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Y. Diop1∗ , Cheikh Thiécoumba Gueye1 and Patrick Solé2
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Abstract

A recent line of work to improve the secrecy capacity within wiretap gaussian channel has
introduced a new lattice invariant called secrecy gain. Belfiore and Solé made a conjecture about
the point at which the the secrecy gain is maximum. Verified by most unimodular lattices, this
conjecture does not hold in general for l-modular lattices (l ≥ 2). Ernvall-Hytönen modified the
secrecy function and proved that it satisfies the conjecture for 2-odd modular lattices. In this
paper, the authors introduce a new secrecy function for 2-modular lattices. They show that,
by using the lattice D4 instead of Dl = Z ⊕

√
lZ, the conjecture holds for both 2-even and odd

modular lattices in dimension n ≥ 4. Using that result, they further prove that the modified
secrecy function of A.-M. Ernvall-Hytönen holds for both 2-even and odd modular lattices.
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1 Introduction

In his seminal work, Wyner introduced the wiretap channel, a discrete memoryless channel where
the sender Alice transmits confidential messages to a legitimate receiver Bob, in the presence
of an eavesdropper Eve [1].Wyner defined the perfect secrecy capacity as the maximum amount
of information that Alice can send to Bob while insuring that Eve gets a negligible amount of
information. He used a coset coding technique known as wiretap II codes to encode both data
and random bits to confuse the eavesdropper. The secrecy capacity of Gaussian wiretap channel
was established in [2] and J. C. Belfiore and F. Oggier studied in [3] lattice codes, using as design
criterion a new lattice invariant called secrecy gain. In [4], Belfiore and Solé introduced the secrecy
function as a measure of efficiency of a gaussian wiretap channel. Let Λ be an n−dimensional lattice
of volume vn. The secrecy function is given by

ΞΛ(τ) =
ΘvZn (τ)

ΘΛ(τ)
τ = yi, y > 0 (1.1)

The secrecy gain is then the maximal value of the secrecy function with respect to τ and is denoted
χΛ . A scaled version of the cubic lattice vZn is used because the optimization must be performed
between lattices of the same volume.

Belfiore and Solé proved in [5], that the secrecy function of a lattice equivalent to its dual has a

multiplicative symmetry at the point y0 = vol(Λ)−
2
n (If Λ isodual, then y0 = 1). They conjecture

that the maximum of the secrecy function is met at that point y0. The conjecture holds for almost all
known unimodular lattices ( see [6], [7], [8] and [9])but fails to be verified by other modular lattices
in general[10]. A.-M. Ernvall-Hytönen modified the secrecy function, using the lattice Dl = Z⊕

√
lZ

instead of Z and proved that it satisfies the conjecture for 2-odd modular lattices [10].

In this paper is introduced a new secrecy function for 2-modular lattices. It is shown that, by using
the lattice D4 instead of Dl = Z⊕

√
lZ the conjecture holds for both 2-even and odd modular lattices

in dimension n ≥ 4. Using that result, it is proved further that the conjecture for the modified
secrecy function of A.-M. Ernvall-Hytönen holds for both 2-even and odd modular lattices.

The paper is organized as follows. In section II we recall some basic definitions about lattice theory
and review some previous results regard the secrecy function. In Section III, we prove that the 2-even
modular lattice D4 satisfies the new secrecy function defined by A.-M. Ernvall-Hytönen. Section IV
expose the new secrecy function for 2-modular lattices. In section V and VI, we prove respectively
that the conjecture holds for both 2-even and odd-modular lattices. Using those previous results,
the final section gives a proof of the conjecture for the secrecy function redefined by A.-M. Ernvall-
Hytönen, for either odd and even-modular lattices.

2 Primary Works and Previous Results

Definition 2.1. A lattice Λ is an additive subgroup of Rn, which can be described by

Λ = {x = uM/u ∈ Zm} (2.1)

where 
v1,1 v1,2 . . . v1,n
v2,1 v2,2 . . . v2,n
...

...
. . .

...
vm,1 vm,2 . . . vm,n


vi = (vi,1, ..., vi,n), i = 1, 2, ...,m form a basis of the lattice Λ.
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The matrix G = MMT , where MT denotes the transpose of M is called the Gram matrix of the
lattice.

