
*Corresponding author: E-mail: wasiurrhmann786@gmail.com;

Journal of Scientific Research & Reports
11(5): 1-10, 2016; Article no.JSRR.26872

ISSN: 2320-0227

SCIENCEDOMAIN international

 www.sciencedomain.org

Test Cases Generation for Object-oriented Software
from Decision Slicing of UML Activity Diagram

Wasiur Rhmann1* and Vipin Saxena1

1
Department of Computer Science, B. B. Ambedkar University (A Central University), Lucknow, U.P.,

India.

Authors’ contributions

 This work was carried out in collaboration between both authors. Both authors read and approved the
final manuscript.

Article Information

DOI: 10.9734/JSRR/2016/26872

Editor(s):
(1) Vito Di Maio, Institute of Cybernetics "E. Caianiello" CNR, C / O Complex Olivetti, Via Campi Flegrei, 34, Italy.

(2) Luigi Rodino, Professor of Mathematical Analysis, Dipartimento di Matematica, Università di Torino, Italy.
Reviewers:

(1) Boni García, Universidad Rey Juan Carlos, Spain.
(2) Yulia Kartika Gunadi, Petra Christian University, Indonesia.

(3) Mukesh Mann, Gautam Budda University, India.
Complete Peer review History: http://www.sciencedomain.org/review-history/15675

Received 7
th

 May 2016
Accepted 22

nd
 July 2016

Published 5
th

 August 2016

ABSTRACT

Software testing is an integral part of the software development life cycle. Design of good test
cases is a key challenge in software testing. Test cases can be designed from different artifacts like
requirements, design and software code. In Software engineering, different UML diagrams are
used for designing and analysis of the software systems. The main contribution of this work is to
propose a novel technique of test cases generation from UML activity diagram using an iterative
method. Iterative methods are used in numerical analysis for generation of solution of equation
iteratively. In the present work a test cases generation technique from decision slicing of UML
activity diagram is presented. Decision slices for each decision nodes are derived from the Activity
Flow Graph (AFG) of the activity diagram. Test cases are generated for each activity path of the
activity flow graph. Decision nodes at each activity path are used to generate system of equations
and these equations are solved by an iterative method to generate test data for each activity path.
A case study of ticket purchasing from ticket vending machine using UML activity diagram is
presented.

Original Research Article

Rhmann and Saxena; JSRR, 11(5): 1-10, 2016; Article no.JSRR.26872

2

Keywords: Software testing; program slicing; activity diagram; iterative method; test cases.

1. INTRODUCTION

Software testing is a creative and challenging
part of the software development life cycle.
Quality and reliability of the developed software
products is ensured with the help of software
testing. Software testing cost generally depends
on the how efficiently testing is performed. There
are mainly three activities in test process: test
cases generation, test case execution and test
evaluation. Generation of test cases is most
critical activity. A test case is the triplet [I, S, O]
where I is input data, S is the state of the system
and O is expected output [1-2].

There are mainly two approaches of software
testing namely: white box and black box. In white
box testing, there is need to know internal details
of programs and in black box testing test cases
are generated with the requirement specification
documents and internal structure of program is
not considered. In black box testing, test cases
are designed with consideration of the
functionality of the software system. Model based
testing is a kind of black box testing which is
used to find bugs earlier in the software
development life cycle. In model based testing
expected models which capture requirements of
the software under test are created and a test
tool is used to automatically derive the test cases
from the designed models [3].

Large systems are more complex to test. To
reduce the development and testing costs of
modern software, software engineers usually
advocate the use of object-oriented analysis and
design paradigm [4]. Testing object oriented
system with the code is tedious and complex
task. Object Management Group (OMG) [5]
introduced the standardized Modeling Language
called Unified Modeling Language [6] to facilitate
the use of standardized notation for object-
oriented analysis and design. Design models are
used by tester to test the object oriented
software. Activity diagram is designed with higher
level of abstraction so it contains less information
in comparison to other UML diagrams like
sequence diagram, class diagram. Software
developers are heavily using models in the
development of the software products [7].
Information required for testing can be generated
by simple processing of these models. Testing
an executable form of software artifacts involve
three phases [8] namely: design of test cases;
execute the test cases with the executable

software artifacts; analysis the behavior of the
results. Test adequacy criteria are proposed by
researchers to check up to how much extent a
property must be tested [9].

Unified Modeling Language is used for creating
the software blueprints. It consists of different
notations to support design and analysis of
the object-oriented software development. It
facilitates to use different diagrams to present
static and dynamic views of the systems. Activity
diagram focuses on the flow of behavior of a
system [10]. Different UML diagrams like class
diagram, use case diagram and activity diagram
are used to represent system at different level of
abstraction. Activity diagram is like flow chart but
it is more expressive than flow chart. Sequential
or concurrent control flow can be represented by
an activity diagram. UML activity diagram is used
by several researchers as initial specification of
the system for generation of test cases [11-13].

