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ABSTRACT 
 

This article reviews the current state of scientific information on the relationship between the 
deterioration of spatial memory and the role of the masticatory function, both of which are primarily 
examined during the aging process. The article broadly examines the current notions regarding 
neuroscientific processing mechanisms of spatial memory. Additionally, some variables that 
produce alterations in hippocampal function during aging are presented here. Finally, the role that 
mastication fulfills as an emerging physiological mechanism of cognitive impairment compensation 
is discussed. This article concludes that, despite the recent progress in understanding the 
concepts presented in this article, evidence suggests that there are still many questions to be 
answered. These questions are sustaining the growing interest in the field of neuroscience in 
examining the underlying mechanisms of the intricate process of spatial orientation and their 
relation to masticatory function in aged organisms. 
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1. INTRODUCTION 
 
Technological advancements and their use in the 
prevention, treatment and curing of various 
diseases, along with an improvement in safety 
conditions, have increased life expectancy 
throughout the world [1]. It was found that the 
percentage of people aged over 60 increased 
from 8.1% in 1950 to 11% in 2010 and it is 
expected to reach 21.8% in 2050. In the most 
developed countries, this proportion is expected 
to increase from 21.7% in 2010 to 31.9% in 2050 
[2]. It is projected that, globally, the number of 
elderly people will exceed the number young 
people for the first time in history in 2045. In the 
more developed regions, population aging is far 
advanced, thus causing the number of children to 
drop below that of older persons in 1998 [3]. 
 
Elderly people are able to adequately perform 
tasks which require less exertion of their memory 
mechanisms, as well as tasks which involve non-
declarative or implicit memory, which only require 
repetition or recognition of a stimulus. Yet their 
performance decreases if they must remember 
specific information or perform actions without 
reminders. It was found that learning and 
retention while performing spatial tasks happens 
more slowly in elderly animals than in young and 
adult animals [4-6]. 
 
In terms of oral health, changes in oral tissue and 
oral functions, as well as secondary changes to 
extrinsic factors, often occur in older adults. 
These changes increase tooth loss due to 
periodontal disease, cavities, and lesions of the 
oral mucous, all of which result in an impairment 
of the masticatory function [7]. In recent years, 
the relationship between cognitive functions and 
the masticatory function has been the target of 
several investigations worldwide [8-12]. It has 
been found that an alteration of the masticatory 
function deteriorates the hippocampal-dependent 
cognitive processes by causing a loss of 
somatosensory stimulation of the oral cavity             
[13-16]. However, this relationship remains 
unclear and it is the subject of ongoing study 
[17,18]. This article will examine the concept of 
memory, specifically focusing on spatial memory, 
and it will explore the relationship between the 
deterioration of this memory function with the 
masticatory function within the framework of the 
aging process. 
 

1.1 Spatial Memory  
 
In general, two types of memory have been 
defined: the short-term memory and the long 
term memory. The latter can be further divided 
into implicit memory and explicit (or declarative) 
memory. Declarative memory can be even 
further divided into episodic memory and 
semantic memory [19]. Spatial memory is 
conceptualized as a subtype of episodic memory 
and it depends on the ability to remember 
something within a determined temporal and 
spatial context due to the information being 
stored within the framework of space-time [5]. 
Spatial memory is responsible for recognizing, 
encoding, storing, and retrieving information 
related to the arrangement of objects, specific 
routes, configurations, and spatial locations, thus 
allowing the organism to function in its 
environment [4]. 
 

1.2 Place Cells and Grid Cells 
 
The concept of cognitive maps, which was 
developed in rodent experiments, allowed a 
better understanding of the underlying 
hippocampal processes in the mechanisms of 
spatial orientation [20]. In the hippocampus, 
some neurons have been identified that encode 
specific locations in an environment. These have 
been defined as place cells and they are found in 
rodents, nonhuman primates, humans, and also 
bats [20,21]. Place cells are neurons that are 
activated during the translational movement of an 
animal and they depend upon the location of the 
animal in a specific zone within an environment, 
independent of any particular stimulus or ongoing 
behavior [5]. These cells are typically pyramidal 
neurons located in the CA1 and CA3 
hippocampal subfields and they are typically 
activated within a single area of a determined 
environment, namely the corresponding place 
field [22]. The size of a place field is related to 
the position of the place cells in the hippocampus 
on the septo-temporal axis (dorso-ventral). 
Those neurons that are found near the temporal 
zone have larger place fields [23]. 
 
