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ABSTRACT
Harmony can be defined in a musical way as art that combines 
several musical notes reproduced simultaneously to create 
sounds that are coherent to human ears and serve as accom-
paniment and filling. However, working out harmony is not a 
simple task. It requires knowledge, experience, and an intense 
study of music theory, which takes time to reach good skills. 
Thus, systems capable of automatically harmonizing melodies 
are beneficial for experienced and novice musicians. In this 
paper, a comparative study between distinct architectures and 
ensembles of Artificial Neural Networks was proposed to solve 
the problem of musical harmonization, seeking consistent 
results with rules of music theory: Multilayer Perceptron (MLP), 
Radial Basis Function network (RBF), Echo State Network (ESN), 
Extreme Learning Machines (ELM), and Long Short-Term 
Memory (LSTM). For this, a processed and defined melody 
with symbolic musical data serves as input to the system, having 
been trained from a musical database that contains melody and 
harmony. The output is the chord sequence to be applied to the 
melody. The results were analyzed with quantitative measures 
and the ability to melody adaptation. The performances were 
favorable to the MLP, which could generate harmonies accord-
ing to the objectives.

Introduction

When a set of musical notes is played simultaneously, a sound called chord is 
formed. When several chords are put in order, there is harmony. Naturally, 
such harmonies are designed to accompany musical melodies, which bring 
meaning, proportion, and symmetry to a song (Roig-Francolí 2010). 
Therefore, harmony, among other definitions, can be a way to choose chords 
that correctly complement a musical line.
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The harmonic choices for a given melody are limited, although several 
options can fit the exact musical moment. However, like any form of art, 
the harmonization of a given melody requires time, experience, and musical 
study, especially concerning harmony theory (Koops, Pedro, and de Haas  
2013).

Understanding the harmonization task as an analytical process, researching 
its constitution, and finding a way to automate it represents a valuable con-
tribution to the study of music, artificial intelligence, and Musical Information 
Retrieval (MIR) (Koops, Pedro, and de Haas 2013).

Several attempts to solve the problem of automatic music harmonization 
exist in the literature, often using evolutionary methods, such as with Genetic 
Algorithms (GAs) (Nakashima et al. 2010; Wiggins, Papadopoulos, and Phon- 
Amnuaisuk 1998), statistics (Chuan 2011) or with rule-based systems 
(Ebcioğlu 1988; Koops, Pedro, and de Haas 2013).

Neural Networks have also been used. In Lim and Lee (2017), the authors 
applied Bidirectional Long Short-Term Memory (BLSTM) networks, trained 
in symbolic data of actual song harmonies, reaching 50% accuracy. In Rhyu 
et al. (2022), an architecture based on transformers was applied, with three 
proposed models; some of which showed the ability to learn about a song in its 
entirety with better-structured results than those obtained by applying LSTMs. 
Similarly, Yeh et al. (2020) conducted a comparative study of five harmonizing 
models, two of which involve recurrent ANNs, with results evaluated from 
objective and subjective metrics. Other works, such as Dong et al. (2017); 
Huang and Wu (2016); Liu and Yang (2018), seek to use similar methodolo-
gies, however, with a different objective, which is the whole music generation, 
including melody and even the arrangement.

In this paper, different architectures and ensembles of Artificial Neural 
Networks (ANNs) were applied to solve the problem of harmonizing music, 
motivated by understanding the behavior of this specific Artificial Intelligence 
method. Their performance were compared for the following algorithms: 
Multilayer Perceptron (MLP), Radial Basis Function network (RBF), Echo 
State Network (ESN), Extreme Learning Machines (ELM), and Long Short- 
Term Memory (LSTM). Using a database of symbolically represented songs 
containing melodies and chords, the ANNs were trained and later became able 
to generate new harmonies. Statistical and performance measures were calcu-
lated on the results of each model to describe the production quality, making it 
possible to compare them quantitatively and choose the best one. The results 
met the objectives, reaching consistent and reasonable performance levels, 
presenting as novelty a comparison focused only in using ANNs.

This paper is divided into sections of which: Sections 2 and 3 briefly 
describe musical harmony theory and establish the applied methodology, 
respectively. Results are exposed and discussed in Section 4, of which conclu-
sions are drawn in Section 5.
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Musical Harmony Theory

According to Schoenberg (1978), harmony is the study of sounds played 
simultaneously and their relationship between architectural, melodic, and 
rhythmic values, as well as their meaning and relative strength to each other 
(Schoenberg 1978). The study of harmony establishes essential rules and 
concepts, some of which are presented below, according to Western Tonal 
Music.

