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Abstract 
 

The problem of closed frequent itemset discovery is a fundamental issue of data mining, having 
applications in numerous domains. Until now, the general technic for incremental mining is using an 
intermediate structure in order to update the structure whenever there is a variation in the data. As for 
incremental mining closed itemsets, the intermediate structure used is a concept lattice. The concept 
lattice promotes the efficiency of the search process, but it is costly to adjust the lattice when there is an 
addition or removal, as well as it is difficult in developing parallelization strategy. This article proposes 
incremental algorithms to search all closed itemsets with a new intermediate structure which is a linear 
list. To the best of our knowledge, this is the first algorithm for incremental mining closed itemsets using 
a linear list as an intermediate structure proposed so far. When comparing experimental results between 
using intermediate structure concept lattice and linear list initially show that the greater number of 
transactions and the number of closed itemsets obtained in the mining process, the more efficient the use 
of linear list promotes. 
 

 
Keywords: Closed itemsets; concept lattice; data mining; incremental mining; mining methods and 

algorithms; new intermediate structure. 
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1 Introduction 
 
Frequent sets are sets of items, subsequences or substructures appearing in a dataset with the frequency 
which is greater or equal a user-defined threshold. 
 
The formal definition of frequent set is as follows: Given I = { i1, i2, . . . , im}  is the set of distinct items,            
O = {o1, o2, . . . , on} is the set of transactions on the transactional database. A mining context is a triple             
D = (O, I, R), for R ⊆ O × I is a binary relation of transactions and items. Each (o, i) ∈ R represents 
transaction o ∈ O containing item i ∈ I. 
 

A set-k α, consisting of k elements from I, is frequent if α appears in transactional database not less than θ|O| 
times, for θ is a minimal support threshold defined by users (then called minsup), and |O| is the total number 
of transactions. The number of occurrences of α is called the support of α (support(α)). 
 
We call L set of frequent item sets. Set M containing maximal frequent item sets in D is defined as follows: 
M = {C ∈ L | ∄C’ ∈ L, C ⊂ C’} 
 

For B ⊆ O and C ⊆ I: 
f(B): 2O → 2I 

f(B) = {i ∈ I | ∀o ∈ B, (o, i) ∈ R} 
g(C): 2I → 2O 

g(C) = {o ∈ O | ∀i ∈ C, (o, i) ∈ R} 
C ⊆ I is closed set if and only if h(C) = C, for h = f o g 

 
Closed set C is called frequent if the support of C in D is greater or equal minsup. Set FC containing 
frequent closed item sets in D is defined: FC = {C ⊆ I | C = h(C) ∧ support(C) ≥ minsup} 
 

Set MC containing maximal frequent closed item sets in D is defined: MC = {C ∈ FC | ∄C’ ∈ FC, C ⊂ C’} 
 
Incremental mining is the process that the only updated data should be exploited in order to discover 
frequent sets. The main purpose of incremental mining is that because data add continueously to the initial 
transaction, hence the size of database becomes larger and mining the entire database will take more time for 
calculating, so it is better if the only updated data is mined. Thence, it supports the ability of execution faster 
than not incremental methods. 
 
Formal definition of incremental mining is as follows: 
 

D: data mining context 
A: algorithm for mining frequent item sets, 
L: set of frequent sets 
D, A (minsup) → L 
{ t}: updated data 

 
For not incremental algorithm: 
 

D+ = D ∪ { t} 
D– = D \ { t} 
D+, A (minsup) → L+ 
D–, A (minsup) → L– 

 
For incremental algorithm (A*): 
 

{ t}, A*, L → L+ 
L: result of the previous period (frequent set) 
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The article proposes incremental algorithms to find all closed sets with a new intermediate structure. 
 

According to [22], set of all frequent closed sets is sufficient to determine a reduced set of association rules. 
Then, it helps to solve another important problem: limiting the number of generated rules without data loss. 
So, frequent closed sets might directly create reduced set of association rules without the need of 
determining all frequent sets, hence reducing the cost of calculating algorithm. In addition, because of 
thousands of hiding association rules, simplifying the number of generated rules without data loss plays an 
important role with obtained results. 
 
In 2003, the workshop Frequent Item set Mining Implementation on implementing algorithms of mining 
frequent sets was reported by Goethals and Zaki [8]. Mining closed sets provides a valuable and important 
alternation for the problem of mining frequent sets because it inherits the same strength of analysis but 
creating a set of much smaller result. 

 

2 Overview 
 
First, the article is going to provide an overview of panoramic perspective on incremental mining. Almost 
incremental mining algorithms are divided into two main categories: Apriori-based algorithms and tree-
based algorithms. 
 

Second, the article is going to focus on the problem of incremental mining (frequent) closed itemsets. 
 