It is hypothesized that the medial area of the 
entorhinal cortex (mEC) specializes in 
representing spatial information [24]. This 
hypothesis is due to a rather numerous cell type 
being identified in this area: grid cells [22,25]. 
These neurons are activated every time when 
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the animal's position coincides with any vertex of 
a regular grid of equilateral triangles covering the 
surface of an environment, finding that, just like 
in place cells, the activation pattern of grid cells 
increases along the dorsal-ventral axis of the 
mEC [25,26]. Empirical evidence has provided 
the hypothesis that the activation patterns of grid 
cells are the major determinant of place cell 
activation. This is due to the fact that grid cells 
are the most numerous cell type in the surface 
layers of the entorhinal cortex which are involved 
in spatial orientation and this structure is the 
main route of neocortical afferent information to 
the hippocampus [22,23]. Furthermore, in the 
entorhinal cortex the grid cells are interspersed 
with other cell types that would be involved in 
spatial orientation such as the head direction 
cells and border cells. It has been discovered 
that all of these cell types are projected directly 
from the entorhinal cortex into the dorsal 
hippocampus, suggesting that this would be the 
main source of spatial information that would 
activate place cells [24,25,27,28]. 
 

1.3 Aging of the Nervous System   
 
Aging is a natural process in the life of an 
organism during which, despite modifications in 
biological processes, the organism must maintain 
its ability to adapt. This natural process is 
characterized by a set of changes responsible for 
the gradual deterioration of cells and organs 
which can make humans more vulnerable 
against the onset of disease and thus increase 
the possibility of death. During the natural aging 
of the nervous system, mild memory or cognitive 
deficits that affect the realization of complex 
activities can occur [29,30]. Among other 
changes, a decrease in the number and length of 
dendrites, fewer axons, and myelinated 
impairment, as well as significant synaptic loss 
with significant reduction in the volume and 
integrity of the white matter have been observed; 
furthermore, there is an increase in activated 
microglia, which over-express Interleukin 1 and 
have characteristics of phagocytic cells, but 
which are not accompanied by loss of other 
intellectual functions and do not limit self-
sufficiency [30,31]. Aging results in a series of 
changes in social status, sensory perception, and 
cognitive and motor functions in individuals [7]. 
Human and rodent experiments have shown that 
there is a decline in spatial memory associated 
with aging and there is also evidence that aging 
is associated with a decrease in masticatory 
function [5,6,13,15,17]. 

1.4 Deterioration of Hippocampal 
Functions in Aging 

 

Any reorganization related to memory and 
learning begins with synaptic plasticity (the 
changes in the structure or biochemistry of 
synapses that alter postsynaptic effects), which 
is induced in subsets of synapses and neurons 
where the release of neurotransmitters can 
reinforce or weaken these synapses [32,33]. The 
alteration of the mechanisms of hippocampal 
synaptic plasticity may be one of the causes of 
spatial deterioration that is observed in aging. In 
rodents, the spatial navigation paradigm (the 
Morris water maze) appears to be an appropriate 
model to evaluate such deficits, due to the fact 
that representations of the environment depend 
heavily on efficient hippocampal functioning, 
which appears to be impaired in the aging 
process in humans and animals [4,34]. 
 
One of the mechanisms of synaptic plasticity 
which underlie memory processes is long-term 
potentiation (LTP) [35-37]. It has been found that, 
in old age, memory impairment correlates with a 
decrease in late-phase LTP [38]. One of the 
molecules involved in this phase is the Brain-
derived neurotrophic factor (BDNF), which has a 
central role in processing long-term memory. It 
has been found that a decrease in BDNF 
synthesis is associated with reduced formation of 
new synapses [34,37,39-41]. 
 
