

British Journal of Mathematics & Computer Science

18(3): 1-19, 2016, Article no.BJMCS.27888

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: E-mail: nguyen_thanh_trung_key@yahoo.com.vn;

Mining Incrementally Closed Itemsets with a New Intermediate
Structure

Thanh-Trung Nguyen1*

1Department of Computer Science, University of Information Technology, Vietnam National University,

HCM City, Vietnam.

Author’s contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/27888
Editor(s):

(1) Doina Bein, Applied Research Laboratory, The Pennsylvania State University, USA.
Reviewers:

(1) Sherin Zafar, Jamia Hamdard University, India.
(2) Stephen Akandwanaho, University of KwaZulu-Natal,University, South Africa.

Complete Peer review History: http://www.sciencedomain.org/review-history/15927

Received: 23rd June 2016
Accepted: 8th August 2016

Published: 25th August 2016

Abstract

The problem of closed frequent itemset discovery is a fundamental issue of data mining, having
applications in numerous domains. Until now, the general technic for incremental mining is using an
intermediate structure in order to update the structure whenever there is a variation in the data. As for
incremental mining closed itemsets, the intermediate structure used is a concept lattice. The concept
lattice promotes the efficiency of the search process, but it is costly to adjust the lattice when there is an
addition or removal, as well as it is difficult in developing parallelization strategy. This article proposes
incremental algorithms to search all closed itemsets with a new intermediate structure which is a linear
list. To the best of our knowledge, this is the first algorithm for incremental mining closed itemsets using
a linear list as an intermediate structure proposed so far. When comparing experimental results between
using intermediate structure concept lattice and linear list initially show that the greater number of
transactions and the number of closed itemsets obtained in the mining process, the more efficient the use
of linear list promotes.

Keywords: Closed itemsets; concept lattice; data mining; incremental mining; mining methods and

algorithms; new intermediate structure.

Original Research Article

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

2

1 Introduction

Frequent sets are sets of items, subsequences or substructures appearing in a dataset with the frequency
which is greater or equal a user-defined threshold.

The formal definition of frequent set is as follows: Given I = { i1, i2, . . . , im} is the set of distinct items,
O = {o1, o2, . . . , on} is the set of transactions on the transactional database. A mining context is a triple
D = (O, I, R), for R ⊆ O × I is a binary relation of transactions and items. Each (o, i) ∈ R represents
transaction o ∈ O containing item i ∈ I.

A set-k α, consisting of k elements from I, is frequent if α appears in transactional database not less than θ|O|
times, for θ is a minimal support threshold defined by users (then called minsup), and |O| is the total number
of transactions. The number of occurrences of α is called the support of α (support(α)).

We call L set of frequent item sets. Set M containing maximal frequent item sets in D is defined as follows:
M = {C ∈ L | ∄C’ ∈ L, C ⊂ C’}

For B ⊆ O and C ⊆ I:
f(B): 2O → 2I

f(B) = {i ∈ I | ∀o ∈ B, (o, i) ∈ R}
g(C): 2I → 2O

g(C) = {o ∈ O | ∀i ∈ C, (o, i) ∈ R}
C ⊆ I is closed set if and only if h(C) = C, for h = f o g

Closed set C is called frequent if the support of C in D is greater or equal minsup. Set FC containing
frequent closed item sets in D is defined: FC = {C ⊆ I | C = h(C) ∧ support(C) ≥ minsup}

Set MC containing maximal frequent closed item sets in D is defined: MC = {C ∈ FC | ∄C’ ∈ FC, C ⊂ C’}

Incremental mining is the process that the only updated data should be exploited in order to discover
frequent sets. The main purpose of incremental mining is that because data add continueously to the initial
transaction, hence the size of database becomes larger and mining the entire database will take more time for
calculating, so it is better if the only updated data is mined. Thence, it supports the ability of execution faster
than not incremental methods.

Formal definition of incremental mining is as follows:

D: data mining context
A: algorithm for mining frequent item sets,
L: set of frequent sets
D, A (minsup) → L
{ t}: updated data

For not incremental algorithm:

D+ = D ∪ { t}
D– = D \ { t}
D+, A (minsup) → L+
D–, A (minsup) → L–

For incremental algorithm (A*):

{ t}, A*, L → L+
L: result of the previous period (frequent set)

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

3

The article proposes incremental algorithms to find all closed sets with a new intermediate structure.

According to [22], set of all frequent closed sets is sufficient to determine a reduced set of association rules.
Then, it helps to solve another important problem: limiting the number of generated rules without data loss.
So, frequent closed sets might directly create reduced set of association rules without the need of
determining all frequent sets, hence reducing the cost of calculating algorithm. In addition, because of
thousands of hiding association rules, simplifying the number of generated rules without data loss plays an
important role with obtained results.

In 2003, the workshop Frequent Item set Mining Implementation on implementing algorithms of mining
frequent sets was reported by Goethals and Zaki [8]. Mining closed sets provides a valuable and important
alternation for the problem of mining frequent sets because it inherits the same strength of analysis but
creating a set of much smaller result.

2 Overview

First, the article is going to provide an overview of panoramic perspective on incremental mining. Almost
incremental mining algorithms are divided into two main categories: Apriori-based algorithms and tree-
based algorithms.

Second, the article is going to focus on the problem of incremental mining (frequent) closed itemsets.

2.1 Incremental mining

2.1.1 Apriori-based algorithms

The algorithm FUP (Fast Update) [3] is the first algorithm proposing incremental mining association rules. It
solves the issue of database with new added transactions, but cannot solve the case of deleting transactions.

