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Abstract 
 

The idea of statistical convergence of sequences in Hausdorff topological spaces was introduced and 
studied to some extend by Di Maio and Kocinac in [1]. In this paper we consider the concept of  
statistical continuity of functions and give a characterization of them by using statistical convergent 
sequences in  first countable Hausdorff topological spaces. 
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1 Introduction 
 
In general, it is known that the notion of statistical convergence of sequences of real numbers was introduced 

by H. Fast in [2] and H. Steinhaus in [3] and it is based on the notion of asymptotic density of a set NA ⊂   
[4,5,6]. However, as stated in [1], the first idea of statistical convergence appeared in the first edition of the 
celebrated monograph [7] of Zygmund but under a different name as almost convergence. It should be 
expressed the notion of statistical convergence has been considered, in some other contexts, by several 
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people like R.A. Bernstein, Z. Frolik, etc. We come across to applications of the statistical convergence 
concept in different fields of mathematics such as summability theory [8,9,10,11], number theory [12], 
trigonometric series [7], probability theory [13], measure theory [14], optimization [15] and approximation 
theory [16]. The statistical convergence was generalized to sequences in metric spaces (see, for instance, 
[17]). Di Maio and Kocinac [1] introduced and studied statistical convergence in Hausdorff topological 
spaces and uniform spaces and offered some applications to selection principles theory, function spaces and 
hyperspaces. After introducing by Fast [2], it has been a very rapid investigation concerning the notion of 
statistical convergence of sequences of real numbers as in the papers [8,10,18,19,20]. After Freadman and 
Sember [9], Kolk [18], taking in Fast’s definition of statistically convergent sequence and Fridy’s definition 
of statistically Cauchy sequence an arbitrary non-negative regular matrix A instead of Cesaro C1, introduced 
the notions of A-statistically convergent and A-statistically Cauchy sequences in normed spaces. Independly 
Maddox [19] introduced the statistical convergence in locally convex spaces. Statistical limits of measurable 
functions were considered by F. Moricz in [21] to some extent. Counting as recent examples of studies on 
similar topics; A. Boccuto et al presented some different types of ideal convergence/divergence and of ideal 
continuity for Riesz space-valued functions, and prove some basic properties and comparison results in [22]. 
B. T. Bilalov and T. Y. Nazarova   studied on the statistical type convergence and fundamentality in metric 
spaces in their work [23]. B.T. Bilalov and S.R. Sadigova introduced the concept of statistical continuity in 
[24]. Then B.T. Bilalov and T. Y. Nazarova considered the concept of statistical convergence in metric 
spaces proving its equivalence to the statistical fundamentality in complete metric spaces in [25]. In the same 
paper after introducing the concept of p-strong convergence they proved its equivalence to the statistical 
convergence and gave Tauberian theorems concerning statistical convergence in metric spaces. They also 
considered statistical convergence in Lebesgue spaces in [26] and gave a criterion for statistical 
convergence. 
 
It also should be expressed that the concept of statistical convergence in topological spaces was introduced 
by Di Maio and Kocinac and studied the concept to some extend [1]. Inspired by [1], we introduce the 
definition of the statistical continuous function concept and then give a characterization of statistical 
continuity of functions by means of using statistical convergent sequences in Hausdorff topological spaces. 
 

2 Definitions and Basic Properties 
 
We shall start with the remembrance of some basic definitions, notations and auxiliary results concerning the 
concept of statistical convergence. 
 

Definition 2.1. Let { },...3,2,1=⊂ NA  and Nn∈ . Put { }naAanA ≤∈= :)(  . If there exist   

n

nA
n

)(
inflim

∞→
,  it will be called the asymptotic density of the set A and denoted by  )(1 Aδ , where A  

denotes the cardinality of any set NA ⊂ . If we have the limit 
n

nA
n

)(
lim

∞→
, then this limit value is called 

the natural density of the set A and denoted by )(Aδ . Therefore, if the set A has the the natural density, we 

have  
n

nA
AA

n

)(
lim)()( 1 ∞→

== δδ . Note that the density values, if they exists, are in the interval [0,1].  

Obiviously we have 0)( =Aδ  provided that A is a finite set of positive integers. 
 
Let’s give a definition concerning the notion of a statistically convergent sequence introduced by Fast [2]. 
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Definition 2.2. The sequence Nnnx ∈)(  of real numbers is said to convergence statistically to the real 

numbers x and denoted by xxstat n
n

=−
∞→

)(lim  or briefly x
st

xn  if for each 0>ε  we have 

0)( =εδ A , where { }εε ≥−∈= xxNnA n: . It is clear that 0)( =εδ A  equals to 1)( =cAεδ , 

where }{ εε ε ANxxNnA n
c −=<−∈= : . 