The construction of chords can be commonly done using triads, which are 
three musical notes played simultaneously, usually consisting of notes over-
lapping in intervals of thirds. Depending on the type of these intervals, the 
chords can be named as major, minor, augmented, or diminished (Terefenko  
2014).

The term diatonic chords is used to refer to the group of chords that can be 
played on a given note scale. In it are inserted the chords that constitute a 
functional relationship with each other. For example, the chords used in the 
key of C major are C major (or maj), D minor (or min), E min, F maj, G maj, A 
min, and B min flatted fifth (or diminished) (Roig-Francolí 2010).

In harmony terms, function is understood as the characteristic of a chord, 
having its value concerning the others. The tone is defined by essential 
functions traditionally called tonic, dominant, and subdominant, respectively, 
each represented by a chord. For the other chords present in the diatonic 
chords, their functions are inherited from the main functions, called secondary 
functions, and these chords can be named as relatives (Terefenko 2014).

Respecting these functions, the normal movement of the chords within the 
song is established as (Roig-Francolí 2010):

● The dominant function is commonly preceded by the tonic, giving the 
resolution of the dissonance (in the tonic);

● The subdominant function has greater freedom, but its sense of move-
ment usually leads to the dominant;

● The tonic function is usually applied at the beginning or at the end of a 
song or musical phrase, giving the idea of completion.

Exemplifying using the C major diatonic chords: G maj chord has a dominant 
function and B diminished is its relative; F maj is subdominant, and its relative 
is D min; and for the tonic function, there is C maj, with A min and E min 
being their relative.

Functional harmony aims to study the functioning of these functions and 
establish rules and concepts for their correct use within the music. By under-
standing the functions, it is possible to harmonize songs coherently. Also, rules 
that, when respected, indicate the quality of the work (Roig-Francolí 2010; 
Terefenko 2014).
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Proposed Method for Automatic Musical Harmonization

The proposed method for this work is illustrated in Figure 1 and can be 
described in some steps: a database containing both melody and harmony of 
several songs in symbolic format is standardized in terms of tonality, note 
duration and chord types. Then, input notes and output chords are encoded 
into numeric vectors. These vectors are used for training ANNs models, which 
will be able to generate conditioned harmonies by the melodies at the 
entrance, a chord by measure1 (Roig-Francolí 2010). These ANNs models 
then will be used to create ensembles. The resulting harmonies will be eval-
uated quantitatively compared to the original harmonies.

The following will discuss how musical data processing is done, the descrip-
tion of the ANNs and ensembles used, and the measures used for quantitative 
evaluation.

Data Processing

To carry out the training of the ANNs, data are needed. We use the CSV 
Leadsheet Database (Lim, Rhyu, and Lee 2017). It contains songs of rock, pop, 
country, jazz, folk, R&B, children’s songs, etc., in CSV format, all in major key. 
Each row of the CSV is a musical event, an occurrence of a new note or chord. 
Every song file has the following features: 

● Time: the song’s time signature at the moment;
● Measure: the musical measure where the event is located;
● Key fifths and key mode: details the song tonality;
● Chord root and chord type: what chord is being played, root note and type 

(major, minor, dominant, among others);
● Note root and note octave: what note is being played and the octave it is 

located;
● Note duration: how long the note should be executed, considering the 

whole note with a value equal to 16.

More processing phases are necessary to use this data for the training of 
ANNs. First, the songs need to be standardized, and then, information needs 
to be encoded to be understood by the models.

Standardization is an important step because the songs in the database have a 
great diversity of tonalities, rhythms and harmonies, as is their nature. 
Analyzing music considering all this diversity would be a complex and possibly 
impractical task, therefore standardization takes place at the following levels:

● Tonality: to keep information consistent, the songs are all transposed into 
a common tone. In this case, all the songs were transposed to C major 

e2185849-846 L. F. P. COSTA ET AL.



tone, which gives higher confidence about which notes to expect and 
defines a common set of diatonic chords;

● Note duration: in that database, the duration of each note follows a 
numerical pattern independent of the metric or time signature2 (Roig- 
Francolí 2010). However, the sum of notes durations of a measure will 
also be different for different time signatures, which requires normal-
ization. Therefore, the length of each note can be multiplied by the inverse 
of the song’s time signature (Costa et al. 2022). In this way, all measures 
will have the same total duration;

● Chord types: one must consider the vast amount of chords that the 
chaining of musical notes can form as a problem. To simplify the possible 
system responses, only major and minor triads were considered, resulting 
in 24 chord classes.