Large and complex software can be decomposed
into manageable pieces of code to easily handle
the complex software and there are accurate
dependency exists among different pieces of the
software. Program slicing techniques are used to
handle the complexity of programs which arises
due to large size of programs. Program slices
extracts are those statements of the programs
which are relevant to a particular computation
[14]. Dynamic slices are often smaller size than
static slices as it includes only those statements
of program which are executed for particular
input data.

Program slicing techniques are used in different
aspects of the software development like
debugging [15], software maintenance [16],
software measurement [17] and software testing
[18]. In the present work, authors used a new
slice method of UML activity diagram called
decision slice and generated test cases for each
activity path. Test data corresponding each
activity path is generated using an iterative
method of numerical analysis. Iterative method is
used in [19] for generating tests data in the
context of program code. In our approach
iterative method is used at design level for test
cases generation. The rest of the paper is
organized as follows: Section 2 of the paper
describes the UML activity diagram and iterative
method used for test cases generation. Section 3
presents the methodology used for test cases
generation. A case study of automatic ticket

Rhmann and Saxena; JSRR, 11(5): 1-10, 2016; Article no.JSRR.26872

3

vending machine is presented in section 4. In
section 5 a comparative study of proposed
technique with other techniques in literature is
given and finally in section 6 authors concluded
the work.

2. BACKGROUND

2.1 UML Activity Diagram

In the current work, UML activity diagram is used
to represent the functionality of the system.
Activity diagram contains mainly two types of
nodes namely action nodes and control nodes.
Action nodes contains Activity, Action,
SendSignal and AcceptEvent while Control
nodes contains InitialNode, FinalNode, Decision,
Merge, Fork and Join. There are several levels of
activity modeling: Basic, Intermediate, Complete
and Structured Complete and extra structure
activities in UML 2.1 superstructure [20]. Test
scenarios are used to check whether all business
process related to the software are tested end to
end. Test cases and test scenarios are often
used by Software tester synonymously [21]. An
activity diagram(AD) as defined in [22] is based
on seven tuple described below:

AD= (A, T, F, J, R, ai, af)

where

A is finite set of activities a0, a1,… .,an,
representing nodes, T is finite set of
transitions t0, t1,…..,tn representing (edges),
F is finite set of forks f0,f1,…,fn. , J is finite set
of join j0, j1,….,jn. and R ⊆ (A X T) U (T X

A) is the flow relation, a0 is initial activity
node and af is final activity node.

2.2 Stationary Iterative Method

In numerical analysis iterative methods are used
to generate improved approximate solution for a
class of problems [23]. There is a termination
criteria defined to solve the problem with iterative
method. Initial data is guessed to find out the
solution of the system of equations and
successively approximate solutions which are
closer to the results are generated.

These methods are also called relaxation
methods. These methods use the error in the
result to approximate the solution and error in the
result is called residual. Stationary iterative

methods use an operator to approximate the
solution of linear system.

Let an equation ax+by+cz+d=0 (1)

and its approximate solution is (x0,y0,z0), then
substituting the values of (x0, y0, z0) in the
equation we will get a positive value residual.

ax0+by0+cz0+d=r0 (2)

If increments in x, y and z are such that they
satisfy the linear constraint

a∆x+b∆y+c∆z=-r0 (3)

Then from 2 and 3
 a(x0+∆x)+b(y0+∆y)+c(z0+∆z)+d=0 (4)

Next approximate solution of the equation will be
(x1, y1, z1)=(x0+∆x,y0+∆y, z0+∆z).

In the present technique of test cases generation
from UML activity diagram, authors used this
iterative method. For formulating the problem of
test cases generation from activity diagram as an
iterative method, we derived the decision
functions corresponding to each decision nodes
of the activity diagram. These decision functions
are used to derive the system of equations. Here
initial solutions of inputs are guessed and
increments in the initial values are computed by
solving the equations.

3. PROPOSED METHODOLOGY

The steps in the proposed methodology are
described below:

1. Draw UML activity diagram;
2. Convert the activity diagram into Activity

Flow Graph(AFG);

AFG for UML activity diagram is drawn, for
each component of activity diagram there
is a node in AFG. Decision nodes are
represented by circle and for fork/join
rectangle are used.

3. From AFG generate activity paths;

Activity paths are generated by traversing
the activity flow graph in DFS manner
and if there is fork node then BFS are used
in traversing the nodes of activity flow
graph.

Rhmann and Saxena; JSRR, 11(5): 1-10, 2016; Article no.JSRR.26872

4

4. For each activity path, test data is
generated. The decision nodes of each
activity paths are used to form the
equations;

4.1 Decision slice Decision slice of a

decision node (DN) on path P is the set
of nodes of AFG, upon which the
outcome of decision node depends
directly or indirectly.

