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Abstract
This paper reports a highly sensitive piezoelectric microelectromechanical systems (MEMS)
resonant microphone array (RMA) for detection and classification of wheezing in lung sounds.
The RMA is composed of eight width-stepped cantilever resonant microphones with
Mel-distributed resonance frequencies from 230 to 630 Hz, the main frequency range of
wheezing. At the resonance frequencies, the unamplified sensitivities of the microphones in the
RMA are between 86 and 265 mV Pa−1, while the signal-to-noise ratios (SNRs) for 1 Pa sound
pressure are between 86.6 and 98.0 dBA. Over 200–650 Hz, the unamplified sensitivities are
between 35 and 265 mV Pa−1, while the SNRs are between 79 and 98 dBA. Wheezing feature
in lung sounds recorded by the RMA is more distinguishable than that recorded by a reference
microphone with traditional flat sensitivity, and thus, the automatic classification accuracy of
wheezing is higher with the lung sounds recorded by the RMA than with those by the reference
microphone, when tested with deep learning algorithms on computer or with simple machine
learning algorithms on low-power wireless chip set for wearable applications.

Keywords: piezoelectric MEMS microphone, resonant microphone array, acoustic transducer,
lung sounds classification, wearable health sensor

(Some figures may appear in colour only in the online journal)

1. Introduction

About 7.4% of the world population suffer from chronic res-
piratory diseases, among which asthma and chronic obstruct-
ive pulmonary disease (COPD) are most common [1, 2]. As
many as 262 million people are affected by asthma and more
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than 1200 individuals die from asthma every single day on
average [3]. Wheezing due to narrowing airway of the lung
caused by asthma is a common symptom and can be sensed by
a stethoscope [4–7]. Thus, lung sound monitoring can be very
helpful for asthma patients, especially children, who cannot
carry out the well-established pulmonary function tests accur-
ately due to their inability to understand or follow the instruc-
tion on how to force air out of their lungs. Lung sounds can
be monitored with electronic stethoscopes, but not for more
than 1 h continuously due to their bulkiness and heaviness
(stemming from the acoustic coupler needed to amplify faint
lung sound) [8–10]. Also, a weak wheezing may be missed
because of a low signal-to-noise ratio (SNR) of the micro-
phone (used in the stethoscope). The published sensitivities
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of commercial MEMS condenser microphones are between
5 (TDK INMP411) [11] and 25.12 mV Pa−1 (TDK ICS-
40730) [12], which depends on the applied bias voltage (typ-
ically about 10 VDC). Their SNRs for 1 Pa sound pressure are
between 59 (Knowles SPH2430HR5H-B) [13] and 74 dBA
(TDK ICS-40730) [12]. AMEMS condenser microphone with
22.39 mV Pa−1 sensitivity and 73 dBA SNR over 22 Hz–
22 kHz has been reported, but with 200 VDC applied bias
voltage [14]. In the case of piezoelectric MEMSmicrophones,
a bias voltage is not needed, and an unamplified sensitivity of
38mV Pa−1 over 100–700 Hzwith the fundamental resonance
at 890 Hz has been reported [15].

Microphone sensitivity is enhanced at the mechanical res-
onance of a microphone diaphragm when the resonance’s
quality factor (Q) is greater than 1, andMEMS resonantmicro-
phones have been reported [16–23]. An array of such resonant
microphones can mimic the human auditory system based on
resonances of 30 000 cochlear hairs at the basilar membrane
[24, 25]. A higher Q means a higher sensitivity at the reson-
ance frequency, but over a narrower bandwidth. Thus, a dia-
phragm with multiple resonances or a resonant microphone
array (RMA) consisting of multiple resonant microphones
covering different frequencies is needed to cover a wide fre-
quency range. A piezoelectric RMAwith unamplified sensitiv-
ities of the resonant microphones being 34.6–131.4 mV Pa−1

at their resonance frequencies between 169 and 662 Hz was
reported for lung sound monitoring [21]. However, the noise
floor and SNR of the RMA was not reported in [21].

This paper presents the design, fabrication, characteriza-
tion, and application of a highly sensitive piezoelectric MEMS
RMA for detection and automatic classification of wheezing in
lung sounds. Measured unamplified sensitivity and SNR of the
RMA are presented along with machine learning algorithms
developed and implemented on a computer and on a commer-
cial wireless chip set CYBLE-416045-02. Also presented are
measured classification accuracies and speeds (directly related
to energy consumption) for wheezing in lung sounds.