Definition 2.2. The determinant det(Λ) of a lattice Λ is the determinant of the matrix G.

Definition 2.3. For any lattice point Pi of the lattice Λ , its voronoi cell is defined by:

VΛ(Pi) = {x ∈ Rn, d(Pi, x) 6 (Pj , x) for all Pj ∈ Λ}.

All voronoi cells are the same, therefore, the volume of a lattice is defined as the volume of a voronoi
cell. The volume of the lattice Λ vol(Λ) is equal to

√
det(Λ).

Definition 2.4. The dual of of a lattice is defined by

Λ∗ = {x ∈ Rn : x.λ ∈ Z, ∀ λ ∈ Λ}. (2.2)

Definition 2.5. A lattice Λ is called integral lattice if Λ ⊂ Λ∗.

Definition 2.6. An integral lattice is called an even lattice if the norm is even for any lattice point.
Otherwise, it is called an odd lattice.

Definition 2.7. An integral lattice that is equivalent to its dual is called a modular lattice.
An n-dimensional integral lattice Λ is modular if there exists a similarity σ of Rn such that σ(Λ∗) =
Λ. If σ multiplies norms by l,Λ is said to be l-modular. The determinant of an l-modular lattice Λ
of dimension n is given by det(Λ) = l

n
2

Definition 2.8. The theta series of a lattice Λ is defined by

ΘΛ(τ) =
∑
λ∈Λ

q∥λ∥
2

(2.3)

with q = eπiτ , τ ∈ H.

H ={a+ib∈ C, b¿0} denotes the upper half plane.

The theta series of an integral lattice has a neat representation since all the norms are integers.

Let us consider the class of lattices Λ such that Λ is equivalent to its dual. More precisely, the dual
lattice Λ∗ can be obtained from the lattice Λ by a rotation, a reflection, or a rescaling.

If α > 0, then Λ ≃ αΛ∗.
If α = 1, then Λ is isodual.
vol(Λ) = αnvol(Λ∗).
But since Λ and Λ∗ are dual, then vol(Λ) = 1

vol(Λ∗)

We get α = vol(Λ)
2
n .

Belfiore and Solé proved in [2], that the secrecy function of a lattice equivalent to its dual has a

multiplicative symmetry at the point y0 = vol(Λ)−
2
n (If Λ isodual, then y0 = 1). For a lattice

equivalent to its dual, they conjecture that the secrecy function attains its maximum at y0 =

vol(Λ)
−2
n . This has been verified for a large number of lattices ( see [6], [7], [8] and [9]).

A.- M. Ernvall-Hytönen showed in [10] that the conjecture is not verified in general for ℓ-modular
lattices. She modified the conjecture by using the lattice Dl = Z⊕

√
lZ instead of vZn. She proved

then that the modified secrecy function conjecture holds for odd 2-modular lattices.

In this paper we introduce a new secrecy function for 2-modular lattices. We show that by using the
lattice D4 instead of Dl = Z⊕

√
lZ the conjecture holds for both 2-even and odd modular lattices

in dimension n ≥ 4. Using that result, we further prove that the modified secrecy function of A.-M.
Ernvall-Hytönen holds for both 2-even and odd modular lattices.
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3 The 2-modular Lattices D4

Definition 3.1. Jacobi theta functions are defined as follows:

ϑ2(τ) =
∑
n∈Z

q(n+ 1
2
)2 (3.1)

ϑ3(τ) =
∑
n∈Z

qn
2

(3.2)

ϑ4(τ) =
∑
n∈Z

(−q)n
2

(3.3)

with q = eπiτ .

When working with the variable y instead of q, we will write ϑ(y) for ϑ3(q).

Exceptional lattices have theta series that can be expressed as functions of the Jacobi theta
functions.

Let Λ be an n-dimensional 2-modular lattice. The secrecy function is defined by A.-M. Ernvall-
Hytönen as follows

Ξl,Λ(y) =
{Θ(l)

D (y)}k

ΘΛ(y)
, (3.4)

with n = 2k for l > 1.

Let us study now the new modified secrecy function Ξ2,D4(y).