2.1 Incremental mining 
 
2.1.1 Apriori-based algorithms 
 

The algorithm FUP (Fast Update) [3] is the first algorithm proposing incremental mining association rules. It 
solves the issue of database with new added transactions, but cannot solve the case of deleting transactions. 

Initial database 

Initial frequent itemsets 

Incremental mining 
Incremental mining 

Updated database 

Updated frequent itemsets 

Mining frequent itemsets 
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Cheung et al. [4] proposed the algorithm FUP2 which is the extension of the algorithm FUP. FUP updates 
association rules in a database when new transactions are added into the database. Meanwhile, FUP2 updates 
the existing association rules when transactions added to and deleted from database. FUP2 is similar to FUP 
in the case of adding new transactions, and is an additional algorithm for FUP in the case of deleting 
transactions. 
 
The algorithms DELI and ULI face the issue of determing when updating current model. In order to decide 
when to update, [17] proposed the algorithm DELI (Difference Estimations for Large Itemsets), which 
applies the method of getting statistical samples to determine when the current model becomes obsolete. ULI 
(Update Large Itemsets) was proposed by [28]. ULI attempts to decrease I/O requirement to update the set of 
frequent itemsets by maintaining previous frequent itemsets and negative borders [17] and their supports. 
 
In [1], the algorithm UWEP (Update With Early Pruning) was proposed, in which using updating technique 
with early-pruning. The advantage of the algorithm UWEP excels the FUP-based algorithms in that it prunes 
supersets of an initial frequent itemset in D as soon as it becomes infrequent in the updated D’, instead of 
waiting until the iteration kth. 
 
The concept of negative borders [29] was used in [28] to improve the effect of FUP-based algorithms in 
incremental mining. Let L be a set of frequent itemsets, negative borders Bd–(L) of L consists of minimal 
frequent itemsets X ⊆ R but not in L, for R is the set of all items. In other words, negative borders consists of 
all sets which generated candidates with insufficient support. 
 
Both algorithms MAAP (Maintaining Association rules with Apriori Property) [40] and PELICAN [34] are 
similar to the algorithm FUP2, yet their main objective is to maintain the maximal frequent itemsets when the 
database is updated. These algorithms do not consider non-maximal frequent itemsets, so they do not need to 
calculate the supports of non-maximal frequent itemsets. The difference between the two algorithms is that 
MAAP calculates maximal frequent itemsets by relying on Apriori while PELICAN bases on the vertical 
data format and decomposing lattice. 
 
Lee et al. [16] proposed the approach SWF (Sliding-Window Filtering). SWF divides database into many 
partitions, and applies a filtering threshold on each partition to create candidate sets. [35] described the 
algorithm ZigZag, using tidlist (list of transaction id) and calculating maximal frequent itemsets in the 
updated database to avoid generating many unnecessary candidates. 
 
2.1.2 Tree-based algorithms 
 
In [6], DB-tree and PotFp-tree were proposed for incremental mining. The algorithm DB-tree (Database 
tree) stores all items in a FP-tree instead of only 1-element frequent itemsets in database. Additionally, 
building a DB-tree is exactly as the same way as FP-tree. Hence, DB-tree might be seen as a FP-tree with the 
minimal threshold = 0. Another algorithm proposed in [6] is PotFp-tree (Potential Frequent Pattern tree), 
which only stores a few potential frequent items beside1-element frequent itemsets. A tolerance parameter t 
is used to decide whether an item is frequent potentially or not. 
 
The algorithm AFPIM (Adjusting FP-tree for Incremental Mining) [13] updates FP-tree built previously by 
only scanning the increment of database. This increment database contains new transactions affecting the 
frequence of items. When items are ordered by descending frequency based on the initial dataset, AFPIM re-
arranges items in the tree according to new value of frequency based on the increment dataset, using bubble-
sort sorting method by recursively swapping adjacent items. 
 
The tree-based algorithms EFPIM (Extending FP-tree for Incremental Mining) [19] and FUFP-tree (Fast 
Updated Frequent Pattern tree) [11] as well as AFPIM, conduct incremental mining by using a compressed 
data structure, mainly adjusting the structure FP-tree. These approaches still require two times of scanning 
database for the initial part (in order to build the FP-tree structure) and the increment part (in order to update 
the tree structure). 
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CATS-tree (Compressed and Arranged Transaction Sequence tree) [5] and DB-tree are the same because 
both store all items without caring whether they are frequent or not. This feature allows CATS-tree to avoid 
re-scanning database when updates occur. However, the way of building CATS-tree is different from FP-tree 
and DB-tree. In more details, FP-tree is built based on the order of global supports of all frequent items 
while CATS-tree is built based on the order of local supports of items in their path. 
 