2. Design

Eight of the width-stepped Si cantilevers, with two narrow
beams supporting a rectangular plate, are used for the res-
onant microphones in the RMA (figure 1). The resonance
frequencies are Mel-spaced (denser at lower frequencies as
humans are capable of distinguishing lower frequencies bet-
ter) between 200 and 800 Hz (frequency range of wheezing).
More cantilevers can cover more frequencies with highly sens-
itive resonances, albeit at the cost of larger size for the RMA.
For the wheezing detection over 200–800 Hz, eight canti-
levers offer good trade-off between the performance and the
size. Piezoelectric thin film ZnO, which converts the canti-
lever bending stress (due to applied sound pressure) to voltage,
is placed only over the narrow support beams for maximum
average stress over a largest possible area. Electrical insulation
layer SiN encapsulates ZnO to prevent charge transfer between

Figure 1. Resonant microphone array (RMA) schematic for lung
sound classification with eight width-stepped cantilevers (top);
top-view (middle) and cross-sectional view (bottom) of each
width-stepped cantilever.

the top and bottom electrodes through ZnO for good sensitivity
at low frequencies, as the resistivity of ZnO (107Ω · cm) is rel-
atively low. The air gap between the cantilever and the Si base
is as narrow as 20 µm to minimize acoustic pressure leakage
at low frequencies. The sizes of the cantilever resonant micro-
phones are 3.6–2.3 mm (table 1), while the thickness of the Si
cantilever is 5 µm (table 2).

The fundamental resonance frequency of a width-stepped
cantilever can be calculated through a beam free vibration
equation for the cantilever displacements W1 (x) and W2 (x)
(equation (1)) for the two parts having different widths{

d4W1(x)
dx4 −β4

1W1 (x) = 0, 0⩽ x⩽ ln
d4W2(x)
dx4 −β4

2W2 (x) = 0, ln < x⩽ l
(1)

where β4
1 =

m1ω
2

E1I1
andβ4

2 =
m2ω

2

E2I2
, with m1 andm2 being the

mass per unit length, E1 and E2 being the Young’s modulus,

2
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Table 1. Resonance frequencies and sizes of the resonant microphones in the RMA in figure 1.

Outline (mm) Narrow part (mm)

No. Resonance frequency f Length l Width c Length ln Width cn

1 253 Hz 3.6 2.3 0.9 0.13
2 308 Hz 3.4 2.3 0.8 0.14
3 367 Hz 3.2 2.2 0.7 0.15
4 429 Hz 2.6 2.6 0.8 0.115
5 495 Hz 2.6 2.6 0.7 0.15
6 565 Hz 2.5 2.5 0.7 0.17
7 639 Hz 2.4 2.4 0.75 0.18
8 717 Hz 2.3 2.3 0.7 0.185

Table 2. The layer thicknesses of a width-stepped cantilever
resonant microphone in figure 1.

Layer # Name Thickness h

1 Si device layer 5 µm
2 Al ground electrode 0.2 µm
3 SiN insulator 0.1 µm
4 Piezoelectric ZnO 0.5 µm
5 SiN insulator 0.1 µm
6 Al top electrode 0.2 µm

and I1 and I2 being the moment of inertia, at part 1 and 2,
respectively. Once β1 and β2 are solved through equation (1)
[26], the resonance frequency f can be obtained as follows

f =
β2
1

2π

√
E1I1
m1

=
β2
2

2π

√
E2I2
m2

. (2)

Compared to a rectangular cantilever with one fixed and
three free ends (figure 2(a)), the bending-induced stress due
to an applied pressure and the cantilever size for a same fun-
damental frequency are higher and smaller, respectively, for a
width-stepped cantilever (figures 2–4). Thus, a higher unamp-
lified sensitivity is expected with a piezoelectric microphone
built on a width-stepped cantilever than that on a standard
cantilever, as a piezoelectric film ZnO is placed only on the
support beams of a width-stepped cantilever (figure 1). The
voltage V produced across the ZnO thickness due to average
stress σ induced by bending caused by an applied pressure is

V=
σ× d31 ×A

C
=

σ× d31 ×A
ϵ0ϵrA
t

=
σ× d31 × t

ϵ0ϵr
(3)

where C, A and t are the ZnO’s capacitance, area, and thick-
ness, respectively, while d31 and ϵr are the piezoelectric coeffi-
cient and relative permittivity of the piezoelectric film, respect-
ively, with ϵ0 being vacuum permittivity.

