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ABSTRACT

Aim: Polymer flooding is used for enhanced oil recovery. Only polymers that can
withstand harsh environments work best. HPAM is mostly the polymer used for enhanced oil
recovery because it is available and cheap, but it does not withstand high temperatures
and high salinity reservoirs. Xanthan Gum withstands high temperatures and high salinity
reservoirs, but it is expensive and plugs the reservoir. The aim of this study is to compare the
salinity stability of gum Arabic and Terminalia Mantaly, a novel biopolymer, with commercial
Xanthan gum.
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Study Design: Locally formulated biopolymers from gum Arabic exudates bought from Bauchi
State in Nigeria and from Terminalia Mantaly exudates obtained from the University of Port
Harcourt. The appropriate rheological tests were carried out at the laboratory.
Place and Duration of Study: The laboratory experiments were carried out at the department of
Petroleum Engineering, Covenant University, Ota in Ogun State of Nigeria between 2020 and 2021.
Methodology: The gum Arabic, Terminalia Mantaly and Xanthan Gum powders were dissolved in
deionized water to get various concentrations in ppm. The polymers were mixed and kept for 24
hours to achieve a homogenous solution. The Automated OFITE® Viscometer at different
revolutions per minute (RPM) of 3 (Gel), 6, 30, 60, 100, 200, 300, and 600 was used to measure
the rheological properties of the various concentrations before Sodium Chloride (NaCl) and Calcium
Chloride (CaCl2) of various concentrations were added and allowed to hydrate for another 24 hours
before measuring their rheological properties again.
Results: The study showed that Xanthan Gum, Gum Arabic, and Terminalia Mantaly biopolymers
can be used in high salinity reservoirs. Terminalia Mantaly, a novel biopolymer, is insensitive to
salinity in monovalent and divalent ions.
Conclusion: Xanthan gum exhibited high viscosity even at low concentrations. Gum Arabic
exhibited good tolerance to salinity at NaCl 3.5%. Terminalia Mantaly was very stable with both
monovalent and divalent ions. Divalent ions have more effects on polymers than monovalent ions in
reservoirs.
Recommendation: It is recommended that Terminalia Mantaly be investigated more, as it can
replace imported biopolymers for Enhanced Oil Recovery (EOR).

Keywords: Gum Arabic; monovalent and divalent ions; polymer solutions rheology; stability; terminalia
mantaly; xanthan gum.

ABBREVIATIONS

AG : Arabinogalactan;
CaCl₂ : Calcium Chloride;
Ca2+ : Calcium Ions;
cEOR : Chemical Enhanced Oil Recovery;
CHCl3 : Chloroform;
cP : Centipoise;
EOR : Enhanced Oil Recovery;
GA : Gum Arabic;
GP : Glycoprotein;
g/cm3 : Gram per cubic Centimetre;
g/mol : Gram per Mole;
HAPAM : Hydrophobically Associated

Polyacrylamides;
HEC : Hydroxyethyl cellulose;
HPAM : Hydrolyzed Polyacrylamide;
HTHS : High Temperature High Salinity;
HSLT : High Salinity Low Temperature;
Kg/mol : Kilogram per Mole;
KYPAM : Comb Shaped Modified HPAM-A

high Salinity Tolerant Polymer;
NaCl : Sodium Chloride;
Na+ : Sodium Ions;
pH : potential of hydrogen;
PPM : Parts Per Million;
RPM : Revolution per Minute;
TM : Terminalia Mantaly;
XG : Xanthan Gum;
µm : Micro Metre.

1. INTRODUCTION

1.1 Background

Polymer flooding is a promising Chemical
Enhanced Oil Recovery (cEOR) method used to
recover residual oil, especially in heavy oil where
waterflooding is not efficient due to viscous
fingering [1-6]. In the oil and gas industry, two
types of polymers are mostly used: synthetic
polymers like hydrolyzed polyacrylamide (HPAM)
and its derivatives, and biologically produced
biopolymers like Xanthan Gum (XG) and
cellulose [7–10]. HPAM has been used for the
majority of the field polymer flooding because it is
cheap and available, while biopolymers like
xanthan gum have been used in very few fields
because of their high cost and plugging abilities
[11-14]. Hydroxyethyl cellulose (HEC) is used for
high salinity, low temperature (HSLT) reservoirs
due to their tolerance to high salinities where
precipitation occurs in HPAM [15].