In [18], a tree structure called CanTree (Canonical Tree) proposed in order to obtain content of transactional 
database and arrange tree nodes in a canonical order. 
 
CP-tree (Compact Pattern tree) was proposed in [27]. This algorithm also builds prefix tree by conducting a 
unique scanning on database. [36] proposed modified CP-tree, constructing a tree for entire database with 
items arranged on the same order as their occurrence on transactions. 
 
Lin et al. [20] proposed PreLarge-tree for incremental mining association rules based on concept of pre-large 
itemsets. A pre-large itemset is not actually large, but maybe large with a high probability in the future. A 
pre-large itemset is a itemset having frequency greater than lower support threshold defined by users and 
less than upper support threshold defined by users. 
 
SPO-tree (Single Pass Ordered tree) [14] orders items of a transaction by descending frequency. It re-
constructs periodically the tree based on a parameter called Edit Distance. The tree is re-organized once Edit 
Distance of items in the order exceeding the pre-defined threshold. 
 
The algorithm BIT (Batch Incremental Tree) [30] was proposed for batch processing incrementally 
increasing database in order to construct a canonical ordered tree (CanTree). The algorithm BIT merges two 
FP-trees of two small adjacent periods to obtain a FP-tree which equivalent to FP-tree obtained when entire 
database is processed at the same time from the beginning of the first period to the end of the second period. 
In [31], the authors proposed applying the same principle used in the algorithm BIT to build the equivalent 
FP-tree but with the algorithm FP-Growth. That is they uses batch incremental mining to build FP-tree by 
applying algorithm FP-Growth, and named BIT_FPGrowth. 
 
Incremental mining based on the intermediate structure of FP-tree shows a weakness in the implementation 
process because the FP-tree structure depends on the global property of supports of items in the database. 
Therefore, when the data is updated, it will create influence on the FP-tree structure, specifically in 
situations: new items are frequent, or old items become less frequent than new items. It is particularly 
serious with the situation of old items become unfrequent. 
 
To solve this problem, there are solutions such as updating periodically the tree structures or basing on the 
indicators to determine the time for updating. Especially, there is the solution of using the canonical order to 
avoid having to depend on the global order of supports of items. However, there are still problems as 
described in detail in each of the study above. 
 
A new research direction is to use an intermediate structure of concept lattice. The next section presents an 
overview of mining incrementally closed sets with the intermediate structure of concept lattice, and the 
techniques of not incremental mining closed sets. 
 

2.2 Incremental mining (frequent) closed itemsets 
 
The approaches for mining (frequent) closed itemsets are now divided into two groups: incremental mining 
and not incremental mining. 
 
Mining frequent closed itemsets was first proposed by [22], with an algorithm based-on-Apriori, called A-
Close. 
 
In series, the algorithms for mining closed itemsets include CLOSET [23], CHARM [39], CLOSET+ [38], 
FPClose [9] and AFOPT [21]. 
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The main challenge in mining frequent closed itemsets is to check whether an itemset is closed or not. There 
are two strategies to approach this problem: (1) keep track of TID list of an itemset and index the itemset by 
hashing its TID values. This method is used by CHARM whose task of maintaining a TID list called a 
diffset, and (2) maintain itemsets discovered in a tree similar to FP-tree. This method is exploited by 
CLOSET +, AFOPT and FPClose. 
 
The methods described above are the mining approaches which is not incremental. In the recent period, 
researchers are focusing on the tendency to use concept lattices to serve the purpose of incremental mining. 
The concept lattice, widely used in mathematics [7], is the hierarchical structure between concepts. Each 
concept consists of three components: a set of objects, a set of attributes and a relation between these sets. 
Correspondingly, each concept can include a closed set, a transaction set and the relationship between these 
two sets [26]. Methods for maintaining a concept lattice can be divided into 2 groups: (1) direct-update, new 
transactions are added separately to the lattice and (2) merge-lattices, constructing the lattice from new 
transactions added and merging this with the original lattice. 
 
The algorithms proposed in [12,33,10,25,24,37,15] belong to the direct-update group. 
 
The methods of [32,2] belong to the merge-lattices group. 
 
Until now, the general technic for incremental mining is using an intermediate structure in order to update 
the structure whenever there is a variation in the data. As for incremental mining closed itemsets, the 
intermediate structure used is a concept lattice. The concept lattice promotes the efficiency of the search 
process, but it is costly to adjust the lattice when there is an addition or removal, as well as it is difficult in 
developing parallelization strategy. This is evident when the studies of incremental mining closed itemsets 
by merging lattices have not been significantly developed since the 2007. 
 
This article proposes incremental algorithms to search all closed itemsets with a new intermediate structure 
which is a linear list. Experimental comparing results between using intermediate structure concept lattice 
and linear list initially show: The greater number of transactions as well as the number of closed itemsets is 
obtained in the mining process, the more efficient the use of linear list promotes. 
 