The resonance frequency of a width-stepped cantilever is
not only dependent on the size of the whole cantilever but also
on the size of the narrow segment as shown in table 1. There-
fore, there is more design flexibility for the width-stepped can-
tilever. To make the RMA illustrated in figure 1 smaller, the

Figure 2. Finite-element-analysis (FEA) simulated stresses of
5 µm thick cantilevers having the same fundamental resonant
frequency of 436 Hz under 1 Pa pressure; (a) a standard cantilever of
4.35× 4.35 mm2 showing 11 MPa average stress near the fixed end
and (b) a width-stepped cantilever of 2.6 × 2.6 mm2 with 57 MPa
average stress near the fixed ends of the two supporting beams.

Figure 3. Calculated lengths of a width-stepped cantilever (table 1)
and a standard cantilever vs fundamental resonance frequency.

width-stepped cantilever #4 (having the fundamental reson-
ance frequency of 429 Hz) in the array is designed to have the
same length l as #5 (having the fundamental resonance fre-
quency of 495 Hz) but with longer and narrower Narrow Part
(table 1). This is why the curves of the length, average stress,
and 2nd resonance frequency are not smooth for the width-
stepped cantilever at #4 in figures 3, 4 and 6, respectively.

3
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Figure 4. Calculated average stresses near the fixed ends for the
width-stepped cantilever (table 1) and standard cantilever under 1 Pa
sound pressure vs fundamental resonance frequency.

Figure 5. Simulated vibrations of width-stepped cantilevers at (a)
and (b) the fundamental (436 Hz) and second-harmonic (949 Hz)
resonance frequencies, respectively, with one narrow support beam
in the center, (c) and (d) the fundamental (436 Hz) and
second-harmonic (2049 Hz) resonance frequencies, respectively,
with two narrow support beams at the two ends. The width of the
one narrow beam in the center is twice that of the narrow beam at
the end, while the length is the same. The total width and length of
the cantilevers are the same to be 2.6 × 2.6 mm2.

A width-stepped cantilever with one narrow support beam
in the center (figure 5(a)) has the 2nd harmonic resonance
frequency close to the fundamental resonance frequency
(figures 5(b) and 6), which may result in the 2nd resonance
overlapping the fundamental resonance of another cantilever
in an RMA. As we would like to utilize the fundamental res-
onance of each resonant microphone in an RMA and avoid any
interference of the harmonics, a width-stepped cantilever with
two narrow support beams (figures 5(c), (d) and 6) is designed
for each resonant microphone in the RMA.

Figure 6. Simulated the 2nd resonance frequencies of the two types
of width-stepped cantilevers vs fundamental resonance frequency.
For each fundamental resonance frequency, the total length and
width of the two types of the cantilevers are the same. The width of
the one narrow beam in the center is twice of the beam width at the
ends, while the length is the same.

Figure 7. Brief fabrication process of the RMA.

3. Fabrication

The RMA is fabricated on a silicon-on-insulator wafer with
5 µm thick Si device layer (figure 7(a)). First, 0.5 µm thick
low-stress SiN is deposited with low pressure chemical vapor
deposition and patterned (figure 7(b)) for etch mask during
KOH etching the Si (figure 7(c)). After etching the buried SiO2

in buffered HF, followed by etching of the top SiN in react-
ive ion etching (figure 7(d)), we sputter-deposit and pattern

4
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Figure 8. Photos of a fabricated RMA with eight width-stepped
cantilever resonant microphones.

Table 3. Measured residual stresses of thin films in the cantilever.

Film Stress (MPa)

Sputter-deposited ZnO −350
Sputter-deposited Al −30
PECVD SiN −50

Table 4. Measured paralleled capacitance and resistance of the
resonant microphones in the RMA.