Following these steps, there is a standardized tone, rhythm, and harmony 
database. The encoding of both notes and chords is done using the one-hot 
method. In this sense, a vector nnote is used to represent a musical note. This 
vector contains 12 elements representing each note of the chromatic scale plus 
one position for pauses. Thus, the note D# could be written as (1): 

nD# ¼ ½ 0 0 0 1 0 0 0 0 0 0 0 0 �: (1) 

Likewise, the representation of a chord takes a vector cchord of 24 positions, 
12 for major chords and 12 for minor chords, interspersed with each other, for 
example, C maj, C minor, C# maj, C# minor, D maj, and so on. In that way, 
D maj chord is represented as (2): 

cD maj ¼ ½ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �: (2) 

Considering that the analysis takes place by musical measure, a chord and a 
variable number of notes and rests are used for one measure. For a given 
measure, consider that three musical notes are played in sequence: D, F, and C. 
The encoding of each note would result in the following matrix NNPM�12, 
where NPM stands for Notes Per Measure and 12 is the size of nnote (3): 

N3�12 ¼

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0

2

4

3

5 (3) 

To simplify this matrix into a single vector, the lines are added, which leads 
to the sum vector s (4): 

s ¼ ½ 1 0 1 0 0 1 0 0 0 0 0 0 �: (4) 

Thus, for each measure, there is cchord for the chord and s representing the 
notes.
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Artificial Neural Networks

For this work, the performance of five different architectures of ANNs is 
compared. They are described below.

Multilayer Perceptron (MLP)
Its main characteristic is the existence of at least one intermediate (hidden) 
layer of neurons between the input and output layers of the network, being 
conventional the use of only one or even two hidden layer (Haykin 2008). It is 
a versatile model with wide application in areas such as universal functions 
approximation, time series forecasting, systems optimization, and pattern 
recognition (Kachba et al. 2020; Siqueira and Luna 2019). In an MLP, neurons 
from different layers are densely connected, but there is no connection 
between those of the same layer. The training takes place in a supervised 
manner using the backpropagation algorithm (Haykin 2008). This paper 
employed two MLPs: one and two hidden layers.

Radial Basis Function Networks (RBF)
Local learning networks like the RBF usually consist of three layers, the input 
layer consisting only of source nodes to connect the data to the network. The 
hidden layer does not calculate weights with the input layer and uses nonlinear 
radial-based activation functions like the Gaussian. The training of this layer is 
performed using clustering algorithms, such as the K-Means. Finally, the 
output layer presents weights between the hidden layer; being these weights 
adjusted using backpropagation or the Moore-Penrose Pseudo-Inverse 
(MPPI) operation (Haykin 2008). It is possible to use linear or nonlinear 
functions as activation functions of the output neurons (Siqueira and Luna  
2019). The sequential use of nonlinear and linear transformations takes 
advantage of the fact that, for a classification problem, increasing the informa-
tion space dimension gives a greater probability of finding a linear separation 
(Haykin 2008). This finding is a desirable attribute since, for the problem of 
this paper, the number of classes is relatively large.

Extreme Learning Machine (ELM)
The great advantage of the ELMs when compared to the traditional MLP is its 
fast learning process, and good generalization performance with the universal 
approximation capability (de Souza Tadano, Siqueira, and Alves 2016; 
Siqueira et al. 2012b). It is a feedfoward architecture and only one hidden 
layer, in which the weights are not adjusted; that is, it has fixed parameters. 
Thus, during the training phase, there is no manipulation of the cost function, 
which is summarized to find the best output layer weights. This task can be 
accomplished with a linear combiner, which can be done by using MPPI 
operation (Huang, Zhu, and Siew 2006; Siqueira et al. 2020). Furthermore, 
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the multitude of musical note arrangements for a given chord requires a model 
with good generalization capabilities, making it enjoyable to use this network 
model (Tadano et al. 2021).