Elderly humans and animals have higher levels 
of corticosteroids than adult organisms [42]. Both 
the physiological and pharmacological actions of 
corticosteroids are mediated by their nuclear 
receptors, which are expressed ubiquitously and 
vitally in humans [43,44]. The feedback 
mechanisms that regulate corticosteroid levels 
deteriorate during aging, possibly due to a 
decrease of its receptors, resulting in increased 
circulating levels of the hormone [45]. 
Corticosteroids regulate hippocampal processes 
through their two nuclear receptors, the 
glucocorticoid receptor (type II receptor), a 
ubiquitous transcription factor that mediates most 
of the elements of response to glucocorticoids, 
and the mineralocorticoid receptor (type I 
receptor), which has a higher affinity for 
glucocorticoids and primarily mediates the 
functions that depend on low concentrations of 
the hormone [46]. The high concentration of 
corticosteroids alters long term potentiation in the 
hippocampus, thus deteriorating spatial memory 
which depends on said structure [47]. This 
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results in hippocampal atrophy and adverse 
effects on its functioning [45]. 
 

1.5 The Masticatory Function  
 

Mastication is one of the primary functions of the 
stomatognathic system and is defined as the 
sum of the chewing cycles (one chewing cycle is 
each power stroke with start and end points in 
the position of maximum intercuspation) that are 
necessary to reduce food to an adequate size 
and form which makes it possible, through 
successive swallows, to consume fully. It 
involves a series of biological, neural, chemical, 
and evolutionary processes dependent on growth 
and development [16,48]. 
 

The neural stimulation that the masticatory 
function provides is only produced and received 
for about one hour per day (the total sum of 
chews in one day). During this hour of intense 
performance of masticatory activity, the different 
structures involved are used thoroughly. 
However, the quality of the action and the 
stimulation it produces through the neural 
pathways ultimately depend upon the nature of 
the food consumed [49]. 
 

Although chewing clearly influences cognitive 
functions such as memory, learning, and 
alertness, in addition to having an effect on 
arousal level and motor control [6,10,12,15,50], 
to date there is no consensus on the neural and 
humoral pathways connecting the oral cavity with 
the hippocampus [17,47]. However, it is 
understood that the sensory system of the 
trigeminal nerve transports sensitive information 
from the oral cavity to the central nervous system 
(CNS). The proprioceptive information of the 
masticatory function is transmitted to the CNS 
through both the trigeminal ganglion neurons and 
the mesencephalic nucleus neurons of the V 
cranial nerve. It has also been proposed that the 
involved humoral pathways are represented by 
various growth factors such as nerve growth and 
epidermal growth. These growth factors are 
produced, among other places, in the salivary 
glands and chewing increases their secretion. In 
conclusion, the effects of chewing on the CNS 
cannot be attributed to a single factor, but rather 
to multiple complex signals that are still being 
studied [16,17].   
 

1.6 The Role of Mastication in 
Hippocampal-dependent Memory 

 

Masticatory deprivation in diverse age groups of 
mice appears to primarily affect hippocampal 

function. Masticatory imbalances show a 
decrease in the number of neurons and an 
increase in the number of hypertrophic 
astrocytes. All of these changes seem to be 
exacerbated by aging and by the amount of time 
after tooth loss, which suggests additive effects 
[6].  
 
Stress causes deterioration of spatial memory 
due to adrenal axis dysregulation, while chewing 
seems to alleviate this deficit. It was found that 
this activity increases corticosteroid receptors in 
the hippocampus, thus maintaining memory 
processes under severe stress conditions [47]. A 
disturbance in chewing caused by molar tooth 
loss over a long period of time can cause chronic 
stress that accelerates cognitive deterioration 
related to aging [18], also the corticosteroids 
decrease the effects of BDNF due to a decrease 
in the expression of its mRNA [51]. Additionally, 
in a study using rats it was found that masticatory 
function interference that was sustained for 10 
days significantly decreased LTP in hippocampal 
CA1 neurons, while also increasing 
corticosteroids and plasma catecholamine [52]. 
 