Microphone # Capacitance Resistance

1 23.9 pF >10 GΩ
2 25.4 pF >10 GΩ
3 23.5 pF >10 GΩ
4 24 pF >10 GΩ
5 26.3 pF >10 GΩ
6 27.6 pF >10 GΩ
7 28.5 pF >10 GΩ
8 27.2 pF >10 GΩ

Al and piezoelectric ZnO, deposit SiN with plasma-enhanced
chemical vapor deposition (PECVD) and pattern SiN, and
then sputter-deposit and pattern Al (figure 7(e)). After dicing
RMAs from the wafer, the cantilevers are released on each
chip through etching Si on the diaphragms of each RMA
(figure 7(f)).

Long cantilevers (particularly, #1, #2 and #3) in the fabric-
ated RMA (figure 8) show substantial downward warpage due
to relatively large compressive residual stress in the ZnO film
(table 3). The residual stresses of the thin films in table 3 are
the average values calculated through measuring the curvature
of a 3′′ wafer by a profilometer DektakXT before and after the
film deposition.

4. Characterization

4.1. Unamplified sensitivity

The measured capacitances and resistances of the resonant
microphones (table 4) are close to the designed values.

Figure 9. Top-side (a) and bottom-side (b) photos of the RMA on a
printed circuit board (PCB) with op-amp based circuits.

The fabricated RMA is placed over a slot (for sound
input) in a printed circuit board (PCB) (figure 9) and voltage
amplifiers based on LTC6244 op amp with input resist-
ance and capacitance of 1012 Ω and 2.1 pF, respectively
(figure 10). The signal from each resonant microphone of
the RMA is magnified and recorded separately without con-
necting to each other. The measured sensitivity from the
amplifier output is divided by the amplification factor of
101 for unamplified sensitivity. A bias resistor of 1 GΩ
(figure 10) is used for DC-biasing the op amp without
affecting the low frequency response of the piezoelectric
microphone.

The PCB is mounted to a cover plate (with a slot for sound
input) of a metal box which blocks electromagnetic interfer-
ence (figure 11). The outputs of the microphone amplifiers are
connected to a data acquisition system (ROGA Plug.n.DAQ).
The sound input to the resonant microphone is calibrated with
a reference measurement microphone (GRAS 40AO, noise
floor 25 dBA, sensitivity 12.5 mV Pa−1, bandwidth 3.15 Hz–
20 kHz) with both the RMA and the reference microphone

5
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Figure 10. Schematic of non-inverting op-amp-based amplification
circuit for each piezoelectric resonant microphone in the RMA.

Figure 11. Photos of (a) the RMA on a PCB in a metal box and
(b) the packaged RMA in an anechoic chamber.

Figure 12. Photo of the microphone sensitivity measurement setup
with a reference microphone GRAS 40AO across a plane wave tube
(PWT), the cross section of which is 25.4 × 25.4 mm2, in an
anechoic chamber.

being placed next to each other in a plane wave tube (PWT)
in an anechoic chamber (figure 12). A loudspeaker placed at
one end of the PWT delivers same sound pressure to the RMA
and the reference microphone which are located near to each
other.

Figure 13. Measured unamplified sensitivities of the eight resonant
microphones in the RMA. It is above 35 mV Pa−1 for the whole
RMA between 200 Hz and 650 Hz as indicated by the black dash
line.

Figure 14. Measured quality factors of the resonant microphones in
the RMA.

The measured unamplified sensitivities of the eight reson-
ant microphones in the RMA are as high as 265–86 mV Pa−1

at the eight resonance frequencies (figure 13). The sensitivity
of the RMA at all frequencies between 200 and 650 Hz is
above 35 mV Pa−1 (above the dash line in figure 13). The
measured resonance frequencies are lower than the designed
ones (table 1), mainly because the Si cantilevers turn out
to be 4 µm thick, rather than 5 µm thick. The sensitivity
curve of each resonant microphone shows ripples near the
resonance frequencies of the other resonant microphones due
to electrical crosstalk among the resonant microphones in
the RMA. This phenomenon can be reduced through better
grounding of the microphones and amplification circuits. The
quality factors (based on resonant frequency f 0 divided by the
−3 dB bandwidth in figure 13) of the resonant microphones
are between 13.5 and 22 (figure 14). The damping coefficient
of a smaller resonant microphone is usually smaller because
the damping is mainly from the air surrounding the cantilever.

6
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Figure 15. Photo of noise measurement setup with the RMA in a
double metal box on an optical table for isolation from
electromagnetic noise, acoustic noise, and mechanical vibration.
The top of the metal box is covered during noise measurement.