Echo State Network (ESN)
Unlike the previous ones, this is a Recurrent Neural Network (RNN). That is, 
present feedback loops of information, presenting an intrinsic memory cap-
ability (Ribeiro, Reynoso-Meza, and Siqueira 2020). A three-layer structure is 
also considered, with a source input layer and a linear combiner based on the 
MPPI operation as output. The hidden layer is referred to as dynamic reservoir 
and contains sparsely interconnected neurons with fixed weights (Jaeger  
2010). It has similarities with ELM since the learning process only modifies 
the weights for the output layer, being efficient due to the fast convergence 
(Siqueira et al. 2012a). The presence of memory can be attractive because the 
choice of chord sequences depends not only on the notes played in some 
measures but also on the context in which they are inserted, that is, on the 
notes and chords previously played in the song.

Long Short-Term Memory (LSTM)
As the ESN case, LSTM is a type of RNN with extended memory capacity. That 
is, compared to a conventional RNN, LSTM can “remember” information in 
arbitrary values of distance from the starting point, which is the advantage of 
LSTM (Hochreiter and Schmidhuber 1997). This network has a chain struc-
ture that contains four neural networks and different memory blocks called 
cells, where information is retained (Hochreiter and Schmidhuber 1996). 
Memory manipulation is done by three “gates” (Yao et al. 2015): Forget 
Gate, which removes useless information; Input Gate, which controls the 
addition of information; and Output Gate, responsible for extracting useful 
information from the current state of the cell and presenting it as network 
output. Its use can be justified similarly to the ESN, adding comparability 
between tests.

Ensembles

After the training phase, we can create ensembles of ANNs and compare their 
results. The ensemble is a combination methodology of multiple already 
trained models to improve the final system response (Wichard and 
Ogorzalek 2004). This combination is because different methods produce 
different behaviors with the same inputs. A model can present better responses 
for some input, while another works better for a different kind. A combination 
approach is then applied to generate the final ensemble output, for example, 
average, voting, or another neural network (Neto et al. 2021; Piotrowski 
Pawełand Baczyński et al. 2022).

APPLIED ARTIFICIAL INTELLIGENCE e2185849-849



There is still the necessity of simultaneously presenting diversity and having 
accurate predictions from each model. The purpose of an ensemble is to 
improve already existing good results. Ensembles have been used to solve 
many problems (Belotti et al. 2020; ?). This work tested three different 
ensembles: considering all ANNs, the best three, and the best two considering 
the error return.

Quantitative Evaluation

As this is a multiclassification problem, considering inputs and outputs as one- 
hot encoded vectors, the most indicated and commonly used training metric 
loss is the Categorical Cross-Entropy Loss, also called Softmax Loss (Gómez  
2018).

To assess the efficiency of each model, classically, accuracy would be 
applied. However, as the database used in the training process is composed 
of actual songs, we can expect it to be unbalanced due to the musical nature of 
using some notes and chords more than others. Therefore, care must be taken 
when using accuracy, as it is a problematic measure when dealing with an 
unbalanced database because the impact of less represented but more critical 
examples is reduced compared to the majority class (Branco, Torgo, and 
Ribeiro 2015).

Other measures can be used to assess the quality of results, which take into 
account the issue of unbalance, such as Macro F1-score (F1M) (Powers 2007), 
Matthews Correlation Coefficient (MCC) (Cramer 1962) and Cohen’s Kappa 
Coefficient (κ) (Cohen 1960).

Experimental Results

The results of the applied proposed methodology for automatic musical 
harmonization are described. In all, 2250 songs were standardized and filtered. 
For computational performance and availability reasons, only 20% of the total 
data was used, with 91,179 notes and 18,235 chords and measures, as only one 
chord per measure is being considered. Figure 2 shows the percentage of the 
total amount of notes and major and minor chords after the database proces-
sing phase.

The following models were evaluated: one-layer MLP (MLP1), two-layers 
MLP (MLP2), RBF, ESN, LSTM, and ELM. From those, three ensemble 

Figure 1. Block diagram showing the proposed methodology, step by step, described in order.
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models were also evaluated using voting as combination approach, consider-
ing all six networks (ENS6), only the top three (ENS3) and two (ENS2) best 
regarding loss results. To carry out the network training and testing stages, 
60% of the data were separated for training, 20% for validation, and 20% for 
testing.