4.2 Then compute the input dependency set
for each decision node on activity path. A
subset of input (I) variables along an
activity path (P) on which decision node
(DN) outcome depends is called input
dependency set ID (DN, I, P).

4.3 Formulate the decision functions from
decision nodes. Decision functions are
formulated based on input variables on
which that decision node depends.
Suppose if a decision node i depends on
input variables x, y and z.

Then decision function will be Fi: aix+biy+ciz+ei

For computing the coefficients ai, bi and ci with
respect to their variables evaluate the decision
function at the current input Ik=(i1,….ij,….im) and
at Ik+(0,…..,∆ij,…0) and compute the divided
difference by using the formula given below

F(Ik+(0,…., ∆ij,…,0)- F(Ik)/ ∆ij

This gives the coefficient of ij in the linear
function for the decision function F corresponding
to node i in P. Similarly other coefficients are
computed.

Decision functions are also formulated from
values of each decision nodes on activity path; If
a decision nodes have no input variables then
decision function for that decision node will
contain one Boolean variable with 0 for false and
1 for true value of the function.

4.4 Formulate the linear equations from
decision nodes.

Convert linear functions into inequalities.
For conversion of linear functions into
inequalities we choose >,= and <
operators. If a decision node on an
activity path needs to be true for
traversal of that path then relational
operator will be same as used in
decision node else it will be reverse of
the decisional nodes.

Compute decision residuals. Decision residual of
a decision node for an input is the value of
decision function computed by executing its
decision slice at that input;

Then apply the relaxation technique and
formulate the inequalities of increment of the
input variables and convert these into equations
and solve these equations. On solving these
equations we get the increment values which will
give the next input values. This process of
iteration continues till we get the values which
traverse the activity path.

4. A CASE STUDY OF TICKET
PURCHASING FROM AUTOMATIC
TICKET VENDING MACHINE

In the present section UML activity diagram is
designed for ticket purchasing from automatic
ticket vending machine and test cases are
generated using presented approach.

Fig. 1 presents UML activity diagram for
purchasing tickets from ticket vending machine.
There are three partitions which are Passenger,
Ticket Vending Machine and Bank. Passenger
can perform different activities. Passenger
selects the ticket types and destination of travel
which inputs the price of ticket. Then passenger
selects number of ticket types (n). Then ticket
vending machine computes the total amount and
displays the total fare. Then machine process for
payment. Ticket vending machine accepts
money either by card or cash. If passenger pays
with card then bank is used for authorization of
payment and ticket is issued. If passenger inserts
cash then machine calculates the difference
between inserted money and total fare. If money
inserted is less than the total fare then a
message of insufficient amount is displayed. If
difference between total fare and money inserted
is 0 then ticket is issued and money inserted is
more than the total fare then machine issues
ticket along with the returned money.

Fig. 2 represents the activity flow graph of activity
diagram given in Fig. 1. In Fig. 1 there are 21
different constructs like start, end node, activities,
fork, join and decision node these are converted
into nodes of activity flow graph. Nodes 8, 13 and
15 represent decision nodes of activity diagram.
Nodes 17 and 20 represent the fork and join
nodes of activity diagram respectively.

Activity paths from activity flow graph are
generated by traversal the graph in depth first

Rhmann and Saxena; JSRR, 11(5): 1-10, 2016; Article no.JSRR.26872

5

search manner and there is a fork and join node
then node between them are traversed in
breadth first search manner which is activity
path4. Generated activity paths are given below:

Activity Path1 1-2-3-4-5-6-7-8-9-16-21

Activity Path2 1-2-3-4-5-6-7-8-9-10-12-13-
15-16-21

Activity Path3 1-2-3-4-5-6-7-8-9-10-12-13-
14-21

Activity Path4 1-2-3-4-5-6-7-8-9-10-12-13-
15-17-18-19-20-21

Below the steps of test case generation for
activity path2 are given:

4.1 Derivation of Decision Functions

Let x for the decision nodes which do not
contains constraints and values of x are 0 or 1.

Activity path 2 contains three decision nodes 8,
13 and 15. For each decision nodes presented in
the corresponding activity path, we identify the
input variables which will affect the outcome of
the decision node. It is given by

ID(DN1,P)=x (5)

ID(DN2, P)=(p, n, a) (6)

ID(DN3, P)=(p, n, a) (7)

For each decision nodes available in the
corresponding activity path authors formulated
the linear equations. Activity path2 has three
decision nodes so there will be three equations:

F1=a1x+e1 (8)

F2=a2p+b2n+c2a+e2 (9)

F3=a3p+b3n+c3a+e3 (10)

Fig. 1. UML activity diagram for ticket purchasing from automatic ticket vending machine

Rhmann and Saxena; JSRR, 11(5): 1-10, 2016; Article no.JSRR.26872

6

Fig. 2. Activity flow graph (AFG) for Fig. 1

Here equation 8 represents decision node with
no input variables so it takes the form of equation
11;

F1=x (11)

We select x=1 for traversal of activity path2.