Ξ2,D4(y) =
Θ

D(2)(y)2

ΘD4
(y)

=
ΘZ⊕

√
2Z(y)

2

ΘD4
(y)

ΘZ⊕
√

2Z(y) = ϑ3(y)ϑ3(2y)

ϑ2
3(2y) =

1
2
[ϑ2

3(y) + ϑ2
4(y)]

Ξ2,D4(y) =
Θ

D(2)(y)2

ΘD4
(y)

=
1
4
ϑ2
3(y)[ϑ

2
3(y)+ϑ2

4(y)]

[ϑ4
3(y)+ϑ4

4(y)]
= 1

4
( 1+α
1+α2 )

where α =
ϑ2
4(y)

ϑ2
3(y)

Let

f2(y) =
1
4
ϑ2
3(y)[ϑ

2
3(y) + ϑ2

4(y)]

[ϑ4
3(y) + ϑ4

4(y)]
(3.5)

Lemma 3.1. ( [10]) The function ϑ4
ϑ3

(y) is strictly increasing for (positive) real y, and as y → 0,
the function approaches 0, and as y → ∞, the function approaches 1.

Lemma 3.2. The function f(x) = 1+x
(1+x2)

has a unique maximum in the open interval (0,1), and

this maximum is met at the point x =
√
2− 1.

Proof. f ′(x) = −x2−2x+1
(1+x2)2

.

The quadratic −x2 − 2x+ 1 = 0 if and only if x = −1±
√
2.

The root −1 +
√
2 lies on the interval 0 ≤ x ≤ 1 .
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Furthermore, when 0 ≤ x ≤
√
2 − 1, the function f(x) is increasing since f ′(x) > 0, and when√

2− 1 < x < 1 the function is decreasing. Hence, this point is a maximum.

Lemma 3.3. [10] The quantity
ϑ2
4

ϑ2
3
(y) take the value

√
2− 1 precisely when y = 1√

2
.

It follows from lemma III.2, III.3 and III.4 that the secrecy function as redefined in [10] will have
a global maximum at y = 1√

2
. Therefore the even lattice D4 satisfies the modified secrecy function

conjecture.

4 Secrecy Function of 2-modular Lattices Redefined

Definition 4.1. Let Λ be an n-dimensional 2-modular lattice, n ≥ 4. The secrecy function is
defined by

ΞD4,Λ(τ) =
Θ

n
4
D4

(τ)

ΘΛ(τ)
(4.1)

Remark 4.1. Instead of using of scaled version of Zn or D(l), we have used a scaled version of D4.

Recall that if Λ be an n-dimensional 2-modular lattice, vol(Λ) = 2
n
4 .

The volume of the lattice D4 is vol(D4) = 2.

Remark 4.2. Clearly without n ≥ 4, the lattice D(2) = Z⊕
√
2Z will violate the conjecture.

Proposition 4.1. The secrecy function of a lattice equivalent to its dual has a multiplicative
symmetry at y0 = 1√

2
.

Proof

ΞD4,Λ(yy0) =

Θ
D

n
4
4

ΘΛ
(yy0)

By dividing the numerator and the denominator with ΘαZn where α = 2
1
4 , we get

ΞD4,Λ(yy0) =

Ξ
D

n
4
4

ΞΛ
(yy0) =

Ξ
D

n
4
4

ΞΛ
(
y

y0
) =

Θ
D

n
4
4

ΘΛ
(
y

y0
) = ΞD4,Λ(

y

y0
)

Since y0 = (vol(Λ))
−2
n , vol(Λ) = 2

n
4 , we have y0 = (2

n
4 )

−2
n = 2−

1
2

5 Secrecy Function for 2-even Modular Lattices

Lemma 5.1. Let Λ be an even 2-modular lattice of dimension n = 2k, n ≥ 4, then

ΘΛ(τ) =
∑

2λ+8µ=k

aµΘ
λ
D4

(τ)∆µ
16(τ) (5.1)

where ΘD4(τ) =
1
2
(v43(τ) + v44(τ))

∆16(τ) = (η(τ)η(2τ))8
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η(τ) is the Dedekind eta function and is defined by

η(τ) = q
1
12

∞∏
n=1

(1− q2n). (5.2)