3 Proposal Work 
 
3.1 Constructing the intermediate structure 
 
Let B = {0, 1}, B

m 
is the space of m-tuple bit chains, whose elements are s = s

1
s

2
…s

m
, s

i 
∈ B, i = 1, ... , m. 

 
Definition 1: Given two bit-chains with the same length: a = a1a2…am, b = b1b2…bm.  
a is said to cover b or b is covered by a – denoted a � b – if pos(b) ⊆ pos(a) for pos(s) = {i | si = 1}. To be 
negative, the operator ! is used, particularly a !� b. 
 
Definition 2:  
 
+ Let u be a bit-chain, k is a natural number, we call [u; k] a sample. 
 
+ Let S be set of m-tuple bit-chains (bit-chain with the length of m bits), u is a m-tuple bit-chain. If there are 
at least k bit-chains in S covering u, we say: u is a form of S with the frequency of k; and [u; k] is a sample of 
S – denoted [u; k]→S. 
 
Example 1: S = {1110, 0111, 0110, 0010, 0101} and u = 0110. We say u is a form with the frequency of 2 in 
S, hence [0110; 2]→S. 
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+ A sample [u; k] of S called maximal sample – denoted [u; k]max→S – if and only if it does not exist k’ that 
[u; k’]→S and k’ > k. For the above example, [0110; 3]max→S 
 
Definition 3 (operations and binary relation): 
 
+ Two m-tuple bit-chains a and b are called equal– denoted a = b – if and only if ai = bi ∀i ∈ {1, … , m}, 
vice versa a ≠ b. 
 
+ Given two samples [u1; p1] and [u2; p2]. [u1; p1] is said to be contained in [u2; p2] – denoted [u1; p1] ⊆ [u2; 
p2] – if and only if u1 = u2 and p1 ≤ p2, vice versa [u1; p1] ⊄ [u2; p2]. 
 
+ Given two m-tuple bit-chains a and b. A m-tuple bit-chain z is called minimal sequence of a and b – 
denoted z = a ∧ b – if and only if zk = min(ak, bk) ∀k ∈ {1, … , m}. 
 
+ Minimal sample of two samples [u1; p1] and [u2; p2] is a sample [u’; p’] – denoted [u’; p’] = [u1; p1] ο [u2; 
p2] – for u’ = u1 ∧ u2 and p’ = p1 + p2. 

 
Definition 4: P is a representative set of S when P = {[u; p]max→S | ∄[v; q]max→S ≠ [u; p] : (v � u and q ≥ p)}. 
Each of elements of P is called a representative sample of S. 

 
The rationale for constructing the set P: 
 
Representative set P is the set of closed sets of S (according to the definition from [22]). Once minsup is 
established, we can obtain closed frequent sets of S. 
 
Theoretical bases for constructing set P are as follows:  
 
The definition of closed set from [22]: 
 
A context of mining dataset is a triple D = (O, I, R). O and I are sets of finite transactions and items. R ⊆ O × 
I is a binary relation of transactions and items. Each pair (o, i) ∈ R shows that transaction o ∈ O containing 
item i ∈ I, 
 

For B ⊆ O and C ⊆ I: 
f(B): 2O → 2I 

f(B) = {i ∈ I | ∀o ∈ B, (o, i) ∈ R} 
g(C): 2I → 2O 

g(C) = {o ∈ O | ∀i ∈ C, (o, i) ∈ R} 
C ⊆ I is closed set if and only if h(C) = C, for h = f o g 

 
With C a closed set, we have two following affirmations: 
 
* In case of adding new items to C, becoming C+ (C ⊂ C+) and if C+ is a closed set, g(C+) has to have the 
strictly smaller number of elements than g(C) (g(C+) ⊂ g(C)). Indeed: 
 

-  If g(C+) = g(C), for f(g(C+)) = C+ hence f(g(C)) = C+, conflicting with the definition of that C is a 
closed set. 

-  If g(C+) ⊃ g(C), it conflicts with the definition of g(C) = {o ∈ O | ∀i ∈ C, (o, i) ∈ R} (find all o ∈ 
O so that each o contains all i ∈ C, so why there are o’ ∈ g(C+) containing all i ∈ C). 

 
* In case of withdrawing items out of C, becoming C– (C– ⊂ C) and if C– is a closed set, g(C–) has to have 
the strictly greater number of elements than g(C) (g(C–) ⊃ g(C)). Indeed: 
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-  If g(C–) = g(C), f(g(C–)) = f(g(C)) = C–, conflicting with the definition of that C is a closed set. 
-  If g(C–) ⊂ g(C), it conflicts with the definition of g(C–) = {o ∈ O | ∀i ∈ C–, (o, i) ∈ R} (find all o ∈ 

O so that each o contains all i ∈ C–, so why there are o’∈ g(C) containing all i ∈ C–). 
 