It has been found that the sustained reduction of 
masticatory stimulation induced in mice by a 
powdered diet results in a loss of pyramidal cells 
in the CA1 and CA3 regions of the hippocampus 
[52]. Both of these regions are critical in the 
recognition of information in a spatial and 
temporal context given the connection between 
the two by the Schaffer collateral fibers [23,53].  
It has been said  that masticatory dysfunction 
caused by tooth extraction damages the neural 
cholinergic system in the hippocampus and 
parietal cortex, causing deterioration of spatial 
memory and reducing pyramidal cells in CA1, 
CA3 and CA4 [54-56]. In rats subjected to a 
powdered diet from weaning until their twelfth 
week of age, increased reactive oxygen species 
were found, thus contributing to the development 
of changes in the CNS by causing oxidative 
stress, especially in the hippocampus [57]. 
Additionally, stress related to the deterioration of 
chewing has been found to reduce the response 
of dopaminergic neurons in the hippocampus. 
Dopamine that reaches the hippocampal 
structure is projected from dopaminergic neurons 
of the ventral tegmental area of the midbrain and 
this pathway primarily regulates late phase LTP, 
which is related to long term memory [58].  
 
The effect of mastication on spatial memory and 
on CA1 astrocytes has been evaluated. 
Scientists compared two groups of 18-month-old 
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mice which were divided based on the diet they 
received after weaning. In one group, deficient 
mastication was induced using a powder diet, 
while the other group had efficient mastication 
due to being fed a hard diet of pellets. The 
masticatory deprivation group showed a 
decrease in the number of neurons and an 
increase in the number of hypertrophic 
astrocytes, further demonstrating a decline in 
spatial memory when evaluated using the Morris 
Water Maze [6]. Another report assessed 
whether a stimulating environment and 
rehabilitation of masticatory function could 
reverse the decline in spatial learning and 
memory in 18-month-old mice. To mimic 
masticatory rehabilitation, the animals were fed a 
hard diet of pellets for six months followed by six 
months of a powdered diet and returning to hard 
diet of pellets for the last six months. These 
animals were compared to animals without 
rehabilitation that were fed a hard diet of pellets 
for 9 months followed by a powdered diet for nine 
months and with control animals who remained 
on the hard diet of pellets for all 18 months. The 
study concluded that the reduction in masticatory 
activity induced by administration of a powdered 
diet to sedentary mice (maintained in an 
unstimulated environment) impairs spatial 
learning and memory when evaluated in the 
Morris Water Maze. The rehabilitation of 
masticatory activity, regardless of the 
environment, recuperated memory loss and 
spatial learning, and a combination of a 
stimulating environment and masticatory 
rehabilitation significantly benefited the 
recuperation of spatial learning and memory in 
aged mice [10]. 
 
Based on multiple investigations and revisions 
made in previous years [59-63], the WHO has 
reported that tooth loss is a risk factor for 
Alzheimer's disease [64]. In experiments using 
rats with Alzheimer's, a decrease in dopamine 
release was found in the group of mice who also 
had masticatory deficiency induced by modifying 
their diet, as opposed to the group that was fed a 
solid diet. The findings of this investigation 
suggest that dopamine synthesis was not 
affected in the ventral tegmental area of the 
midbrain, but rather masticatory deficiency 
affected dopamine release in dopaminergic 
terminals in the hippocampus. Additionally, the 
results showed that memory and the ability to 
learn deteriorated in the group of mice with 
Alzheimer's and masticatory deficiency [65]. 
 

On the other hand, chewing can be considered 
as a form of exercise because it can increase 
both neuronal activity and cerebral blood flow 
[66]. Some authors have suggested that 
neurogenesis is regulated at the systemic 
level and that physical activity leads to increased 
neurogenic potential. It is possible that 
masticatory muscle activity during chewing could 
be sufficient to influence cell proliferation and 
neurogenesis [15,67]. 
 

2. CONCLUSION 
 
Thanks to the discovery of several types of 
neurons in the last decade, most notably grid cell 
in the mEC, the understanding of processing 
spatial memory has been increased greatly; 
however, many questions remain to be answered 
about the inner workings of the structures 
involved in this type of memory. These questions 
support the growing interest that is developing in 
neuroscientific research on the underlying 
cellular, biochemical and genetic pathways in the 
intricate processing of spatial orientation and 
their relation to masticatory function during aging. 
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