Initial database

Initial frequent itemsets

Incremental mining
Incremental mining

Updated database

Updated frequent itemsets

Mining frequent itemsets

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

4

Cheung et al. [4] proposed the algorithm FUP2 which is the extension of the algorithm FUP. FUP updates
association rules in a database when new transactions are added into the database. Meanwhile, FUP2 updates
the existing association rules when transactions added to and deleted from database. FUP2 is similar to FUP
in the case of adding new transactions, and is an additional algorithm for FUP in the case of deleting
transactions.

The algorithms DELI and ULI face the issue of determing when updating current model. In order to decide
when to update, [17] proposed the algorithm DELI (Difference Estimations for Large Itemsets), which
applies the method of getting statistical samples to determine when the current model becomes obsolete. ULI
(Update Large Itemsets) was proposed by [28]. ULI attempts to decrease I/O requirement to update the set of
frequent itemsets by maintaining previous frequent itemsets and negative borders [17] and their supports.

In [1], the algorithm UWEP (Update With Early Pruning) was proposed, in which using updating technique
with early-pruning. The advantage of the algorithm UWEP excels the FUP-based algorithms in that it prunes
supersets of an initial frequent itemset in D as soon as it becomes infrequent in the updated D’, instead of
waiting until the iteration kth.

The concept of negative borders [29] was used in [28] to improve the effect of FUP-based algorithms in
incremental mining. Let L be a set of frequent itemsets, negative borders Bd–(L) of L consists of minimal
frequent itemsets X ⊆ R but not in L, for R is the set of all items. In other words, negative borders consists of
all sets which generated candidates with insufficient support.

Both algorithms MAAP (Maintaining Association rules with Apriori Property) [40] and PELICAN [34] are
similar to the algorithm FUP2, yet their main objective is to maintain the maximal frequent itemsets when the
database is updated. These algorithms do not consider non-maximal frequent itemsets, so they do not need to
calculate the supports of non-maximal frequent itemsets. The difference between the two algorithms is that
MAAP calculates maximal frequent itemsets by relying on Apriori while PELICAN bases on the vertical
data format and decomposing lattice.

Lee et al. [16] proposed the approach SWF (Sliding-Window Filtering). SWF divides database into many
partitions, and applies a filtering threshold on each partition to create candidate sets. [35] described the
algorithm ZigZag, using tidlist (list of transaction id) and calculating maximal frequent itemsets in the
updated database to avoid generating many unnecessary candidates.

2.1.2 Tree-based algorithms

In [6], DB-tree and PotFp-tree were proposed for incremental mining. The algorithm DB-tree (Database
tree) stores all items in a FP-tree instead of only 1-element frequent itemsets in database. Additionally,
building a DB-tree is exactly as the same way as FP-tree. Hence, DB-tree might be seen as a FP-tree with the
minimal threshold = 0. Another algorithm proposed in [6] is PotFp-tree (Potential Frequent Pattern tree),
which only stores a few potential frequent items beside1-element frequent itemsets. A tolerance parameter t
is used to decide whether an item is frequent potentially or not.

The algorithm AFPIM (Adjusting FP-tree for Incremental Mining) [13] updates FP-tree built previously by
only scanning the increment of database. This increment database contains new transactions affecting the
frequence of items. When items are ordered by descending frequency based on the initial dataset, AFPIM re-
arranges items in the tree according to new value of frequency based on the increment dataset, using bubble-
sort sorting method by recursively swapping adjacent items.

The tree-based algorithms EFPIM (Extending FP-tree for Incremental Mining) [19] and FUFP-tree (Fast
Updated Frequent Pattern tree) [11] as well as AFPIM, conduct incremental mining by using a compressed
data structure, mainly adjusting the structure FP-tree. These approaches still require two times of scanning
database for the initial part (in order to build the FP-tree structure) and the increment part (in order to update
the tree structure).

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

5

CATS-tree (Compressed and Arranged Transaction Sequence tree) [5] and DB-tree are the same because
both store all items without caring whether they are frequent or not. This feature allows CATS-tree to avoid
re-scanning database when updates occur. However, the way of building CATS-tree is different from FP-tree
and DB-tree. In more details, FP-tree is built based on the order of global supports of all frequent items
while CATS-tree is built based on the order of local supports of items in their path.

In [18], a tree structure called CanTree (Canonical Tree) proposed in order to obtain content of transactional
database and arrange tree nodes in a canonical order.

CP-tree (Compact Pattern tree) was proposed in [27]. This algorithm also builds prefix tree by conducting a
unique scanning on database. [36] proposed modified CP-tree, constructing a tree for entire database with
items arranged on the same order as their occurrence on transactions.

Lin et al. [20] proposed PreLarge-tree for incremental mining association rules based on concept of pre-large
itemsets. A pre-large itemset is not actually large, but maybe large with a high probability in the future. A
pre-large itemset is a itemset having frequency greater than lower support threshold defined by users and
less than upper support threshold defined by users.

SPO-tree (Single Pass Ordered tree) [14] orders items of a transaction by descending frequency. It re-
constructs periodically the tree based on a parameter called Edit Distance. The tree is re-organized once Edit
Distance of items in the order exceeding the pre-defined threshold.

The algorithm BIT (Batch Incremental Tree) [30] was proposed for batch processing incrementally
increasing database in order to construct a canonical ordered tree (CanTree). The algorithm BIT merges two
FP-trees of two small adjacent periods to obtain a FP-tree which equivalent to FP-tree obtained when entire
database is processed at the same time from the beginning of the first period to the end of the second period.
In [31], the authors proposed applying the same principle used in the algorithm BIT to build the equivalent
FP-tree but with the algorithm FP-Growth. That is they uses batch incremental mining to build FP-tree by
applying algorithm FP-Growth, and named BIT_FPGrowth.