 

Another well-known  definition of a statistically convergent sequence )( nx  is such as following: We have 

x
st

xn  if { } 0:
1

lim =≥−≤
∞→

εxxnk
n k

n
.  

 

3 The Main Results 
 
We start by giving the definition of topological statistically convergence concept for a sequence in a 
topological space as done by Di Maio and Kocinac in [1]. 
 
Definition 3.1. Let X be a non empty set and ),( τX  be any topological space. 
 

The sequence Nnnx ∈)(  of X is said to converge topological statistically to the element x in the topological 

space X if for each neighbourhood U in the )(xN  (where )(xN  is a collection of the neighbourhoods of 

element x ) we have 0)( =UAδ , where }{ UxNnA nU ∉∈= : . We denote this case by 

xxstat n
n

=−
∞→

)(lim τ  or briefly x
st

xn

−τ
. When xxn

n
=

∞→
lim , for each 0>ε , there exists such a 

0n  that for each nn ≤0 , Nn∈  we have ε<− xxn , following Proposition 3.2. is trivial due to the 

definition of the topological statistically convergence. 
 
Proposition 3.2.  If xxn

n
=

∞→
lim ,  then xxstat n

n
=−

∞→
)(lim τ  holds. 

 
The conclusion contained in following Lemma 3.3 can be also found as a statement in [1]. 
 
Lemma 3.3. [1] Let ),( τX  be a Hausdorff topological space, then topological statistically limit is unique. 

 

Proof. Take a sequence Xxn ⊂)(  and suppose we have xxstat n
n

=−
∞→

)(lim τ  and 

yxstat n
n

=−
∞→

)(lim τ . We should show the equality yx = . For the contradiction, suppose yx ≠ . Since 

X  Hausdorff topological space, there exist )(xNU ∈  ve )(yNV ∈  such that  ∅=∩VU . By 

considering, }{ UxNnA n
c

U ∈∈= : ,  }{ VxNnA n
c

V ∈∈= :  and 1)()( == c
V

c
U AA δδ , we 

have ∅≠∩ c
V

c
U AA . Then, there exists at least an Nk ∈  such that VUxk ∩∈ , but it contradicts 

with the assumption. Hence yx = . 

 
Following Theorem 3. 4. is a generalisation of a well-known result in the case of statistical convergence for 
sequences of real numbers to the first countable Hausdorff topological spaces. For the sake of completeness, 
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it is presented to the readers a clearly understandable proof of Theorem 3.4. which belongs to Di Maio and 
Kocinac in [1].   
 

Theorem 3.4. [1] Let ),( τX  a first countable Hausdorff topological space, Xxn ⊂)(  and Xx∈ . Then, 

x
st

xn

−τ

 

if and only if there exists a set NK ⊆  such that  1)( =Kδ  and xx
nk →  

Proof.  Since X  first countable topological space we have a decreasing collection of the neighbourhoods of 

the element x, that is a local base, nUUUU ⊇⊇⊇⊇ ...321 . 

 

Let }{ jnj UxNnK ∈∈= :  and nj ,...,3,2,1= . Then we have 1)( =jKδ  such that 

121 ... KKKK jj ⊆⊆⊆⊆+ . Take any 11 KV ∈ . Since 1)( 2 =Kδ , we have )(
1

lim 2 nK
nn ∞→

=1. Take 

2

1=ε  , then for nnn ≤∃ 00 :  we have 
2

1
1)(

1

2

1
1

2

1
2 +<<−= nK

n  

}{ 210 ,max VNVn <=  and 22 KV ∈  such that, for   we get )(
1

2

1
2 nK

n
< . If we continue to 

apply the same thing for 
3

1=ε  and 3K , we have 
3

2
)(

1
3 >nK

n
 for 32 VV <  and nV ≤3 . By this way, 

we obtain, with induction, positive integers such that ......321 <<<<< jVVVV . Now 

,...)3,2,1( =∈ jKV jj  and 
j

j
n

n

1
)(K

1
j

−>   for each jVn ≥ . 

 

Let construct a set  K such as ...)),([)),([ 12110 UIUI KVVNVVK = . We can write it as 

U I
∞

=
+=

0
1),[

j
jjj KVVK .  

 

Since 1+<≤ jj VnV  and 
j

j
nK

n
nK

n j

1
)(

1
)(

1 −>≥   for each n, we have 1)( =Kδ . 

 

Now we should show that for any )(xNU ∈  we have Kk ∈∃ 0 such that Uxk ∈  for each kk ≤0 . Let 

jU be a set such that UU j ⊆  and nV j ≤  for Kn∈ . Then there exists at least a number i  such that 

ji ≥  and 1+≤≤ ii VnV . From the definition of the set K, we know iKn∈ . Hence we have 

UUUx jin ⊆⊆∈ . Therefore we see, if Kn∈ ,  there exists a jV  such that nV j ≤   and Uxn ∈ . 