The Jacobi theta function and the Dedekind eta function are connected as follows:

ϑ2(τ) =
2η(2τ)2

η(τ)
(5.3)

ϑ3(τ) =
η(τ)5

η( τ
2
)2η(2τ)2

(5.4)

ϑ4(τ) =
η( τ

2
)2

η(τ)
(5.5)

We can write ∆16

∆16(τ) = (η(τ)η(2τ))8 =
1

256
v82(τ)v

4
3(τ)v

4
4(τ) (5.6)

Proposition 5.1. Let Λ be an even n-dimensional 2-modular lattice

ΞD4,Λ(τ) = [
∑

λ+4µ=n
4

aµ(
∆16(τ)

Θ4
D4

(τ)
)µ ]−1 = [

∑
λ+4µ=n

4

aµ(
v2(τ)

2 v3(τ) v4(τ)

v3(τ)4 + v4(τ)4
)4µ ]−1

Proof

From lemma V.1 we get: ΞD4,Λ(τ) = [
∑

λ+4µ=n
4

aµ
(∆16(τ))

µ

ΘD4(τ)
( n
4
− λ)

]−1

but n
4
− λ = 4µ

Theorem 5.2. The secrecy function of an even 2-modular lattices in dimension n = 2k is:

ΞD4,Λ(y) = [
∑

2λ+8µ=k

aµf
µ
2 ]

−1, (5.7)

where f2(y) = [ϑ2(y)
2ϑ3(y)ϑ4(y)

ϑ3(y)4+ϑ4(y)4
]4.

Proof from the proposition V.2 we have: ΞD4,Λ(τ) = [
∑

λ+4µ=n
4

aµ(
v2(τ)

2 v3(τ) v4(τ)

v3(τ)4 + v4(τ)4
)4µ ]−1

We have f2(y) =
(ϑ3(y)

4−ϑ4(y)
4)2ϑ3(y)

4ϑ4(y)
4

(ϑ3(y)4+ϑ4(y)4)4
= (1−α2)2α2

(1+α2)4

where α = α(y) = ϑ4(y)
2

ϑ3(y)2

Lemma 5.3. The function f(x) = x2(1−x2)2

(1+x2)4
has a unique maximum in the open interval (0,1),

and this maximum is met at the point x =
√
2− 1.

Proof

f(x) = g(x)2 where g(x) = x(1−x2)

(1+x2)2
.

g′(x) = x4−6x2+1
(1+x2)3

.

x4 − 6x2 + 1 = 0 if and only if x2 = 3±
√
2.

The root 3 −
√
2 lies on the interval 0 ≤ x2 ≤ 1 and (

√
2 − 1)2 = 3 − 2

√
2. Which means that

6
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x =
√
2− 1.

Furthermore, when 0 ≤ x ≤
√
2 − 1, the function g(x) is increasing since g′(x) > 0, and when√

2− 1 < x < 1 the function is decreasing. Hence, this point is a maximum.

Proposition 5.2. [10] A sufficient condition for ΞD4,Λ(y) to have a global maximum at y = 1√
2

is that the polynomial in the variable f2 whose inverse appear in theorem V.3 be decreasing in the
range of 0 < f2 ≤ β, where β = f2(

√
2− 1) ≈ 0.0429.

Let us now consider the even 2-modular lattices in [11] Table 1. The authors have computed their
theta series in terms of ΘD4 and ∆16.

The maximum of the secrecy function of both lattices is expected to be met at y = 1√
2
to satisfy

the conjecture. It seems to be the case in Fig. 1 and Fig. 2.

Table. 1. Verification of the conjecture for most known even 2-modular lattices

Dim lattice Theta series [ΞD4,Λ(f2)]
−1 d/df2[ΞD4,Λ(f2)]

−1 Neg. in (0, β]?