Incremental mining based on the intermediate structure of FP-tree shows a weakness in the implementation
process because the FP-tree structure depends on the global property of supports of items in the database.
Therefore, when the data is updated, it will create influence on the FP-tree structure, specifically in
situations: new items are frequent, or old items become less frequent than new items. It is particularly
serious with the situation of old items become unfrequent.

To solve this problem, there are solutions such as updating periodically the tree structures or basing on the
indicators to determine the time for updating. Especially, there is the solution of using the canonical order to
avoid having to depend on the global order of supports of items. However, there are still problems as
described in detail in each of the study above.

A new research direction is to use an intermediate structure of concept lattice. The next section presents an
overview of mining incrementally closed sets with the intermediate structure of concept lattice, and the
techniques of not incremental mining closed sets.

2.2 Incremental mining (frequent) closed itemsets

The approaches for mining (frequent) closed itemsets are now divided into two groups: incremental mining
and not incremental mining.

Mining frequent closed itemsets was first proposed by [22], with an algorithm based-on-Apriori, called A-
Close.

In series, the algorithms for mining closed itemsets include CLOSET [23], CHARM [39], CLOSET+ [38],
FPClose [9] and AFOPT [21].

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

6

The main challenge in mining frequent closed itemsets is to check whether an itemset is closed or not. There
are two strategies to approach this problem: (1) keep track of TID list of an itemset and index the itemset by
hashing its TID values. This method is used by CHARM whose task of maintaining a TID list called a
diffset, and (2) maintain itemsets discovered in a tree similar to FP-tree. This method is exploited by
CLOSET +, AFOPT and FPClose.

The methods described above are the mining approaches which is not incremental. In the recent period,
researchers are focusing on the tendency to use concept lattices to serve the purpose of incremental mining.
The concept lattice, widely used in mathematics [7], is the hierarchical structure between concepts. Each
concept consists of three components: a set of objects, a set of attributes and a relation between these sets.
Correspondingly, each concept can include a closed set, a transaction set and the relationship between these
two sets [26]. Methods for maintaining a concept lattice can be divided into 2 groups: (1) direct-update, new
transactions are added separately to the lattice and (2) merge-lattices, constructing the lattice from new
transactions added and merging this with the original lattice.

The algorithms proposed in [12,33,10,25,24,37,15] belong to the direct-update group.

The methods of [32,2] belong to the merge-lattices group.

Until now, the general technic for incremental mining is using an intermediate structure in order to update
the structure whenever there is a variation in the data. As for incremental mining closed itemsets, the
intermediate structure used is a concept lattice. The concept lattice promotes the efficiency of the search
process, but it is costly to adjust the lattice when there is an addition or removal, as well as it is difficult in
developing parallelization strategy. This is evident when the studies of incremental mining closed itemsets
by merging lattices have not been significantly developed since the 2007.

This article proposes incremental algorithms to search all closed itemsets with a new intermediate structure
which is a linear list. Experimental comparing results between using intermediate structure concept lattice
and linear list initially show: The greater number of transactions as well as the number of closed itemsets is
obtained in the mining process, the more efficient the use of linear list promotes.

3 Proposal Work

3.1 Constructing the intermediate structure

Let B = {0, 1}, B

m
is the space of m-tuple bit chains, whose elements are s = s

1
s

2
…s

m
, s

i
∈ B, i = 1, ... , m.

Definition 1: Given two bit-chains with the same length: a = a1a2…am, b = b1b2…bm.
a is said to cover b or b is covered by a – denoted a � b – if pos(b) ⊆ pos(a) for pos(s) = {i | si = 1}. To be
negative, the operator ! is used, particularly a !� b.

Definition 2:

+ Let u be a bit-chain, k is a natural number, we call [u; k] a sample.

+ Let S be set of m-tuple bit-chains (bit-chain with the length of m bits), u is a m-tuple bit-chain. If there are
at least k bit-chains in S covering u, we say: u is a form of S with the frequency of k; and [u; k] is a sample of
S – denoted [u; k]→S.

Example 1: S = {1110, 0111, 0110, 0010, 0101} and u = 0110. We say u is a form with the frequency of 2 in
S, hence [0110; 2]→S.

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

7

+ A sample [u; k] of S called maximal sample – denoted [u; k]max→S – if and only if it does not exist k’ that
[u; k’]→S and k’ > k. For the above example, [0110; 3]max→S

Definition 3 (operations and binary relation):

+ Two m-tuple bit-chains a and b are called equal– denoted a = b – if and only if ai = bi ∀i ∈ {1, … , m},
vice versa a ≠ b.

+ Given two samples [u1; p1] and [u2; p2]. [u1; p1] is said to be contained in [u2; p2] – denoted [u1; p1] ⊆ [u2;
p2] – if and only if u1 = u2 and p1 ≤ p2, vice versa [u1; p1] ⊄ [u2; p2].

+ Given two m-tuple bit-chains a and b. A m-tuple bit-chain z is called minimal sequence of a and b –
denoted z = a ∧ b – if and only if zk = min(ak, bk) ∀k ∈ {1, … , m}.

+ Minimal sample of two samples [u1; p1] and [u2; p2] is a sample [u’; p’] – denoted [u’; p’] = [u1; p1] ο [u2;
p2] – for u’ = u1 ∧ u2 and p’ = p1 + p2.

Definition 4: P is a representative set of S when P = {[u; p]max→S | ∄[v; q]max→S ≠ [u; p] : (v � u and q ≥ p)}.
Each of elements of P is called a representative sample of S.

The rationale for constructing the set P:

Representative set P is the set of closed sets of S (according to the definition from [22]). Once minsup is
established, we can obtain closed frequent sets of S.