Tests were performed considering the variation in the number of neurons in 
the hidden layer, passing the values 64, 128, and 256. For the models that need 
training epochs (MLP1, MLP2, RBF and LSTM), the selected stopping criter-
ion was a total number of epochs equal to 200, using Stochastic Gradient 
Descent with η ¼ 0:001 as the optimizer, saving the best weights when the 
minimum validation error value is reached for Categorical Cross-Entropy as a 
function of losses. ELM and ESN were implemented as described in 
Subsection 3.2.

To analyze the results, each model was run 30 times. In Table 1 it is possible 
to observe the average results of loss, accuracy, F1M, MCC, and κ of each model 
for the number of neurons that brought the best performance, considering the 
test set. Therefore, ENS3 is the ensemble of MLP1, MLP2, and RBF, and ESN2 
is made of MLP1 and MLP2. On average, the models had a F1M of 13.88%, an 
MCC of 32.43%, and a κ of 31.06%. As we are dealing with an unbalanced 
database, accuracy as an evaluation measure can bring wrong conclusions 
about the results, but for reasons of comparison and standard, they are also 
included.

Figure 2. Percentage of notes, major and minor chords present in 20% of the database, for each of 
the 12 possible notes considered in Western Tonal Music.
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Friedman Friedman (1937) test was applied to the results for the 30 runs of 
each model regarding the loss in the test set. The p-values achieved were equal 
to 9:52� 10� 44. Therefore, it is possible to assume that there are significant 
changes in the results for different architectures.

Considering the metrics, loss, F1M, MCC, and κ each model was checked an 
overall performance (Table 2) for each result, using the Borda count method. 
The first place was awarded 8 points, the second 7, until the last place received 
1 point. For loss, the first place is the smallest value, and for all other metrics, 
the first place is the biggest value.

Next, a more in-depth analysis of the response of each model is made. An 
example of melody and its model-generated harmony, as well as the original 
harmony, is shown in Figure 3 for the first eight measures of the song America 
by Stephen Sondheim and Leonard Bernstein, composed for the musical West 
Side Story from 1957. The song has a rhythmic construction of hemiola,3 a 
repetitive melody, and simple harmony (Miller 2006). An interesting point is 
between measures 5 and 7, where there is a rapid modulation4 (Roig-Francolí  
2010) passing through the key of C minor, making this an appropriate example 
to perceive the ability of generalization for the chosen models.

Figure 3. Melody of the song America represented with (a) score notation and (b) original and 
generated harmony by each evaluated model.
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An efficient way to analyze the response of the selected model (MLP1) is to 
look at its confusion matrix, which can be seen in Figure 4.

Further discussion about the presented results are made in the following Subsection 4.1.

Discussion

It is interesting to note in Figure 2 a more significant presence of notes C, D, E, 
G, and A, corresponding to 77.03% of the total notes. These notes are part of a 
musical scale called “pentatonic,” widely used in styles like blues and rock, 
evidently present in several other styles due to its functionality.

The notes F and B appear in second place, completing the C major scale, as 
expected after the tonal transposition phase. Nevertheless, notes with acci-
dents (#) are also present, demonstrating the plurality of the database used. 
Similarly, basic function chords (C maj, F maj, and G maj) and primary 
relatives (D min and A min) are the most substantial presence in the pieces 
of music, leading to the belief that the harmony employed must be relatively 

Figure 4. Normalized confusion matrix for classifying chords using the MLP1 model.
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simple for most songs, although all types of chords exist in some proportion, 
for the 24 types considered. Furthermore, the fact that the database is unba-
lanced is still notorious.

Considering the results in Tables 1 and 2, in general, MLP1 obtained 
the best performance result, with the best loss and κ and second-best 
F1M. MLP2 and ELM almost tied for second, despite ELM’s loss being 
the second-worst of all models. In the sequence, the three ensembles, 
with ENS2 and ENS6 tied, and ENS3 with a difference of only one 
point. The fact that a singular model was able to return better results is 
relevant, even though the ensemble methods are the union of the best 
estimators.

Now, analyzing the harmonization shown in Figure 3, for the first four 
measures, all models responded with the same chords as the original harmony, 
probably because the melody notes are very indicative of the appropriate 
chord. For example, in measures 2 and 4, the notes together are the same 
that make up the F maj (F, A, and C) and G maj (G, B, and D) chords, 
respectively. The same goes for the last measure analyzed, where the notes are 
the same as the C maj chord (C, E, and G).