Consequently, the quality factor is usually higher for the reson-
ant microphones with higher resonance frequencies and smal-
ler size. Higher quality factor leads to higher unamplified
sensitivity and lower noise floor of a resonant microphone
while the bandwidth (over which the sensitivity is enhanced
by the resonance) is narrower. Therefore, we need proper
quality factors for the resonant microphones in the RMA
so that the RMA has both high sensitivities to detect weak
sound and enough bandwidth to cover the frequency range of
interest.

4.2. Noise floor and SNR

To measure the noise without any electromagnetic or sound
interference noise, the RMA and amplification circuit are
placed in a double metal box with battery (figure 15).

With the double metal box on a vibration isolation table,
the output of the amplification circuit for each resonant micro-
phone in the RMA is divided by the amplification (101) for
input-referred noise of each resonant microphone and its amp-
lifier. The measured input-referred root-mean-square (RMS)
noise over 20 Hz–20 kHz observation bandwidth is 8–10 and
3–4 µV before and after A-weighting, respectively. The noise
floor in pressure is obtained by dividing the input-referred
RMS noise voltage by the unamplified sensitivity, while
the noise floor in dB is 20 log (noise-floor-in-Pa/reference-
pressure) where the reference pressure is 2× 10−5 Pa. And the
SNR for 1 Pa sound pressure input is obtained by deducting the
noise floor in dB from 94 dB, as 1 Pa sound pressure is 94 dB
(= 20log(1/(2 × 10−5))). The measured SNRs of the reson-
ant microphones at their resonances for 1 Pa sound pressure
are 89.0–80.6 dB before A-weighting and 98.0–86.6 dBA after
A-weighting (figure 16). Over all the frequencies between 200
and 650 Hz where wheezing in lung sounds is prominent, the
SNR are 89.0–73.0 dB beforeA-weighting and 98.0–79.0 dBA
after A-weighting (above the black dash line in figure 16). The
spectral noise density of all resonant microphones in the RMA
without A-weighting are lower than 1µV/

√
Hz (figure 17)

with the 1/f noise of the op amp dominating, indicating that

Figure 16. Measured signal-to-noise ratios (SNRs) of the resonant
microphones in the RMA at 1 Pa sound pressure vs frequency
(a) without A-weighting and (b) with A-weighting. The SNR of the
whole array is above the black dash line.

the external sound and vibration are isolated very well during
the noise measurement.

5. Lung sounds detection and classification

Well-annotated lung sounds from International Conference
on Biomedical and Health Informatics (ICBHI) Respiratory
SoundDatabase [27] are played by a loudspeaker and recorded
with the RMA and the reference microphone in a set-up shown
in figure 12. The recordings are analyzed in time and frequency
domains, and processed through deep learning and machine
learning algorithms for automatic classification of wheezing
in the lung sounds, to show the advantages of the RMA over a
standard microphone.

5.1. Recorded signals in time and frequency domain

Wheezing in lung sounds is easily recognizable in the record-
ing by the RMA in time (figure 18(a)) and spectrogram

7
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Figure 17. Measured noise spectral density of the resonant
microphones in the RMA without A-weighting.

Figure 18. Waveform of a lung sound with strong wheezing
recorded by (a) the resonant microphone #7 in the RMA (which
records distinguishable wheezing) and (b) the reference microphone
GRAS 40AO (which does not record distinguishable wheezing).

(figure 19(a)), while the recording by the reference micro-
phone shows little wheezing feature in time (figure 18(b))
and a weak feature in the spectrogram (figure 19(b)). A weak
wheezing is not visible in the time recordings by the RMA
and the reference microphone (figures 20(a) and 21(a)). Such a
weak wheezing, though, can still be distinguished in the spec-
trogram of the recording by the RMA (figure 20(b)), but is
not distinguishable in the spectrogram of the recording by the
reference microphone (figure 21(b)). Thus, wheezing in the
lung sounds can be recognized better in both time and fre-
quency domain by the RMA than that by the conventional
microphone.

5.2. Automatic wheeze classification with deep learning

Fifty lung sounds from the ICBHI database [27], with twenty-
five of them having wheezing, are played by a loudspeaker

Figure 19. Spectrogram of a lung sound with strong wheezing
recorded by (a) the resonant microphone #7 in the RMA (wheezing
is distinguishable) and (b) the reference microphone (wheezing is
distinguishable but not as obvious as the one recorded by the
resonant microphone).