Theoretical bases for constructing set P are as follows:

The definition of closed set from [22]:

A context of mining dataset is a triple D = (O, I, R). O and I are sets of finite transactions and items. R ⊆ O ×
I is a binary relation of transactions and items. Each pair (o, i) ∈ R shows that transaction o ∈ O containing
item i ∈ I,

For B ⊆ O and C ⊆ I:
f(B): 2O → 2I

f(B) = {i ∈ I | ∀o ∈ B, (o, i) ∈ R}
g(C): 2I → 2O

g(C) = {o ∈ O | ∀i ∈ C, (o, i) ∈ R}
C ⊆ I is closed set if and only if h(C) = C, for h = f o g

With C a closed set, we have two following affirmations:

* In case of adding new items to C, becoming C+ (C ⊂ C+) and if C+ is a closed set, g(C+) has to have the
strictly smaller number of elements than g(C) (g(C+) ⊂ g(C)). Indeed:

- If g(C+) = g(C), for f(g(C+)) = C+ hence f(g(C)) = C+, conflicting with the definition of that C is a
closed set.

- If g(C+) ⊃ g(C), it conflicts with the definition of g(C) = {o ∈ O | ∀i ∈ C, (o, i) ∈ R} (find all o ∈
O so that each o contains all i ∈ C, so why there are o’ ∈ g(C+) containing all i ∈ C).

* In case of withdrawing items out of C, becoming C– (C– ⊂ C) and if C– is a closed set, g(C–) has to have
the strictly greater number of elements than g(C) (g(C–) ⊃ g(C)). Indeed:

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

8

- If g(C–) = g(C), f(g(C–)) = f(g(C)) = C–, conflicting with the definition of that C is a closed set.
- If g(C–) ⊂ g(C), it conflicts with the definition of g(C–) = {o ∈ O | ∀i ∈ C–, (o, i) ∈ R} (find all o ∈

O so that each o contains all i ∈ C–, so why there are o’∈ g(C) containing all i ∈ C–).

Remark 1: Without loss of generality, an arbitrary closed set of D either differents from (does not cover or
is not covered by) other closed sets or if strictly contained in a closed set α, its frequency has to be greater
than the frequency of α.

Basing on this basis to construct the set P = {[u; p]max→S | ∄[v; q]max→S ≠ [u; p] : (v � u and q ≥ p)}.

In more details, the set P will have:

Non-existing cases Existing cases
v � u and qv ≥ pu

• v = u and qv = pu (not actual)
• v = u and qv > pu (not actual)
• v strictly covers u and qv = pu
• v strictly covers u and qv > pu

v !� u or qv < pu
• v !� u and qv ≥ pu

- v ≠ u (u !���� v) and qv ≥ pu
- u strictly covers v and qv > pu (not =)

• v !� u and qv < pu
- v ≠ u (u !���� v) and qv < pu

- u strictly covers v and qv < pu (discard, because of
returning the non-existing cases, left column)

• v � u and qv < pu
- v strictly covers u and qv < pu
- v = u and qv < pu (not actual)

The property of the set P:

We are able to show a set of transactions as the set S of bit-chains. For a bit-chain in S, the i th bit is
established as 1 when the i th item is purchased and vice versa.

When an arbitrary minimal support threshold minsup is established, the representative set P will give all
closed frequent sets and maximal frequent sets of S.

Indeed:

Firstly, we repeat the definitions of closed frequent set and maximal frequent set.

A set α is a closed frequent set on dataset D if α is frequent on D and there is not any strict superset β of α
and support(α) = support(β) on D.

A set α is a maximal frequent set on D if α is frequent, and there is not any strict superset β for α ⊂ β and β
is frequent on D.

Therefore, a maximal frequent set is a special closed frequent set. More specific, according to the definition,
a maximal frequent set is definitely a closed frequent set at a support equaling its frequency and it is the
closed frequent set which is not able to be contained by any other closed frequent sets.

With the definition P = {[u; p]max→S | ∄[v; q]max→S ≠ [u; p] : (v � u and q ≥ p)}, considering an arbitrary
element [u; p] ∈ P, once p ≥ minsup (that is, u shows a frequent set α with support p). Then, according to the
definition of set P, there is not any bit-chain v (showing a set β) which is able to cover u with the frequency
of q = p. That means, at the support value p of the frequent set α, it does not exist a strictly larger set β
having the same support of p. Since, [u; p] is a closed frequent set.

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

9

Hence, the set P contains all closed frequent sets of S, inferring P also contains all maximal frequent sets of
S.

We may easily calculate closed frequents set based on P.

So, the major issue is concentrated on re-constructing the representative set P whenever S is modified
(adding, deleting elements).

3.2 The incremental algorithm for adding a new transaction

Let S be a set of n m-tuple bit-chains with the representative set P. In this part, we will consider the
algorithm for rebuilding set P when a new bit-chain is added to S.

The algorithm NewRepresentative:

Input: P is the representative of S, z is a bit-chain added to S
Output: The new representative set P of S ∪ {z}

For each x ∈ P:
• Using the operation ο in order to find the smaller closed set of x and its frequency is

greater than x 1 unit. (relying on Remark 1)
• Considering z as a new closed set of P. (Now, P has two group of element: previous

elements and new elements created by the operation ο)
• Verifying to discard invalid elements of P (in order to ensure the property of P):

- Discarding previous elements are contained by new elements
- Discarding new elements contain mutually

Output the set P

3.3 The incremental algorithm for deleting a transaction

Definition 5:

Let S be a set of bit-chains and P be the representative set of S. P is obtained by applying the algorithm
NewRepresentative to S. Let [p; k] ∈ P, and s1, s2, … , sr ∈ S be r (r ≤ k) bit-chains taking part in forming p,
denoted p_crd: s1, s2, … , sr, vice versa, denoted: p_crd: !s1, !s2, … , !sr.