Remark 1: Without loss of generality, an arbitrary closed set of D either differents from (does not cover or 
is not covered by) other closed sets or if strictly contained in a closed set α, its frequency has to be greater 
than the frequency of α. 
 
Basing on this basis to construct the set P = {[ u; p]max→S | ∄[v; q]max→S ≠ [u; p] : (v � u and q ≥ p)}. 
 
In more details, the set P will have: 

 
Non-existing cases Existing cases  
v � u and qv ≥ pu 

• v = u and qv = pu (not actual) 
• v = u and qv > pu (not actual) 
• v strictly covers u and qv = pu 
• v strictly covers u and qv > pu 

v !� u or qv < pu 
• v !� u and qv ≥ pu 

- v ≠ u (u !���� v) and qv ≥ pu 
- u strictly covers v and qv > pu (not =) 

• v !� u and qv < pu 
- v ≠ u (u !���� v) and qv < pu 

- u strictly covers v and qv < pu (discard, because of 
returning the non-existing cases, left column) 

• v � u and qv < pu 
- v strictly covers u and qv < pu 
- v = u and qv < pu (not actual) 

 
The property of the set P: 
 
We are able to show a set of transactions as the set S of bit-chains. For a bit-chain in S, the i th bit is 
established as 1 when the i th item is purchased and vice versa. 
 
When an arbitrary minimal support threshold minsup is established, the representative set P will give all 
closed frequent sets and maximal frequent sets of S. 
 
Indeed: 
 
Firstly, we repeat the definitions of closed frequent set and maximal frequent set. 
 
A set α is a closed frequent set on dataset D if α is frequent on D and there is not any strict superset β of α 
and support(α) = support(β) on D. 
 
A set α is a maximal frequent set on D if α is frequent, and there is not any strict superset β for α ⊂ β and β 
is frequent on D. 
 
Therefore, a maximal frequent set is a special closed frequent set. More specific, according to the definition, 
a maximal frequent set is definitely a closed frequent set at a support equaling its frequency and it is the 
closed frequent set which is not able to be contained by any other closed frequent sets. 
 
With the definition P = {[ u; p]max→S | ∄[v; q]max→S ≠ [u; p] : (v � u and q ≥ p)}, considering an arbitrary 
element [u; p] ∈ P, once p ≥ minsup (that is, u shows a frequent set α with support p). Then, according to the 
definition of set P, there is not any bit-chain v (showing a set β) which is able to cover u with the frequency 
of q = p. That means, at the support value p of the frequent set α, it does not exist a strictly larger set β 
having the same support of p. Since, [u; p] is a closed frequent set. 
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Hence, the set P contains all closed frequent sets of S, inferring P also contains all maximal frequent sets of 
S. 
 
We may easily calculate closed frequents set based on P. 
 
So, the major issue is concentrated on re-constructing the representative set P whenever S is modified 
(adding, deleting elements). 
 
3.2 The incremental algorithm for adding a new transaction 
 
Let S be a set of n m-tuple bit-chains with the representative set P. In this part, we will consider the 
algorithm for rebuilding set P when a new bit-chain is added to S. 
 
The algorithm NewRepresentative: 
 

Input: P is the representative of S, z is a bit-chain added to S 
Output: The new representative set P of S ∪ {z} 

For each x ∈ P:  
• Using the operation ο in order to find the smaller closed set of x and its frequency is 

greater than x 1 unit. (relying on Remark 1) 
• Considering z as a new closed set of P. (Now, P has two group of element: previous 

elements and new elements created by the operation ο) 
• Verifying to discard invalid elements of P (in order to ensure the property of P): 

- Discarding previous elements are contained by new elements 
- Discarding new elements contain mutually 

Output the set P 
 
3.3 The incremental algorithm for deleting a transaction 
 
Definition 5: 
 
Let S be a set of bit-chains and P be the representative set of S. P is obtained by applying the algorithm 
NewRepresentative to S. Let [p; k] ∈ P, and s1, s2, … , sr ∈ S be r (r ≤ k) bit-chains taking part in forming p, 
denoted p_crd: s1, s2, … , sr, vice versa, denoted: p_crd: !s1, !s2, … , !sr. 
 
Example 2: In Example 1, we have bit-chains 1110 and 0111 are 2 of 3 bit-chains participating in forming 
[0110; 3]. Let s1 = 1110, s2 = 0111 and p = 0110, we have: p_crd = s1, s2. Let s3 = 0101 not participating in 
forming [0110; 4], so: p_crd = !s3. 
 