Figure 20. Waveform (a) and spectrogram (b) of a lung sound with
weak wheezing recorded by the resonant microphone #6 in the
RMA vs time; wheezing is not distinguishable in the waveform,
while wheezing is distinguishable in the spectrogram.

and recorded by the RMA and the reference microphone
(figure 12). The recordings are classified by deep learning
algorithms, and the classification accuracies are compared.

With temporal convolutional networks (TCNs) [28], the
recorded lung sounds in time domain are processed without
any pre-processing for the classification. Twelve-layer net-
works are used in TCN to extract a ten-dimensioned feature
vector for the classification. On the other hand, for convolu-
tional neural networks (CNNs), pre-extracted Mel-frequency
cepstral coefficients are used.

K-fold cross-validation is applied so that all the data can
be used for both training and test. The recordings are divided
into K (5 in this case) groups randomly. One group is used
for the test while the other groups are used for the training at

8
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Figure 21. Waveform (a) and spectrogram (b) of a lung sound with
weak wheezing recorded by the reference microphone; wheezing is
not distinguishable.

Figure 22. Wheezing automatic classification accuracy for lung
sounds recorded by the RMA and the reference microphone and
processed by two deep learning algorithms TCN and CNN.

each iteration until every group has been tested. The classific-
ation accuracy is the average accuracy of all the K iterations.
With K being 5, 40 recordings are used for the training, and
10 recordings are used for the test in each iteration, for a total
of 5 iterations. The classification accuracies of the lung sounds
recorded by the RMAwith both TCN and CNN are higher than
what are obtained with the reference microphone (figure 22).

5.3. Automatic classification with machine learning on a chip
set for wearable wireless communication

As deep learning algorithms cannot be implemented on a low
power chip set for wireless communication such as Infin-
eon CYBLE-416045-02 [29], which contains a microcontrol-
ler unit (MCU) and other components including antenna. We
have developed and tested machine learning algorithms on the
MCU (PSoC 63), which contains analog-to-digital converters,
central processing unit, memory and blue tooth low energy
transceiver (figure 23).

Each of the recordings is divided into 7650 pieces with each
piece being 40 ms long for feature extraction. Mel-Spectrum
features are extracted for classification as the frequency

Figure 23. Schematic of the setups for audio recordings (by the
RMA and the reference microphone) and processing with the
wireless chip set (for feature extraction, classification through
machine learning, and Bluetooth communication) to compare the
performances of the RMA (top) and the reference microphone
(bottom) for wheezing classification in lung sounds.

Figure 24. Spectral signature averaged per frame for lung sounds
with and without wheezing recorded. The shaded regions indicate
the standard deviation at each frequency. The power spectral density
(PSD) of the lung sounds with wheezing is higher than that without
wheezing especially between 300 and 600 Hz.

spectra of the lung sounds with and without wheezing are quite
different (figure 24). On the data recorded by the reference
microphone, fast Fourier transform (FFT) and digital filtering
are applied for the feature extraction (figure 25(b)). However,
with the data recorded by the RMA, the features at differ-
ent frequencies are obtained through calculating the energy at
each recording by individual resonant microphone in the RMA
with its unique capability of acoustically filtering the audio
signal (figure 25(a)). Thus, the feature extraction with the
RMA is much faster (more than ten times) than that with the
reference microphone as FFT is time consuming (figure 26).
Though the idea of calculating the energy from individual
channel of an RMA without FFT has been reported [30], the
stronger MCU in PSoC 63 and optimized algorithms have res-
ulted much faster signal processing.

Two machine models, Gaussian Naïve Bayes and support
vector machine, are developed for the classification based on
the extracted features. These classifiers are trained for single
frame prediction at each moment because temporal-variation
and multi-frame analyses require more memory and pro-
cessing speed from PSoC 63. The recorded data are split with
70% for training and 30% for testing. The training is imple-
mented on a desktop computer, and then the parameters of
the algorithms obtained from the training are transferred to
PSoC 63 for the test. We have measured the classification
accuracy which is equal to (tp+ tn)/(tp+ fp+ tn+ fn) and F1

9
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Figure 25. Block diagram illustrating the steps for the computing Mel-spectrogram features with (a) the eight-channel RMA and (b) the
conventional approach using a traditional microphone with a digital filter bank. The FFT and multiple digital triangular filtering in (b) is not
needed for (a).