Although HPAM is cheap and available, it has
issues in high temperature and high salinity
(HTHS) reservoirs and suffers from polymer
degradation. Xanthan gum, on the other hand,
withstands high temperatures and high salinity
reservoirs, but it is expensive and easily
degrades when bacteria are present in the
reservoirs [16-19]. There are HPAM derivatives
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that have been synthesized from HPAM to
overcome high salinity or high temperature, like
Hydrophobically Associated Polyacrylamides
(HAPAM) and Comb Shaped Modified HPAM-A
High Salinity Tolerant Polymer (KYPAM), but
they are still synthetic in nature, non-
biodegradable and will be harmful to the
environment [8,20-22].

1.2 Xanthan Gum

Xanthan gum is a non-ionic bacterial
polysaccharide produced by the fermentation of
a cellulosic backbone consisting of five
monosaccharides by the bacterium
Xanthomonas campestris to give a
pentasaccharide repeating unit. Xanthan gum is
a biopolymer. It is used in the pharmaceutical
industries, agricultural sectors, food industries,
cosmetics, textiles, paints, and the petroleum
industries. The chemical structure of Xanthan
gum reveals that it has a rigid structure that can
withstand HTHS, mechanical shear and divalent
ion concentration [6,23-24].

Xanthan gum has a high molecular weight (˃2 x
106 g/mol), and its solutions exhibit shear
thinning, higher viscosity, ease of penetration
into low permeability zones, and drag reducing
criteria in subsurface environments [25-27]. Fig.
1 presents the chemical structure of xanthan
gum, showing a single glucuronic acid unit, two
mannose units, and two glucose units of molar
ratios of 2.0, 2.0, and 2.8, respectively [7].

1.3 Gum Arabic (GA)

Gum Arabic is the name given to a natural plant
polysaccharide gum exudates of hardened sap
from Acacia Senegal (Senegalia Senegal) and
Acacia Seyal (Vachellia), deciduous trees. Gum
Arabic belongs to a family of trees called
Leguminosae. Gum Arabic is the oldest plant
polysaccharide and it has other names like
Acacia Gum, Arabic Gum, Indian Gum, Gum
Acacia, Acacia, Senegal Gum, Gum Hashab,
Gum Talha, Gum Sudani etc. It is an important
cash crop for most countries in sub-Saharan
Africa, like Sudan, Nigeria, Mauritania, Mali and
Senegal. Sudan is the world's leading producer
of gum Arabic, which has greatly benefited the
country's economy. Gum Arabic is highly soluble
in water, with good emulsifying properties but
much lower viscosity compared to other
biopolymers like xanthan gum [28-30]. Gum
Arabic is primarily used as a natural emulsifier.
Other industries like pharmaceuticals, ceramics,
printing, textiles, inks, paper, adhesives,
cosmetics, paint, glue, chewing gum,
photosensitive chemicals, and pyrotechnics
make use of gum Arabic [31-32].

Gum Arabic’s trade in the middle age was
controlled by the Turkish Empire and it was
nicknamed Turkey Gum [33]. Gum Arabic was
transported to Europe from Arab countries via
Arabic ports and it gave rise to the name gum
Arabic [34].

Fig. 1. Chemical structure of XG showing both D-mannose and D-glucuronic acid units linked
to the backbone of the glucose, while (M+) is the cation binding sites (Source, Muhammed et

al. [7])
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GA is a complex mixture of polysaccharides and
glycoproteins (GP’s) with a pH ranging from near
neutral to mild acidity. It exists as a blended
calcium, magnesium, and potassium salt of a
polysaccharide acid known as Arabic acid. The
framework of GA is made up of 1,3-connected-d-
galactopyranosyl units. The side chains are
made up of two to five 1,3-connected-d-
galactopyranosyl units, joined to the primary
chain by 1,6-linkages. Both the fundamental and
the side chains contain units of α-l-
arabinofuranosyl, α-l-rhamnopyranosyl, β-d-
glucopyranosyl, and 4-O-methyl-β-d-
glucopyranosyl, the last two generally as end
units. The chemical composition of GA can
change with weather conditions, soil conditions,
and the age of the tree and location of the tree
[30,35].

1.4 Terminalia Mantaly (TM)

Terminalia Mantaly is an evergreen or deciduous
tree that grows up to 10–20 m with an erect stem
and neat, conspicuously layered branches. Its
bark and branches have been used for medicinal
purposes. The bark and wood of Terminalia
Mantaly contain tannins and are used as dyes,
inks, tattoos, stains, and mordants. Terminalia
Mantaly belongs to a family of trees called
Combretaceae [36-37].