As a result we have xx Kkk →∈)(  . 

 

For the opposite side, let }{ ......21 <<<<= nkkkK N⊆ , 1)( =Kδ  and xx Kkk →∈)( . For 

each )(xNU ∈ , we have some Nn ∈0 such that Ux
nk ∈  for every nn ≤0 . Let 

{ UxNnA nU ∉∈= : } then we see }{ ,..., 21 00 ++−⊆ nnU kkNA . Since (δ }{ ,..., 21 00 ++− nn kkN

)=0  we have 0)( =UAδ  which completes the proof. 

nV ≤2
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As can be inferenced from the below proof, when ),( τX  is not first countable Hausdorff topological space 
Theorem 3.4. may not hold. 
 

Theorem 3.5. Let ),( 1τX  and ),( 2τY  be two first countable Hausdorff topological spaces and 

),(),(: 21 ττ YXf →  be a given function. Then the following are equivalent. 
 

a) f  is continuous. 

b) If  x
st

xn

−τ
 then )()( xf

st
xf n

−τ
. 

c) If  xxn →  then )()( xf
st

xf n

−τ
. 

Proof:  a⇒ b: Let x
st

xn

−τ
, then the conditions 1)(: =⊆∃ KNK δ  and xx

nk →  are satisfied 

from the Theorem3.4. Since  f  is continuous, the convergence
 

)()( xfxf
nk →  implies the convergence 

)()( xf
st

xf n

−τ
. 

 

b⇒ c: Let xxn →  be given. Then x
st

xn

−τ
 satisfies. From the hypothesis in b)  the convergence 

)()( xf
st

xf n

−τ
 satisfies. 

 

c ⇒ a: To show the continuity of the function ),(),(: 21 ττ YXf → , we will use closed sets in the space 

Y. (We  denote the closure of any set U by U ). Let U be a closed set in the topological space Y. It is enough 

to show that the set )(1 Uf −
 is closed in the topological space X. Take any )(1 Ufx −∈ . Since X first 

countable topological space there exists a sequence )( nx  in X such that xxn → . Then from the 

hypothesis we get )()( xf
st

xf n

−τ
. The conditions 1)(: =⊆∃ KNK δ  and )()( xfxf

nk →  are 

satisfied from the Theorem3.4. By Uxf
nk ∈)(  and Uxf ∈)( =U we have )(1 Ufx −∈  and so 

)(1 Uf − )(1 Uf −⊆ . Since the set )(1 Uf −  is closed in X we see the function f  is continuous. 
 

Definition 3.6. Let ),( 1τX  and ),( 2τY  be two first countable Hausdorff topological spaces and 

),(),(: 21 ττ YXf →  be a given function. f  is said to be “ 21 ττ −  statistical continuous” if the 

convergence x
st

xn

−τ
 implies the convergence )()( xfxf n →  for every Xx∈ . 

 

Theorem 3.7. Let ),( 1τX  and ),( 2τY  be two first countable Hausdorff topological spaces. Every 

21 ττ −  statistical continuous function  ),(),(: 21 ττ YXf →  is continuous. 
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Proof: Since continuity and sequential continuity are equivalent in first countable Hausdorff topological 

spaces it is enough to show f is sequentially continuous. When xxn →  we have x
st

xn

−τ
, so from the 

definition, the convergence )()( xfxf n →  satisfies which means  f  sequential continuous. 
 

The converse of Theorem 3.7 does not hold. There may be any continuous function ),(),(: 21 ττ YXf →  

which is not 21 ττ −  statistical continuous. For example; the identity function xxIRRI =→ )(,:  

continuous according to usual topologies for the both sides, but it is not 21 ττ −  statistical continuous 

because, when x
st

xn

−τ
, the convergence xxn →  does not satisfy. Since setting a theory of continuity 

of functions on limit theory is very natural and Theorem 3.7 implies that statistical continuity is stronger 
than simple continuity, this result may stimulate a promising research area mentioned in the introduction 
part. 
 

4 Conclusion 
 
In this paper, investigating the relationship between the statistical continuity and  the simple continuity, we 
firstly consider the concept of statistical continuity of functions and then give a characterization of them by 
using statistical convergent sequences in first countable Hausdorff topological spaces. The difference 
between the results in this paper and those existing in the literature so far is that those well-known latter ones 
are satisfied in some specific spaces such as measurable spaces or metric spaces. As to this study, it implies 
that statistical continuity is stronger than simple continuity for general first countable Hausdorff topological 
spaces which is an important contribution to the related research area. This result can be considered as a 
small beginning in the theory of statistical continuity of functions concerning limit theory.  
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