Example 2: In Example 1, we have bit-chains 1110 and 0111 are 2 of 3 bit-chains participating in forming
[0110; 3]. Let s1 = 1110, s2 = 0111 and p = 0110, we have: p_crd = s1, s2. Let s3 = 0101 not participating in
forming [0110; 4], so: p_crd = !s3.

The following is the algorithm to find the new representative set of S when a bit-chain is deleted from S.

The algorithm NewRepresentative_Delete:

Input: P is the representative set of S, z is the deleted transaction
Output: the new representative set P of S \ {z}

For each x ∈ P
If z � the form of x (i.e. x.form_crd = z)

Decreasing the frequency of x 1 unit
If the frequency of x = 0 then removing x from P
Verifying to discard x if x is contained by an element in P (in order to ensure the
property of P)

End if
End for
Output the set P

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

10

4 Experiment for Verifying Results

The algorithm proposed by [12] has been one of the first approaches to build the lattice of closed sets. This
algorithm builds a lattice containing all closed sets of the original dataset and allows incremental mining by
the direct-update method when a transaction is added. The obtained results (including the quantity, meaning
and purpose) of this algorithm are completely accurate as the results of the algorithm NewRepresentative.
Therefore, the comparative experiment is conducted with the algorithm of [12].

* Infrastructure: one computer with the configuration as follows:

- CPU: Intel(R) Core(TM) i3-2100 (4 CPUs), ~3.1GHz
- RAM: 8192MB
- Operation Systems: Windows 7 Ultimate 64-bit (6.1, Build 7601) Service Pack 1
- Programming language: C#.NET

* Experimental datasets: got from http://fimi.ua.ac.be/data/

* T10I4D100K:

Number of transactions on the database: 100,000
Maximal number of items on each transaction: 29
Maximal items on the dataset: 1,000

Table 1. Comparative figures between 2 algorithms for T10I4D100K

No.
transactions

NewRepresentative Lattice
The time for
adding 1
transaction
(second)

Total time
(second)

No.
closed
sets

 The time for
adding 1
transaction
(second)

Total time
(second)

No. closed
sets

1,000 0.003 1.65 7,311 0.06 19.26 7,311
2,000 0.02 9.66 18,213 0.64 147.79 18,213
3,000 0.04 35.58 31,022 0.81 536.50 31,022
4,000 0.06 85.91 44,528 0.47 1,288.87 44,528
5,000 0.19 166.26 59,279 2.31 2,628.95 59,279
6,000 0.11 271.86 74,006 1.40 4,622.61 74,006
7,000 0.20 418.83 89,830 3.99 7,546.51 89,830
8,000 0.25 604.89 105,544 6.24 11,362.58 105,544
9,000 0.09 815.71 121,166 1.47 16,307.64 121,166
10,000 0.33 1,089.89 139,491 7.71 23,455.05 139,491
11,000 0.52 1,415.70 158,138
12,000 0.33 1,806.82 176,766
13,000 0.30 2,253.67 195,557
14,000 0.69 2,769.95 215,066
15,000 0.75 3,362.96 235,747
16,000 2.09 4,021.19 255,604
17,000 0.81 4,667.43 275,385
18,000 1.26 5,417.64 295,607
19,000 0.45 6,202.65 315,910
20,000 0.25 7,083.47 336,109
21,000 0.20 8,043.19 355,853
22,000 2.32 9,088.06 376,549
23,000 2.29 10,251.07 396,845
24,000 1.20 11,507.05 417,756
25,000 0.92 12,926.93 440,785
26,000 0.55 14,404.83 461,495

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

11

No.
transactions

NewRepresentative Lattice
The time for
adding 1
transaction
(second)

Total time
(second)

No.
closed
sets

 The time for
adding 1
transaction
(second)

Total time
(second)

No. closed
sets

27,000 0.87 15,897.83 483,930
28,000 0.19 17,470.77 506,176
29,000 1.30 19,169.08 529,346
30,000 2.31 20,925.02 552,617
31,000 0.66 22,815.77 573,595
32,000 0.36 24,446.15 595,934
33,000 2.68 26,050.77 619,655
34,000 0.67 27,727.44 643,210
35,000 2.64 29,567.60 667,597
36,000 2.47 31,484.93 691,155
37,000 1.20 33,543.99 713,641
38,000 0.98 35,563.43 736,338
39,000 2.73 37,631.26 760,625
40,000 1.53 39,772.44 783,805

Fig. 1. Comparative chart between 2 algorithms for T10I4D100K

With the experimental dataset T10I4D100K, the algorithm of [12] (Lattice for short) has the phenomenon of
memory overflow when the number of transactions is about 10,000. Meanwhile, the algorithm
NewRepresentative overflows when the number of transactions is about 40,000.

The following part is a comparison chart of the two algorithms on implementing time at each landmark of
the number of transactions. The vertical column represents the time in millisecond, and the horizontal bar
represents landmarks of the number of transactions.

With the following experimental dataset (retail, mushroom, connect, pumsb_star, pumsb), results of
comparison tables and graphs are presented exactly as the presentation of the dataset T10I4D100K.