The effect of Terminalia Mantaly leaves in water-
based mud as an additive to improve drilling mud
properties has been investigated [38]. The
rheological properties of Terminalia Mantaly
exudate have been investigated as a drilling mud
additive. The study showed that Terminalia
Mantaly polymer has good alkaline at pH above
7 and stable rheological properties as both
salinity and temperature are increased. This is as
a result of the stable repulsive charges
polyelectrolyte of the polymer when salinity
increases [39].

For this research, the focus is on the
comparative effects of monovalent and divalent
ions on Xanthan gum an imported biopolymer
with gum Arabic and Terminalia Mantaly locally
sourced biopolymers, to determine if either GA or
TM can withstand the action of monovalent and
divalent ions, since both GA and TM are cheap,
available and ecofriendly.

Based on the comparison of native and
microwaved TM at 20s and 60s, Table 1 was
developed to show the list of physicochemical
properties of Terminalia Mantaly gum
[40]. This has helped to understand the
physicochemical properties of TM and its
application.

Fig. 2, presents the chemical structure of gum Arabic, showing L-arabinose, L-rhamnose and
D-glucuronic acid and 1, 3-linked ß-D-galactopyranosyl units (Source, Dave et al. [28])
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Table 1. List of Physicochemical properties of Terminalia Mantaly gum (Source, Odeniyi et al.
[40])

S/No Parameters Values
1. Particle Diameter (µm) 263.10
2. Angle of Repose (°) 57.80
3. Particle Density (g/cm3) 1.32
4. Bulk Density (g/cm3) 0.090
5. Tapped Density (g/cm3) 0.139
6. Hausner’s Ratio 1.54
7. Carr’s Index 35
8. Swelling Index 8.4
9. Water Absorption Capacity 10.71
10. pH 7.31

2. MATERIALS AND METHODS

2.1 Materials

For the project, the following materials were
used.

Table 2 shows a list of the materials used for this
project. The XG used was an imported
biopolymer, and it was used without any
modification or purification. The TM exudates
were collected from a TM tree located at the
University of Port Harcourt. The TM exudates
were processed using the method used by
Odeniyi et al. [40]. The GA exudates were
purchased from a local market in Bauchi State
and sent down to Port Harcourt in a sealed
container. It was processed in Port Harcourt.

2.2 Preparation of Gum Arabic Powder

The gum Arabic was purchased from Bauchi
State. The gum Arabic exudates were hand-
picked to remove the impurities, and the clean
exudates were pulverized with a sledgehammer
in a clean, strong sack bag and blended
afterwards. The GA powder was sieved with a
250 µm sieve initially and then with a 125 µm
sieve to obtain the desired gum Arabic powder
size.

2.3 Preparation of Terminalia Mantaly
Powder

The gum exudates were collected from TM trees
located at the University of Port Harcourt and
dried in an oven at 50 °C for 24 hours. The gum
exudates were pulverized with a blender to get
TM powder. The powdered gum was hydrated in
a mixture of double-strength chloroform (CHCl3)
and water for five days while being stirred
intermittently. Extraneous materials and some
undissolved gum from the mucilage were
removed when strained with a neat calico cloth.
Absolute ethanol was used to precipitate the gum
from the solution. The precipitated gum was
filtered and washed with diethyl ether and was
dried in a hot air oven at 50°C for 48 hours to
achieve a dry polymer that could be stored. The
TM gum was pulverized again with a blender and
stored in an airtight container.

2.4 Preparation of Xanthan Gum, gum
Arabic and Terminalia Mantaly
Polymer

The gum Arabic powder and Terminalia Mantaly
powder in various quantities were dissolved in
deionized water to get various concentrations,
ranging from 5,000 ppm to 10,000 ppm and
20,000 ppm. In percentage, these were 0.5%,

Table 2 List of materials

S/N List of Materials Description
1. Gum Arabic (GA) Purchased from Bauchi State and processed.
2. Terminalia Mantaly (TM) Collected from the University of Port Harcourt and

processed,
3. Xanthan Gum (XG) Commercial biopolymer imported.
4. Sodium Chloride (NaCl) Monovalent Ion for brine preparation
5. Calcium Chloride (CaCl2) Divalent Ion for brine Preparation
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1.0%, and 2.0%, respectively. For the Xanthan
gum powder, the same was done but for 2,500
ppm, 5,000 ppm and 10,000 ppm, which
represented 0.25%, 0.5% and 1.0%,
respectively. A plastic bottle was used in all the
solution mixing. Deionized water was measured
at 350 ml in each bottle. To determine the exact
amount of polymer powder, a spatula was used
to scoop the polymer powder into the filter paper,
which was then placed on an electronic weighing
balance. For accuracy's sake, the fans were
turned off in the laboratory to determine the exact
quantity. The solutions were stirred gently to
achieve homogeneity and then vigorously using
a Hamilton Beach Mixer [41]. The solution is
allowed to stand for 24 hours to allow for
complete hydration. Rheological characterization
was carried out using an OFITE® Viscometer to
determine the rheology with 8 precisely regulated
test speeds (shear rates in RPM) of 3 (Gel), 6,
30, 60, 100, 200, 300, and 600. The tests lasted
for about 48 hours for each sample. After the first
24 hours, the rheological characterization of the
polymer solutions was determined, and after the
second 24 hours, the effects of monovalent ions
(Na+) from NaCl and divalent ions (Ca2+) from
CaCl2 were determined and comparisons were
made to determine their effects.