16 BW16 Θ4
D4

− 96∆16 1 − 96f2 −96 yes

20 HS20 Θ5
D4

− 120ΘD4
∆16 1 − 120f2 −120 yes

32 Q32 Θ8
D4

− 192Θ4
D4

∆16 + 576∆2
16 1 − 192f2 + 576f2

2 −192 + 1152f2 yes

Fig. 1. Secrecy function of the 16-dimensional Barns-Wall lattice BW16

Fig. 2. Secrecy function of the lattice HS20
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6 Secrecy Function for 2-odd Modular Lattices

Lemma 6.1. [10] . The theta series of an function 2-odd modular lattice Λ in dimension n = 2k
is a polynomial

ΘΛ(τ) = [f1(y)
k][

[k/2]∑
i=0

aif2(y)
i], (6.1)

where f1(y) = ΘZ⊕
√

2Z(y) = ϑ3(y)ϑ3(2y) and f2(y) =
1
4
ϑ2
2(2y)[ϑ

2
4(y)]

[ϑ2
3(y)ϑ

2
3(2y)]

Theorem 6.2. The secrecy function of a 2-odd modular lattices in dimension n = 2k is:

ΞD4,Λ(y) = [f0(y)]
k
2 [

[k/2]∑
i=0

aif
i
2(y)]

−1 (6.2)

where f0(y) =
Θ

D(2)(y)2

ΘD4
(y)

.

Proof. We have

ΞD4,Λ(y) =
Θ

k
2
D4

(y)

ΘΛ(y)
= [

[f1(y)
k][

[k/2]∑
i=0

aif2(y)
i]

Θ
k
2
D4

(y)

]−1 =

(
Θ2

Z⊕
√

2Z
ΘD4

)
k
2 (

[k/2]∑
i=0

aif2(y)
i)−1

Theorem 6.3. The secrecy function of a 2-odd modular lattices in dimension n = 2k has a unique
maximum in the open interval (0,1), and this maximum is met at the point y = 1√

2
.

Proof

We have ΞD4,Λ(y) = [f0(y)]
k
2 [

[k/2]∑
i=0

aif
i
2(y)]

−1

f0(y) =
Θ

D(2)(y)2

ΘD4
(y)

=
1
4
ϑ2
3(y)[ϑ

2
3(y)+ϑ2

4(y)]

[ϑ4
3(y)+ϑ4

4(y)]
= 1

4
( 1+α
1+α2 )

where α =
ϑ2
4(y)

ϑ2
3(y)

The function f0 has already been studied in section 2. It has a unique maximum in the open interval
(0,1), and this maximum is met at the point y = 1√

2
. It has already been proven in [4] that has

[

[k/2]∑
i=0

aif
i
2(y)]

−1 a unique maximum in the open interval (0,1), and this maximum is met at the point

y = 1√
2
. Therefore the Belfiore-Sole conjecture is verified by the odd 2-modular lattices.

7 A.-M. Ernvall-Hytönen Secrecy Function for 2 Modular
Lattices

Theorem 7.1. The secrecy function of a 2-modular lattices in dimension n = 2k as redefined by A.-
M. Ernvall-Hytönen satisfies the Belfiore-Sole conjecture. Namely the secrecy function of 2-modular
lattices attains its maximum at y = 1√

2
.

8
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Proof
Let Λ be an n-dimensional 2-modular lattice. The secrecy function is defined by A.-M. Ernvall-
Hytönen as follows

Ξl,Λ(y) =
Θ

(l)
D

(y)
k

ΘΛ(y)
, n=2k for l¿1.

Ξ2,Λ(y) =
Θ

D(2)(y)k

ΘΛ(y)

By dividing the numerator and the denominator with Θ
n
4
D4

, we get:

Ξ2,Λ(y) = Ξ2,D4(y)
kΞD4,Λ(y)

Ξ2,D4(y) has already been studied; it has its maximum at y = 1√
2
. ΞD4,Λ(y) attains its maximum

at y = 1√
2
for both even and odd 2-modular lattices.

8 Conclusion and Future Works

The new secrecy function defined with a scaled version of D4 has been inspired by the fact that the
theta series of 2-modular lattices can be expressed easily with the one of D4. More importantly, for
theory application purpose, D4 is of more interest than D(2). We have proved that this new secrecy
function verifies the Belfiore-Sole conjecture for both 2-even and odd modular lattices. In addition
we have used this new secrecy function to show that the modified Belfiore-Sole conjecture holds for
both 2-odd and even modular lattices. Currently, we are trying to use the same approach to prove
the modified conjecture for 3-modular lattices, using a scaled version of A3.
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