* retail:

Number of transactions on database: 88,162
Maximal number of items on each transaction: 76
Maximal items on dataset: 16,469

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1
0
0
0

3
0
0
0

5
0
0
0

7
0
0
0

9
0
0
0

1
1
0
0
0

1
3
0
0
0

1
5
0
0
0

1
7
0
0
0

1
9
0
0
0

2
1
0
0
0

2
3
0
0
0

2
5
0
0
0

2
7
0
0
0

2
9
0
0
0

3
1
0
0
0

3
3
0
0
0

3
5
0
0
0

3
7
0
0
0

3
9
0
0
0

T10I4D100K

NewRepresentative Lattice

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

12

Table 2. Comparative figures between 2 algorithms for retail

No.
transactions

NewRepresentative Lattice
The time for
adding 1
transaction
(second)

Total time
(second)

No.
closed
sets

The time for
adding 1
transaction
(second)

Total time
(second)

No.
closed
sets

1,000 0.001 1.27 4,410 0.006 1.01 4,410
2,000 0.01 7.72 11,907 0.03 50.50 11,907
3,000 0.01 31.96 25,848 0.22 333.47 25,848
4,000 0.02 76.16 40,364 1.18 1,162.11 40,364
5,000 0.07 136.55 51,877 2.58 2,254.10 51,877
6,000 0.02 238.31 69,172 0.12 4,349.16 69,172
7,000 0.08 377.10 86,722 2.62 7,804.74 86,722
8,000 0.08 513.15 97,736 1.79 10,393.21 97,736
9,000 0.26 684.84 112,927 7.22 14,312.75 112,927
10,000 0.17 929.07 132,472 0.54 21,685.91 132,472
11,000 0.19 1,176.73 145,805 2.01 28,084.02 145,805
12,000 0.37 1,433.72 157,027 9.00 33,623.61 157,027
13,000 0.12 1,765.60 171,748 0.83 42,301.62 171,748
14,000 0.13 2,250.50 193,093 10.05 69,322.26 193,093
15,000 0.23 2,651.00 206,187 5.18 84,387.09 206,187
16,000 0.42 3,064.94 218,447
17,000 0.17 3,557.91 238,302
18,000 1.64 4,182.06 267,375
19,000 0.51 4,652.33 282,995
20,000 0.09 5,175.34 298,866
21,000 1.07 5,902.65 326,976
22,000 1.12 6,728.45 355,411
23,000 0.34 7,289.17 369,846
24,000 0.58 8,003.51 389,871
25,000 0.19 8,975.41 418,421
26,000 0.29 9,797.55 432,478
27,000 0.63 10,656.31 447,936
28,000 0.27 11,886.16 476,058
29,000 0.64 12,984.84 495,801
30,000 0.62 13,906.40 510,335
31,000 0.55 14,918.17 530,243
32,000 0.59 16,277.79 562,342
33,000 0.41 17,294.59 580,406
34,000 0.99 18,362.52 597,965
35,000 0.45 19,516.55 620,735
36,000 0.98 21,312.59 657,313
37,000 0.28 22,867.05 677,236
38,000 0.36 24,427.39 697,467
39,000 2.22 26,054.38 726,168
40,000 0.47 27,745.88 753,244
41,000 0.72 28,954.68 766,170
42,000 0.81 30,362.63 783,859
43,000 4.44 32,254.40 811,294
44,000 0.24 34,402.17 841,938
45,000 0.78 36,108.94 858,093
46,000 11.28 37,986.32 879,523
47,000 1.81 40,052.93 908,826
48,000 0.53 42,130.18 940,774
49,000 0.47 43,798.43 957,926
50,000 0.67 45,403.28 974,458

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

13

Fig. 2. Comparative chart between 2 algorithms for retail

* mushroom:

Number of transactions on database: 8,124
Maximal number of items on each transaction: 23
Maximal items on dataset: 119

Table 3. Comparative figures between 2 algorithms for mushroom

No.
transactions

NewRepresentative Lattice
The time for adding
1 transaction
(second)

Total time
(second)

No.
closed
sets

The time for adding 1
transaction (second)

Total time
(second)

No.
closed
sets

1,000 0.58 364.04 32,513 154.97 47,893.60 32,513
2,000 2.40 2,036.38 58,982
3,000 3.26 5,019.46 80,901
4,000 1.89 8,290.29 104,104
5,000 4.03 11,954.85 136,401
6,000 3.99 19,552.01 156,573
7,000 8.33 30,003.14 214,950
8,000 11.60 41,696.58 237,874
8,124 12.10 43,140.48 238,709

Fig. 3. Comparative chart between 2 algorithms for mushroom

0

2000

4000

6000

8000

10000

12000

1
0
0
0

4
0
0
0

7
0
0
0

1
0
0
0
0

1
3
0
0
0

1
6
0
0
0

1
9
0
0
0

2
2
0
0
0

2
5
0
0
0

2
8
0
0
0

3
1
0
0
0

3
4
0
0
0

3
7
0
0
0

4
0
0
0
0

4
3
0
0
0

4
6
0
0
0

4
9
0
0
0

retail

NewRepresentative Lattice

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1000 2000 3000 4000 5000 6000 7000 8000 8124

mushroom

NewRepresentative Lattice

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

14

* connect:

Number of transaction on database: 67,557
Maximal number of items on each transaction: 43
Maximal items on dataset: 129

Table 4. Comparative figures between 2 algorithms for connect

No.
transactions

NewRepresentative Lattice
The time for
adding 1
transaction
(second)

Total time
(second)

No.
closed
sets

 The time for
adding 1
transaction
(second)

Total time
(second)

No.
closed
sets

100 0.54 14.44 13,406 22.39 533.41 13,406
200 10.81 485.31 63,360 1,217.30 43,131.84 63,360
300 62.52 3,738.96 149,393
400 62.71 12,867.77 232,526
500 370.23 35,284.15 445,676

Fig. 4. Comparative chart between 2 algorithms for connect

* pumsb_star:

Number of transaction on database: 49,046
Maximal number of items on each transaction: 63
Maximal items on dataset: 7,116

Table 5. Comparative figures between 2 algorithms for pumsb_star

No.
transactions

NewRepresentative Lattice
The time for
adding 1
transaction
(second)

Total time
(second)