The following is the algorithm to find the new representative set of S when a bit-chain is deleted from S. 
 

The algorithm NewRepresentative_Delete: 
 

Input: P is the representative set of S, z is the deleted transaction 
Output: the new representative set P of S \ {z} 

For each x ∈ P 
If z � the form of x (i.e. x.form_crd = z) 

Decreasing the frequency of x 1 unit 
If the frequency of x = 0 then removing x from P 
Verifying to discard x if x is contained by an element in P (in order to ensure the 
property of P) 

End if 
End for 
Output the set P 
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4 Experiment for Verifying Results 
 
The algorithm proposed by [12] has been one of the first approaches to build the lattice of closed sets. This 
algorithm builds a lattice containing all closed sets of the original dataset and allows incremental mining by 
the direct-update method when a transaction is added. The obtained results (including the quantity, meaning 
and purpose) of this algorithm are completely accurate as the results of the algorithm NewRepresentative. 
Therefore, the comparative experiment is conducted with the algorithm of [12]. 
 

* Infrastructure: one computer with the configuration as follows: 
 

-  CPU: Intel(R) Core(TM) i3-2100 (4 CPUs), ~3.1GHz 
-  RAM: 8192MB 
-  Operation Systems: Windows 7 Ultimate 64-bit (6.1, Build 7601) Service Pack 1 
-  Programming language: C#.NET 

 
* Experimental datasets: got from http://fimi.ua.ac.be/data/ 
 

* T10I4D100K: 
 

Number of transactions on the database:  100,000 
Maximal number of items on each transaction:                 29 
Maximal items on the dataset:  1,000 

 

Table 1. Comparative figures between 2 algorithms for T10I4D100K 
 

No. 
transactions 

NewRepresentative  Lattice 
The time for 
adding 1 
transaction 
(second) 

Total time 
(second) 

No. 
closed 
sets 

 The time for 
adding 1 
transaction 
(second) 

Total time 
(second) 

No. closed 
sets 

1,000 0.003 1.65 7,311  0.06 19.26 7,311 
2,000 0.02 9.66 18,213  0.64 147.79 18,213 
3,000 0.04 35.58 31,022  0.81 536.50 31,022 
4,000 0.06 85.91 44,528  0.47 1,288.87 44,528 
5,000 0.19 166.26 59,279  2.31 2,628.95 59,279 
6,000 0.11 271.86 74,006  1.40 4,622.61 74,006 
7,000 0.20 418.83 89,830  3.99 7,546.51 89,830 
8,000 0.25 604.89 105,544  6.24 11,362.58 105,544 
9,000 0.09 815.71 121,166  1.47 16,307.64 121,166 
10,000 0.33 1,089.89 139,491  7.71 23,455.05 139,491 
11,000 0.52 1,415.70 158,138     
12,000 0.33 1,806.82 176,766     
13,000 0.30 2,253.67 195,557     
14,000 0.69 2,769.95 215,066     
15,000 0.75 3,362.96 235,747     
16,000 2.09 4,021.19 255,604     
17,000 0.81 4,667.43 275,385     
18,000 1.26 5,417.64 295,607     
19,000 0.45 6,202.65 315,910     
20,000 0.25 7,083.47 336,109     
21,000 0.20 8,043.19 355,853     
22,000 2.32 9,088.06 376,549     
23,000 2.29 10,251.07 396,845     
24,000 1.20 11,507.05 417,756     
25,000 0.92 12,926.93 440,785     
26,000 0.55 14,404.83 461,495     
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No. 
transactions 

NewRepresentative  Lattice 
The time for 
adding 1 
transaction 
(second) 

Total time 
(second) 

No. 
closed 
sets 

 The time for 
adding 1 
transaction 
(second) 

Total time 
(second) 

No. closed 
sets 

27,000 0.87 15,897.83 483,930     
28,000 0.19 17,470.77 506,176     
29,000 1.30 19,169.08 529,346     
30,000 2.31 20,925.02 552,617     
31,000 0.66 22,815.77 573,595     
32,000 0.36 24,446.15 595,934     
33,000 2.68 26,050.77 619,655     
34,000 0.67 27,727.44 643,210     
35,000 2.64 29,567.60 667,597     
36,000 2.47 31,484.93 691,155     
37,000 1.20 33,543.99 713,641     
38,000 0.98 35,563.43 736,338     
39,000 2.73 37,631.26 760,625     
40,000 1.53 39,772.44 783,805     

 

 
 

Fig. 1. Comparative chart between 2 algorithms for T10I4D100K 
 

With the experimental dataset T10I4D100K, the algorithm of [12] (Lattice for short) has the phenomenon of 
memory overflow when the number of transactions is about 10,000. Meanwhile, the algorithm 
NewRepresentative overflows when the number of transactions is about 40,000. 
 