Table 1. Average loss and accuracy, F1M, MCC and κ percentage for each model tested. Neurons are 
shown in parentheses.

Experiment Loss ACC (%) F1%) MCC (%) κ (%)

MLP1 (256) 1.7356 46.89 15.69 33.19 32.13

MLP2 (64) 1.7376 46.99 14.04 33.20 32.06
RBF (256) 1.7699 46.33 10.17 31.97 30.61
ELM (256) 2.1070 47.06 16.37 33.21 31.90

ESN (256) 2.1931 44.64 9.31 29.31 27.31
LSTM (64) 1.8485 45.65 15.59 32.12 31.02

ENS6 2.0076 46.94 15.55 33.08 31.56
ENS3 1.7743 47.02 14.04 33.05 31.63

ENS2 1.7676 46.75 14.19 32.71 31.29

Table 2. Overall ranking using Borda count method considering different metrics and algorithm 
results.

Experiment Loss F1 MCC κ Total

MLP1 9 8 7 9 33

MLP2 8 4 8 8 28
ELM 2 9 9 7 27

ENS2 7 5 4 4 20
ENS6 3 6 6 5 20

ENS3 5 3 5 6 19
LSTM 4 7 3 3 17

RBF 6 2 2 2 12

ESN 1 1 1 1 4
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It is different when observing the interval from 5 to 7: RBF made the worst 
choices, proving to be unable to identify the modulation; ESN similarly, except 
for a possibly more appropriate choice for measure 5, that has the A# note 
present; The LSTM chose the same chord as the original for measure 6, and the 
minor relative for measure 7, an interesting behavior, but a not-so-good choice 
for measure 5, as B may have only one note that correctly harmonize the 
measure (D#); MLPs, ELM and all ensembles made the same choices for 
measures 6 and 7, equal to the original, but it is clear that there was difficulty in 
finding a chord for measure 5. One reason for this could be that the original 
harmony uses a chord that is not considered, C min7 and only two notes are 
being played in this measure, A# and D#. The most suitable choice would be 
D# maj, since the notes in that measure are its root and fifth, respectively, the 
chosen one by MLP1, ELM, and all ensembles.

The previous analysis allows us to infer differences between the perfor-
mance and interpretation of each model. In addition, based on the data 
presented, the one-layer MLP model is chosen as the most appropriate, with 
its best execution reaching a loss of 1.7356, and 15.90% F1M, 33.00% MCC, and 
31.84% κ. This κ value allows us to state that this is a reasonable result 
(Artstein and Poesio 2008).

The formation of a diagonal line in the matrix of Figure 4 is slightly 
noticeable, a desirable characteristic since it means correct class assignments. 
This characteristic is most noticeable at specific points, as in the chords of C 
maj, F maj, and G maj, which are the main tonic functions. In addition, some 
columns of predicted classes stand out: C maj, F maj, and G maj. These 
columns lead us to understand that the model was able to comprehend the 
role that these chords play in musical harmony and can generalize the results, 
using them in a simplified way.

Conclusion

Different neural and ensemble models were proposed, tested, and evaluated 
for the task of automatic musical harmonization based on melodies.

The final harmonizing system was the MLP model with one hidden layer and 
256 neurons, a model widely used in literature. It proved to be a reasonable 
nonlinear mapper in this field as well. The accuracy of the best model among 30 
rounds reached 46.79%, a considerable result considering the results found in 
the literature for more complex models, and compared to a random guess. Keep 
in mind that 24 chord classes with uniform distribution would have a 4.17% 
chance of selection. The results generally show that the system has a simplifying 
capacity since harmony rules were not disregarded for the results generated.

For future work, we intend to explore models that can achieve higher 
classification accuracy values and use other means of quantifying the results 
to consider more rules of music theory, such as considering harmonic and 
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relative functions. Another possibility is to interview listeners about the quality 
of the results, if they can differentiate if the system harmonized a piece of 
music or not, or ask music experts to evaluate the harmonizations, achieving a 
more subjective evaluation. Also, carry out a study on other ways of represent-
ing the input data since simplification in a sum vector sacrifices the order in 
which the notes are played and their duration, potentially compromising the 
results.

Notes

1. Division of a piece of music into a time series.
2. Grouping of values with musical meaning, for rhythmic determination.
3. Alternating rhythm between binary and tertiary metrics.
4. Provisional character change of tone.
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