3. RESULTS AND DISCUSSION

3.1 Xanthan Gum Concentration and
Presence of Ions

Fig. 3 shows the effect of increasing the
concentration of Xanthan Gum in the absence of

salt. No monovalent or divalent ions are present.
This explains the rheology of Xanthan Gum in
the absence of salinity. As shown in Fig. 3, the
higher the polymer concentration from 0.25% to
1.0%, the higher the viscosity of the solution at
all shear rates. Higher XG concentration also
increases the degree of shear thinning. This
agrees with earlier works by [24,41-43]. From the
values of viscosity, it is evident that XG is
excellent for mobility control in the reservoir. In
polymer flooding, high viscosity like that of XG is
needed for good mobility control. Hence, XG is a
good biopolymer except for the associated cost
[44].

Figs, 4, 5, and 6 show the effects of different
Xanthan Gum solution concentrations in the
presence of 0.75% NaCl, depicting a low salinity
reservoir, and 3.5% NaCl and 2.0% CaCl2,
depicting high salinity reservoirs of monovalent
ions and divalent ions, respectively. Generally,
XG shows good resistance to high salinity
irrespective of the concentration of the salt or
whether the contribution is monovalent or
divalent ion. This is possible because Xanthan
Gum’s stiff chains are conformed into single,
double, or triple helices [24].

Fig. 6 shows the effect of monovalent and
divalent ions on a 1.0% XG concentration. The
apparent viscosity of XG 1.0% with no salt and
XG 1.0% with NaCl 0.75% are the same. At this
concentration, the XG solution is insensitive to
the salt that is present. The presence of salt was
only felt for XG 1.0% with CaCl2 2.0%.

Fig. 3. Effect of XG Concentration with no Salt for 0.25%, 0.5% and 1.0%
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Fig. 4. Effect of monovalent and divalent ions on 0.25% XG concentration

Fig. 5. Effect of monovalent and divalent ions on 0.5% XG concentration

Fig. 6. Effect of monovalent and divalent ions on 1.0% XG concentration
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3.2 Gum Arabic Concentration and
Presence of Ions

Fig. 7 shows the effect of increasing the
concentration of gum Arabic in the absence of
salt. No monovalent or divalent ions are present.
This explains the rheology of gum Arabic in the
absence of salinity. As shown in Fig. 7, the
higher the polymer concentration from 0.5% to
2.0%, the higher the viscosity of the solution,
especially at 600 RPM. At 300 RPM and 100
RPM, the viscosities of both 0.5% and 1.0% are
almost the same. At 60 RPM, the viscosities of
all GA concentrations are the same. This could
be because of the complex arabinogalactan (AG)
of GA containing 2% protein [45]. From the
values of viscosity, it is evident that GA does not
form a high viscosity, even at high concentration.
This can be an advantage if polymer flooding is
designed properly, because there will not be

plugging issues. GA is readily available. It is low-
cost and biodegradable [43].

Figs. 8, 9 and 10 show the effects of different
gum Arabic solution concentrations in the
presence of 0.75% NaCl, depicting a low salinity
reservoir, and 3.5% NaCl and 2.0% CaCl2,
depicting high salinity reservoirs of monovalent
ions and divalent ions, respectively. GA
displayed some strange rheological properties.
Ordinarily, it is expected that as the salt
concentration gets higher, the viscosity of GA in
solution should reduce, but this is not so for
monovalent ions at 3.5% for both 0.5% and 1.0%
GA, where a slight increase in viscosity was
noticed. This accounts for the good properties of
GA in high monovalent ions. However, as
expected at 2% CaCl2, there was a reduction in
viscosity.

