strata, then 0ρ  is a function of the vertical coordinate (z) 

only ( )(00 zρρ = ). So, the system of equations (10)-(13) can be put as:  

 

1
1

10 xx Q
x
p

u +−=
∂
∂ωρ ,                                                                                      (15) 

 

 1
1

10 yy Q
y
p

u +−=
∂
∂ωρ ,                                                                                      (16) 
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1

10 zz Q
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∂ ρωρ ,                                                                              (17)  
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Here 1xQ , 1yQ  and 1zQ  are given, respectively 
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Now, we put                                                                                 

  ψcos)(),,( 11 zXzyxX =  for 1X  represents 11, Puz  and 1ρ ,                              (24)  
 

ψsin)(),,( 11 zXzyxX =  for 1X  represents 1xu and 1yu ,                                   (25)  

 

where ykxk yx +=ψ  , xk and yk are horizontal components of  the wave-number vector k
r

such that  222
yx kkk += ..                                                         

 
Using the expressions (24) and (25) in the system of Eqs. (15)-(20), we have  
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Now, multiplying Eq. (26) by xk and Eq. (27) by yk and adding the products with helping 

equation (30) we get 
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Eliminating 1p  between equations (28) and (35) with helping the system of equations (30)-

(34) we get a differential equation in 1zu   
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For the vacuum case, the linear equations may be written as follows: 
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01 =∇ ϕ2 ,  01 =∇×∇ ϕ
rr

.                                                                              (38)  
 

Now, if we put ψϕϕ sin)(),,( 11 zzyx = , then Eq. (38) takes the form  
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The linear case of Eqs. (7) and (8), respectively, takes the form: 
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Now, we will introduce the solutions for the two regions, where plasma layer supported by 
vacuum layer that has been permeated by a uniform magnetic field in the −x direction

( )xeBB
rr

00 = . Plasma region (Region (I)) through the range 0<z , while the vacuum region 

(Region (II)) through the range z<0 . Region (I) )0( <<−∞ z : 

 

Here, we consider the density distribution is given by )/exp()0()( 00 DLzz ρρ = , where 

)0(0ρ  and DL  are constants, so Eq. (36) becomes 
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h=ω , h  is the Plank’s constant, im  the ion mass and em  is the electron mass. 

 
The solution of last equation in this region will be as following:  
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if we select 1=a , we will find that:  
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Region (II) )0( ∞<< z :   

 

The solution of Eq. (39) in this region is )(exp)(1 kzbz −=ϕ , and then  
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Using the condition (41) we find 
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Now, using the results (44) and (46) in the condition (41), then the dispersion relation for our 
problem (unmagnetized quantum plasma layer has been supported by uniform magnetized 
vacuum layer) given by 
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If we ignore the quantum effect, then the dispersion relation (47) becomes  
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while, if we ignore both quantum and magnetic field effects, we have the Rayleigh-Taylor 

instability mode that is given by the classical expression 2

1

)( gk=ω  see Eq. (1) ref. [12]. 
 
Now, we define the following dimensionless quantities 
 

2
0

22
0222

224

2

2

2

)0(
,,,

4
,

222

pe

x
mD

DpepeieD
q

pe

k
Lkk

L

g
g

mmL

B
ωµρ

ω
ωω

ω
ω
ωω ===== ∗∗∗∗∗ h

.      

 
Then the dispersion relation (48) becomes  
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From Eq. (49) it is not feasible to obtain analytically the value of ∗ω for the sets of parameters 

( ∗∗
mq ωω , ). So, the dimensionless dispersion relation (49) has been solved numerically for 

different values of the physical parameters involved. Numerical calculations are presented in 

Fig. 1. There the square normalized growth rate
2∗ω  is plotted against the square normalized 

wave number
2∗k . Fig. 1 shows the role of quantum term )2,1(=∗

qω  and magnetic field

)2,1(=∗
mω  for a quantum plasma-vacuum model, where the magnitudes of square 

normalized growth rate is less than its counterpart in the case of quantum term only or 
magnetic field only. 
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Fig. 1. The square normalized growth rate
2∗ω against the square normalized wave 

number
2∗k  with the parameters 1== ∗∗

mq ωω , 1=∗h and 10=∗g  

3. CONCLUSION 
 
Finally, we have presented the analytical results of the Rayleigh-Taylor instability of quantum 
plasma with vacuum interface, the dispersion relation is derived as a function of the physical 
parameters of the system considered in Eq. (49). The numerical calculations are shown that 
the system was more stability in the presence of both quantum term and horizontal magnetic 
field. This stabilizing, that happens in the presence of both quantum term and horizontal 
magnetic field. This discrepancy highlights a stabilizing role due to the presence of quantum 
term and horizontal magnetic field on Rayleigh-Taylor instability problem (quantum plasma-
vacuum), increasing the dissipation of any disturbance, thus providing an increased stability.   
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