Figure 26. Power consumption vs time for sequential steps of
automatic wheezing detection (a) with the reference microphone
and (b) with the RMA. The feature extraction process by the RMA
is ∼12 times faster and consumes 92% energy less than that by the
reference microphone.

score which is equal to 2PR/(P+R), with tp ≡ true posit-
ive, tn ≡ true negative, fp ≡ false positive, fn ≡ false negat-
ive, P≡ tp/(tp + fp) and R≡ tp/(tp + fn). Both the classifica-
tion accuracy and F1 score are better with the recordings with
RMA than with the reference microphone (figure 27).

6. Discussion

The unamplified sensitivities of the RMA (265–35 mV Pa−1)
over 200–650Hzwhere wheezing is prominent are higher than
other MEMS microphones reported (figure 28), albeit with a
larger size. The noise floor of the RMA also is lower than other

Figure 27. (a) Accuracies and (b) F1 scores of the classifications
based on Gaussian Naïve Bayes (GNB) and support vector machine
(SVM) algorithms for lung sounds recorded by the RMA and the
reference microphone.

reported MEMS microphones over 200–650 Hz (figure 29).
Thus, the minimum detectable wheezing signature in lung
sounds is better with the RMA. If a microphone is targeted
for a limited frequency range, an RMA with multiple reson-
ances over the frequency range is shown to offer unpreceden-
ted minimum detectable sound level. Although the sensitivity
and noise floor of the RMA is not flat, we did not find the effect
of this un-flatness on the lung sound classification.

10
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Figure 28. Comparison of the unamplified sensitivities of the
reported MEMS microphones vs frequency.

Figure 29. Comparison of the noise floors of the reported MEMS
microphones vs frequency.

Design innovation and optimization are important to make
the resonant microphones small and highly sensitive. The
width-stepped cantilever design with two narrow beams
supporting a rectangular plate is shown to be smaller and to
offer higher sensitivity than a standard cantilever (figures 2–4)
which has much less bending stiffness than a diaphragm with
its four edges clamped. The size can be reduced further with
a spiral structure or cantilever with serpentine support beams
[20, 21], which has exhibited less sensitivity than the current
design in this paper.

With the conventional approach, the number of digital fil-
ters can be increased to improve the classification accuracy
(figure 30), but at increased process time and power consump-
tion. The accuracy and F1 score with reference microphone
plus 40 filters are still lower than that with the proposed RMA.

Figure 30. (a) Accuracies and (b) F1 scores for automatic
classification of wheezing for lung sounds with the RMA without
digital filters and the reference microphone with 8 and 40 digital
filters.

Therefore, more advanced algorithms with poor quality data
from microphones with higher noise floor may not compete
with simple algorithms with high quality data from the RMA
with extremely low noise floor. Furthermore, the signal pro-
cessing is much faster (figure 26) with the RMA which inher-
ently filters sounds into specific bandwidths. Thus, the current
work shows the significant advantages of the RMA for real-
time lung sound monitoring and classification with a wearable
stethoscope.

7. Summary

An array of piezoelectric MEMS resonant microphones, with
novel width-stepped cantilever design with two narrow beams
supporting a rectangular plate, has been developed with Mel-
distributed resonance frequencies to cover the frequency range
where wheezing in lung sounds is prominent, and is shown
to have the highest unamplified sensitivity and SNR in this

11
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frequency range compared with other reported MEMS micro-
phones. With the array, wheezing in lung sound is shown to
be detected and automatically classified better than with a ref-
erence microphone. The automatic classification accuracies
for wheezing are higher with the RMA for both deep learn-
ing (performed on a computer) and machine learning (per-
formed on a chip set for wearable wireless communication).
In addition, the signal processing with the RMA is shown to
be more than ten times faster and consumes 92% less energy
than that with a traditional microphone on a low power chip
set for wearable wireless communication. Therefore, the cur-
rent work paves the way for a wearable stethoscope to con-
tinuously monitor and automatically classify lung sounds in
real-time so that patients or caregivers may be alerted and also
so that medical professionals may have recordings of relevant
lung sounds.
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