The following part is a comparison chart of the two algorithms on implementing time at each landmark of 
the number of transactions. The vertical column represents the time in millisecond, and the horizontal bar 
represents landmarks of the number of transactions. 
 
With the following experimental dataset (retail, mushroom, connect, pumsb_star, pumsb), results of 
comparison tables and graphs are presented exactly as the presentation of the dataset T10I4D100K. 
 
* retail: 

 
Number of transactions on database:  88,162 
Maximal number of items on each transaction:  76 
Maximal items on dataset:  16,469 
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Table 2. Comparative figures between 2 algorithms for retail 
 

No. 
transactions 

NewRepresentative Lattice 
The time for 
adding 1 
transaction 
(second) 

Total time 
(second) 

No.  
closed  
sets 

The time for 
adding 1 
transaction 
(second) 

Total time 
(second) 

No. 
closed 
sets 

1,000 0.001 1.27 4,410 0.006 1.01 4,410 
2,000 0.01 7.72 11,907 0.03 50.50 11,907 
3,000 0.01 31.96 25,848 0.22 333.47 25,848 
4,000 0.02 76.16 40,364 1.18 1,162.11 40,364 
5,000 0.07 136.55 51,877 2.58 2,254.10 51,877 
6,000 0.02 238.31 69,172 0.12 4,349.16 69,172 
7,000 0.08 377.10 86,722 2.62 7,804.74 86,722 
8,000 0.08 513.15 97,736 1.79 10,393.21 97,736 
9,000 0.26 684.84 112,927 7.22 14,312.75 112,927 
10,000 0.17 929.07 132,472 0.54 21,685.91 132,472 
11,000 0.19 1,176.73 145,805 2.01 28,084.02 145,805 
12,000 0.37 1,433.72 157,027 9.00 33,623.61 157,027 
13,000 0.12 1,765.60 171,748 0.83 42,301.62 171,748 
14,000 0.13 2,250.50 193,093 10.05 69,322.26 193,093 
15,000 0.23 2,651.00 206,187 5.18 84,387.09 206,187 
16,000 0.42 3,064.94 218,447    
17,000 0.17 3,557.91 238,302    
18,000 1.64 4,182.06 267,375    
19,000 0.51 4,652.33 282,995    
20,000 0.09 5,175.34 298,866    
21,000 1.07 5,902.65 326,976    
22,000 1.12 6,728.45 355,411    
23,000 0.34 7,289.17 369,846    
24,000 0.58 8,003.51 389,871    
25,000 0.19 8,975.41 418,421    
26,000 0.29 9,797.55 432,478    
27,000 0.63 10,656.31 447,936    
28,000 0.27 11,886.16 476,058    
29,000 0.64 12,984.84 495,801    
30,000 0.62 13,906.40 510,335    
31,000 0.55 14,918.17 530,243    
32,000 0.59 16,277.79 562,342    
33,000 0.41 17,294.59 580,406    
34,000 0.99 18,362.52 597,965    
35,000 0.45 19,516.55 620,735    
36,000 0.98 21,312.59 657,313    
37,000 0.28 22,867.05 677,236    
38,000 0.36 24,427.39 697,467    
39,000 2.22 26,054.38 726,168    
40,000 0.47 27,745.88 753,244    
41,000 0.72 28,954.68 766,170    
42,000 0.81 30,362.63 783,859    
43,000 4.44 32,254.40 811,294    
44,000 0.24 34,402.17 841,938    
45,000 0.78 36,108.94 858,093    
46,000 11.28 37,986.32 879,523    
47,000 1.81 40,052.93 908,826    
48,000 0.53 42,130.18 940,774    
49,000 0.47 43,798.43 957,926    
50,000 0.67 45,403.28 974,458    
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Fig. 2. Comparative chart between 2 algorithms for retail 
 

* mushroom: 
 

Number of transactions on database:  8,124 
Maximal number of items on each transaction:                23 
Maximal items on dataset:  119  

 

Table 3. Comparative figures between 2 algorithms for mushroom 
 

No. 
transactions 

NewRepresentative Lattice 
The time for adding 
1 transaction 
(second) 

Total time 
(second) 

No. 
closed 
sets 

The time for adding 1 
transaction (second) 

Total time 
(second) 

No. 
closed 
sets 

1,000 0.58 364.04 32,513 154.97 47,893.60 32,513 
2,000 2.40 2,036.38 58,982    
3,000 3.26 5,019.46 80,901    
4,000 1.89 8,290.29 104,104    
5,000 4.03 11,954.85 136,401    
6,000 3.99 19,552.01 156,573    
7,000 8.33 30,003.14 214,950    
8,000 11.60 41,696.58 237,874    
8,124 12.10 43,140.48 238,709    

 