Fig. 7. Effect of GA concentration with no salt for 0.5%, 1.0% and 2.0%

Fig. 8. Effect of monovalent and divalent ions on 0.5% GA concentration
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Presence of Ions
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salt. No monovalent or divalent ions are present.
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all GA concentrations are the same. This could
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of GA containing 2% protein [45]. From the
values of viscosity, it is evident that GA does not
form a high viscosity, even at high concentration.
This can be an advantage if polymer flooding is
designed properly, because there will not be

plugging issues. GA is readily available. It is low-
cost and biodegradable [43].
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Ordinarily, it is expected that as the salt
concentration gets higher, the viscosity of GA in
solution should reduce, but this is not so for
monovalent ions at 3.5% for both 0.5% and 1.0%
GA, where a slight increase in viscosity was
noticed. This accounts for the good properties of
GA in high monovalent ions. However, as
expected at 2% CaCl2, there was a reduction in
viscosity.
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Fig. 9. Effect of monovalent and divalent ions on 1.0% GA concentration

Fig. 10. Effect of monovalent and divalent ions on 2.0% GA concentration

3.3 Terminalia Mantaly Concentration and
Presence of Ions

Fig. 11 shows the effect of increasing the
concentration of Terminalia Mantaly in the
absence of salt. No monovalent or divalent ions
are present. This explains the rheology of
Terminalia Mantaly in the absence of salinity. As
shown in Fig. 11, the higher the polymer
concentration from 0.5% to 2.0%, the higher the
viscosity of the solution. At RPM of 300 and RPM
of 200, the viscosities of 0.5% and 1.0% are the
same. At RPM’s of 100, 30, 6, and 10 sec, the
viscosities of 1.0% and 2.0% are the same.

Figs. 12, 13 and 14 show the effects of different
Terminalia Mantaly solution concentrations in the

presence of 0.75% NaCl, depicting a low salinity
reservoir, 3.5% NaCl and 2.0% CaCl2 depicting
high salinity reservoirs of monovalent ions and
divalent ions, respectively. TM displayed a
unique rheological property. Ordinarily, it is
expected that as the salt concentration gets
higher, the viscosity of TM in solution should
reduce, but this is not the case. For all the
concentrations, the apparent viscosities were
insensitive to salinity. This happened in both the
monovalent and divalent ions. Figs. 12, 13, and
14 have equal heights, showing the same
apparent viscosity for all. This is consistent with
earlier works by [39].This is because of the
stable repulsive charge polyelectrolyte of the
polymer when salinity increases.
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Fig. 11. Effect of TM concentration with no salt for 0.5%, 1.0% and 2.0%

Fig. 12. Effect of monovalent and divalent ions on 0.5% TM concentration

Fig. 13. Effect of monovalent and divalent ions on 1.0% TM Concentration
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Fig. 14. Effect of monovalent and divalent ions on 2.0% TM concentration

Fig. 15. Effect of monovalent and divalent ions on 2.0% TM/GA concentration

Fig. 15 shows the comparison of Terminalia
Mantaly (TM) and Gum Arabic (GA) biopolymers
on different salt concentrations. It is evident that
the apparent viscosity of TM for no salt, NaCl
0.75%, NaCl 3.5% and CaCl2 2.0% are at the
same point, while that of GA was not the same.
For the GA, at no salt, the apparent viscosity was
higher than for NaCl 0.75%, NaCl 3.5% and
CaCl2 2.0%. This explains the resistant of TM to
both monovalent and divalent ions.

4. CONCLUSION AND
RECOMMENDATIONS

The following conclusions and recommendations
were reached during the project work:

4.1 Conclusion

 Even at low concentrations, xanthan gum
has a high viscosity in solution.

 Xanthan gum demonstrated increased
stability, particularly at low monovalent ion
concentrations (0.75% NaCl).For a high
concentration of monovalent ions (3.5%
NaCl), XG exhibited increased stability at a
high concentration of XG (1%).

 Gum Arabic also showed increased
stability as concentration was increased,
but GA had the lowest viscosity of the
three biopolymers (XG, GA, and TM).
Ordinarily, it is expected that as the salt
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concentration gets higher, the viscosity of
GA in solution should reduce, but this is
not so for monovalent ions at 3.5% for both
0.5% and 1.0% GA, where a slight
increase in viscosity was noticed.

 Terminalia Mantaly gum is very resistant to
salt, both monovalent and divalent ions.
For all the concentrations of TM and
salinity, no reduction in apparent viscosity
was noticed.

 The effect of divalent ions is felt more in
reservoirs than the effect of monovalent
ions.

4.2 Recommendations

 It is recommended that Terminalia Mantaly
be investigated more, as it can replace
imported biopolymers for Enhanced Oil
Recovery (EOR).

 Gum Arabic can be improved upon to
withstand salinity like Terminalia Mantaly.
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