No.
closed
sets

 The time for
adding 1
transaction
(second)

Total time
(second)

No.
closed
sets

10 0 0.008 189 0.002 0.16 189
20 0.01 0.15 1,301 0.06 0.35 1,301
30 0.02 0.37 4,465 1.22 5.15 4,465
40 0.07 0.86 8,974 5.12 35.58 8,974
50 0.31 2.57 17,425 15.79 170.86 17,425
60 0.35 6.31 25,433 70.20 500.91 25,433

0

200000

400000

600000

800000

1000000

1200000

1400000

100 200 300 400 500

connect

NewRepresentative Lattice

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

15

No.
transactions

NewRepresentative Lattice
The time for
adding 1
transaction
(second)

Total time
(second)

No.
closed
sets

 The time for
adding 1
transaction
(second)

Total time
(second)

No.
closed
sets

70 2.74 17.63 38,305 100.68 1,605.28 38,305
80 0.68 44.46 48,875 58.84 3,055.21 48,875
90 4.02 78.72 62,212 510.07 5,631.91 62,212
100 10.72 139.11 84,907 395.72 11,918.65 84,907
110 8.97 249.70 101,179
120 36.22 408.70 130,144
130 26.41 583.24 145,829
140 4.59 768.99 168,617
150 5.96 1,278.00 205,421
160 141.07 1,856.49 225,118
170 156.66 2,742.11 246,286
180 76.11 3,403.82 277,220
190 227.07 4,408.26 309,147
200 160.48 5,423.01 354,489

Fig. 5. Comparative chart between 2 algorithms for pumsb_star

* pumsb:

Number of transaction on database: 49,046
Maximal number of items on each transaction: 74
Maximal number of items on dataset: 7,116

Table 6. Comparative figures between 2 algorithms for pumsb

No.
transactions

NewRepresentative Lattice
The time for adding
1 transaction
(second)

Total time
(second)

No. closed
sets

The time for adding
1 transaction
(second)

Total time
(second)

No.
closed
sets

10 0.006 0.02 240 0.004 0.13 240
20 0.05 0.21 1,873 0.14 0.66 1,873
30 0.28 1.44 10,108 14.37 37.32 10,108
40 2.33 8.44 26,544 86.66 495.26 26,544
50 4.17 102.08 99,575 1,725.10 6,261.31 99,575
60 342.14 977.71 252,113
70 1,237.60 7,575.90 406,906
80 840.42 18,507.95 864,979

0

100000

200000

300000

400000

500000

600000

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

pumsb_star

NewRepresentative Lattice

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

16

Fig. 6. Comparative chart between 2 algorithms for pumsb

5 Conclusion

This article proposes incremental algorithms to search all closed itemsets with a new intermediate structure
which is a linear list. To the best of our knowledge, this is the first algorithm for incremental mining closed
itemsets using a linear list as an intermediate structure proposed so far. Experimental comparing results
between using intermediate structure concept lattice and linear list initially show: The greater number of
transactions as well as the number of closed itemsets is obtained in the mining process, the more efficient the
use of linear list promotes.

In the near future, we will research on parallelization algorithms to reduce implementing time and improve
the performance.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Ayan NF, Tansel AU, Arkun ME. An efficient algorithm to update large itemsets with early pruning.

Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Diego, CA. 1999;287-291.

[2] Ceglar A, Roddick JF. Incremental association mining using a closed-set lattice. Journal of Research
and Practice in Information Technology. 2007;39(1):35-45.

[3] Cheung D, Han J, Ng V, Wong CY. Large databases: An incremental updating technique.

Proceedings of the 12th International Conference on Data Engineering. 1996;106-114.

[4] Cheung DW, Lee SD, Kao B. A general incremental technique for updating discovered association

rules. Proceedings of the Fifth International Conference On Database Systems for Advanced
Applications, Melbourne, Australia. 1997;185-194.

0

500000

1000000

1500000

2000000

10 20 30 40 50 60 70 80

pumsb

NewRepresentative Lattice

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

17

[5] Cheung W, Zaïane OR. Incremental mining of frequent patterns without candidate generation or
support constraint. Proceedings of the 7th International Database Engineering and Application
Symposium. 2003;111-116.

[6] Ezeife CI, Su Y. Mining incremental association rules with generalized FP-tree. Proceedings of the

15th Canadian Conference on Artificial Intelligence; 2002.

[7] Ganter B, Wille R. Formal concept analysis: Mathematical foundations. Springer; 1999.

[8] Goethals B, Zaki M. An introduction to workshop on frequent itemset mining implementations.

Proceeding of the ICDM’03 International Workshop on Frequent Itemset Mining Implementations
(FIMI’03), Melbourne, FL. 2003;1-13.

[9] Grahne G, Zhu J. Efficiently using prefix-trees in mining frequent itemsets. Proceeding of the

ICDM’03 International Workshop on Frequent Itemset Mining Implementations (FIMI’03),
Melbourne, FL. 2003;123-132.

[10] Gupta A, Bhatnagar V, Kumar N. Mining closed itemsets in data stream using formal concept

analysis. Data Warehousing and Knowledge Discovery, LNCS. 2010;6263:285-296.

[11] Hong TP, Lin CW, Wu YL. Incrementally fast updated frequent pattern trees. Expert Systems with

Applications. 2008;34(4):2424-2435.

[12] Hu K, Lu Y, Shi C. Incremental discovering association rules: A concept lattice approach. Proceeding

of PAKDD99, Beijing. 1999;109-113.

[13] Koh JL, Shieh SF. An efficient approach for maintaining association rules based on adjusting FP-tree

structures. Database Systems for Advanced Applications, Lecture Notes in Computer Science. 2004;
2973:417-424.