 
 

Fig. 3. Comparative chart between 2 algorithms for mushroom 
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* connect: 
 

Number of transaction on database:  67,557 
Maximal number of items on each transaction:  43 
Maximal items on dataset:  129 

 

Table 4. Comparative figures between 2 algorithms for connect 
 

No. 
transactions 

NewRepresentative  Lattice 
The time for 
adding 1 
transaction 
(second) 

Total time 
(second) 

No. 
closed 
sets 

 The time for 
adding 1 
transaction 
(second) 

Total time 
(second) 

No. 
closed 
sets 

100 0.54 14.44 13,406  22.39 533.41 13,406 
200 10.81 485.31 63,360  1,217.30 43,131.84 63,360 
300 62.52 3,738.96 149,393     
400 62.71 12,867.77 232,526     
500 370.23 35,284.15 445,676     

 

 
 

Fig. 4. Comparative chart between 2 algorithms for connect 
 

* pumsb_star: 
 

Number of transaction on database:  49,046 
Maximal number of items on each transaction:  63 
Maximal items on dataset:  7,116 

 
Table 5. Comparative figures between 2 algorithms for pumsb_star 

 

No. 
transactions 

NewRepresentative  Lattice 
The time for 
adding 1 
transaction 
(second) 

Total time 
(second) 

No. 
closed 
sets 

 The time for 
adding 1 
transaction 
(second) 

Total time 
(second) 

No. 
closed 
sets 

10 0 0.008 189  0.002 0.16 189 
20 0.01 0.15 1,301  0.06 0.35 1,301 
30 0.02 0.37 4,465  1.22 5.15 4,465 
40 0.07 0.86 8,974  5.12 35.58 8,974 
50 0.31 2.57 17,425  15.79 170.86 17,425 
60 0.35 6.31 25,433  70.20 500.91 25,433 

0

200000

400000

600000

800000

1000000

1200000

1400000

100 200 300 400 500

connect

NewRepresentative Lattice



 
 
 

Nguyen; BJMCS, 18(3): 1-19, 2016; Article no.BJMCS.27888 
 
 
 

15 
 

No. 
transactions 

NewRepresentative  Lattice 
The time for 
adding 1 
transaction 
(second) 

Total time 
(second) 

No. 
closed 
sets 

 The time for 
adding 1 
transaction 
(second) 

Total time 
(second) 

No. 
closed 
sets 

70 2.74 17.63 38,305  100.68 1,605.28 38,305 
80 0.68 44.46 48,875  58.84 3,055.21 48,875 
90 4.02 78.72 62,212  510.07 5,631.91 62,212 
100 10.72 139.11 84,907  395.72 11,918.65 84,907 
110 8.97 249.70 101,179     
120 36.22 408.70 130,144     
130 26.41 583.24 145,829     
140 4.59 768.99 168,617     
150 5.96 1,278.00 205,421     
160 141.07 1,856.49 225,118     
170 156.66 2,742.11 246,286     
180 76.11 3,403.82 277,220     
190 227.07 4,408.26 309,147     
200 160.48 5,423.01 354,489     

 

 
 

Fig. 5. Comparative chart between 2 algorithms for pumsb_star 
 

* pumsb: 
  

Number of transaction on database:  49,046 
Maximal number of items on each transaction:  74 
Maximal number of items on dataset:  7,116 

 

Table 6. Comparative figures between 2 algorithms for pumsb 
 

No. 
transactions 

NewRepresentative Lattice 
The time for adding 
1 transaction 
(second) 

Total time 
(second) 

No. closed 
sets 

The time for adding 
1 transaction 
(second) 

Total time 
(second) 

No. 
closed 
sets 

10 0.006 0.02 240 0.004 0.13 240 
20 0.05 0.21 1,873 0.14 0.66 1,873 
30 0.28 1.44 10,108 14.37 37.32 10,108 
40 2.33 8.44 26,544 86.66 495.26 26,544 
50 4.17 102.08 99,575 1,725.10 6,261.31 99,575 
60 342.14 977.71 252,113    
70 1,237.60 7,575.90 406,906    
80 840.42 18,507.95 864,979    
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Fig. 6. Comparative chart between 2 algorithms for pumsb 

5 Conclusion 
 
This article proposes incremental algorithms to search all closed itemsets with a new intermediate structure 
which is a linear list. To the best of our knowledge, this is the first algorithm for incremental mining closed 
itemsets using a linear list as an intermediate structure proposed so far. Experimental comparing results 
between using intermediate structure concept lattice and linear list initially show: The greater number of 
transactions as well as the number of closed itemsets is obtained in the mining process, the more efficient the 
use of linear list promotes. 
 
In the near future, we will research on parallelization algorithms to reduce implementing time and improve 
the performance. 
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