[14] Koh YS, Dobbie G. SPO-tree: Efficient single pass ordered incremental pattern mining. Springer,

Berlin, Heidelberg, LNCS. 2011;6862:265-276.
DOI: 10.1007/978-3-642-23544-3-20

[15] La PT, Le B, Vo B. Incrementally building frequent closed itemset lattice. Expert Systems with

Applications. 2014;41(6):2703-2712.

[16] Lee CH, Lin CR, Chen MS. Sliding-window filtering: An efficient algorithm for incremental mining.

Proc. 10th Intl Conf. on Information and Knowledge Management, Atlanta, GA. 2001;263-270.

[17] Lee S, Cheung D. Maintenance of discovered association rules: When to update? Research Issues on

Data Mining and Knowledge Discovery; 1997.

[18] Leung CKS, Khan QI, Hoque T. CanTree: A tree structure for efficient incremental mining of

frequent patterns. Proceedings of the Fifth IEEE International Conference on Data Mining
(ICDM’05); 2005.

[19] Li X, Deng X, Tang S. A fast algorithm for maintenance of association rules in incremental databases.

ADMA. 2006;56-63.

[20] Lin CW, Hong TP, Lu WH. Using the structure of prelarge trees to incrementally mine frequent

itemset. New Gener Comput. 2010;28(1):5-20.
DOI: 10.1007/s00354-008-0072-6

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

18

[21] Liu G, Lu H, Lou W, Yu JX. On computing, storing and querying frequent patterns. Proceeding of the
2003 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’03),
Washington, DC. 2003;607-612.

[22] Pasquier N, Bastide Y, Taouil R, Lakhal L. Discovering frequent closed itemsets for association rules.

Proceeding of the 7th International Conference on Database Theory (ICDT’99), Jerusalem, Israel.
1999;398-416.

[23] Pei J, Han J, Mao R. CLOSET: An efficient algorithm for mining frequent closed itemsets.

Proceeding of the 2000 ACM-SIGMOD International Workshop Data Mining and Knowledge
Discovery (DMKD’00), Dallas, TX. 2000;11-20.

[24] Rouane-Hacene M, Huchard M, Napoli A, Valtchev P. Relational concept analysis: Mining concept

lattices from multi-relational data. Annals of Mathematics and Artificial Intelligence. 2013;67(1):81-
108.

[25] Szathmary L, Valtchev P, Napoli A, Godin R, Boc A, Makarenkov V. Fast mining of iceberg lattices:

A modular approach using generators. In CLA, CEUR Workshop Proceedings. 2011;959:191-206.

[26] Szathmary L, Valtchev P, Napoli A, Godin R, Boc A, Makarenkov V. A fast compound algorithm for

mining generators, closed itemsets and computing links between equivalence classes. Annals of
Mathematics and Artificial Intelligence; 2013.

[27] Tanbeer SK, Ahmed CF, Jeong BS. Efficient single-pass frequent pattern mining using a prefix-tree.

Elsevier International Journal Information Science. 2008;259-283.
DOI: 10.1016/j.ins.2008.10.027

[28] Thomas S, Bodagala S, Alsabti K, Ranka S. An efficient algorithm for the incremental updation of

association rules in large databases. Proceeding of the 3rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Newport Beach, CA. 1997;263-266.

[29] Toivonen H. Sampling large databases for association rules. Proceedings of the 22th International

Conference on Very Large Data Bases. 1996;134-145.

[30] Totad SG, Geeta RB, Prasad Reddy PVGD. Batch processing for incremental FP-tree construction.

Int J Comput Appl IJCA. 2010;5(5):28-32.

[31] Totad SG, Geeta RB, Prasad Reddy PVGD. Batch incremental processing for FP-tree construction

using FP-Growth algorithm. Knowledge Information Systems; 2012.

[32] Valtchev P, Missaoui R. Building concept (Galois) lattices from parts: Generalizing the incremental

methods. In Proceedings of the 9th international conference on conceptual structures. California, USA:
Springer. 2001;290-303.

[33] Valtchev P, Missaoui R, Godin R. A framework for incremental generation of closed itemsets.

Discrete Applied Mathematics. 2008;156(6):924-949.

[34] Veloso A, Possas B, Jr. WM, de Carvalho MB. Knowledge management in association rule mining.

Workshop on Integrating Data Mining and Knowledge Management (in conjuction with ICDM2001);
2001.

[35] Veloso AA, Jr. WM, de Carvalho MB, Pôssas B, Parthasarathy S, Zaki MJ. Mining frequent itemsets

in evolving databases. Proc. 2nd SIAM Intl. Conf. on Data Mining, Arlington, VA; 2002.

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888

19

[36] Vishnu Priya R, Vadivel A, Thakur RS. Frequent pattern mining using modified CP-tree for
knowledge discovery. Springer, Berlin, Heidelberg. LNCS. 2010;6440:254–261.
DOI: 10.1007/978-3-642-17316-5-24

[37] Vo B, Hong TP, Le B. A lattice-based approach for mining most generalization association rules.

Knowledge-Based Systems. 2013;45:20-30.

[38] Wang J, Han J, Pei J. CLOSET+: Searching for the best strategies for mining frequent closed

itemsets. Proceeding of the 2003 ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’03), Washington, DC. 2003;236-245.

[39] Zaki MJ, Hsiao CJ. CHARM: An efficient algorithm for closed itemset mining. Proceeding of the

2002SIAM International Conference on Data Mining (SDM’02), Arlington, VA. 2002;457-473.

[40] Zhou Z, Ezeife CI. A low-scan incremental association rule maintenance method. Proceedings of the

14th Canadian Conference on Artificial Intelligence; 2001.

© 2016 Nguyen; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://sciencedomain.org/review-history/15927