Decision functions corresponding equations 9
and 10 are formulated from values of
corresponding decision nodes on activity path
and are given by equations;

F2=b-0 (12)

F3=b-0 (13)

Let I0=(p, n, a)=(100, 2, 220) then input will be (x,
p, n, a)=(1, 100, 2, 220), this will not traverse the
activity path2.

Then next input is obtained using the above
iterative method:

We take increment ∆p=2 and computed the
values of F1 at I0.

and at (p0, n0, a0)+(∆p,0,0)=(100, 2, 220)+ (2,
0, 0)=(102, 2, 220).

Then divided difference F1(p0+∆p,n0,a0)-
F1(p0,n0,a0)/∆p is calculated which gives the
value of a1

 a1=(16-20)/2=-2,

Similarly other values are calculated and
recorded in Table 1.

Table 1. Values of coefficient of equations

a1 a2 b1 b2 c1 c2

-2 -2 -100 -100 1 1
Values of F2 and F3 given in equations 12 and 13 are

computed at I0 and recorded in Table 2

Table 2. Calculation of functions with the
input values

a p n F=b=a-c=a-p*n

220 100 2 F2=20
220 100 2 F3=20

Constant terms ei in the equations 9 and 10are
computed by executing the decision slices at I0.
Then the values of input I0 and coefficient of
equations recorded in Table 1 are put in the
linear equations 9, 10 and equated with the
corresponding values computed in Table 2.

a1100+2b1+220c1+e1=20 (14)
-200-200+220+e1=20
e1=200,

Similarly value of e2 is calculated and the values
of ai, bi, ci and ei and corresponding functions 9
and 10 are recorded in the Table 3.

4.2 Computation of Decision Residuals

Decision slices corresponding each decision
nodes on the activity path are executed with

 21

 18

 14

9

 15 16

 10

 13

12

 9

8

7

1

2

 3

 4

 5

6

17

 19

20

Rhmann and Saxena; JSRR, 11(5): 1-10, 2016; Article no.JSRR.26872

7

current program inputs I0 and values of decision
functions are evaluated.

Table 3. Derivation of decision functions

a1 -2 a2 -2
b1 -100 b2 -100
c1 1 c2 1
e1 200 e2 200
F2 -2p-100n+a+200 F3 2p-100n+a+200

Decision residual at I0 for decision nodes on
Activity Path2 are recorded in Table 4:

Table 4. Computation of decision residual

I0 Residual

(100, 2, 220) R (DN2,I0,AP2)=20
(100, 2, 220) R (DN3,I0,AP2)=20

Construction of a system of linear constraints
and to solve them to obtain increments for the
current input:

Linear arithmetic representation of decision
nodes are converted into inequalities:

Decision nodes corresponding decisional
functions F2 and F3 which are given in Table 2
needs to be true for traversal of Activity path2 So

we have taken the same relational operator as
used in these decisional nodes and inequalities
corresponding each nodes is written in equations
15, 16.

-2p-100n+a+200>=0 (15)

-2p-100n+a+200=0 (16)

Then relaxation technique is applied to
equations 15 and 16 and decision residual
computed in Table 3. Set of constraints on
increments of p, n and a are given in equations
17 and 18.

-2∆p-100∆n+ ∆a>=-20 (17)

-2∆p-100∆n+ ∆a=-20 (18)

4.3 Converting the Inequalities into
Equations

Inequalities are converted into equations by
introducing the variable u:

-2∆p-100∆n+∆a-u=-20 (19)

-2∆p-100∆n+∆a=-20 (20)

Fig. 3. Screenshot of test data generated for test path2

Rhmann and Saxena; JSRR, 11(5): 1-10, 2016; Article no.JSRR.26872

8

Table 5. Test cases number, test paths and input data corresponding each test path

Test
case
no.

Test path Input data
(x, p, n,a)

TC1 Select ticket Type->Select Destination(p) -> Select Number of
Tickets(n) -> c=p*n -> Display Amount to be inserted -> Process
Payment-> Authorize Card Payment -> Eject Ticket ->end

(0,0,0,0)

TC3 Select ticket Type->Select Destination(p) -> Select Number of
Tickets(n) -> c=p*n -> Display Amount to be inserted -> Process
Payment-> Insert Money(a) -> Calculate -> b=a-c -> Insufficient
Amount->end

 (1, 100, 3, 200)

TC2 Select ticket Type->Select Destination(p) -> Select Number of
Tickets(n) -> c=p*n -> Display Amount to be inserted -> Process
Payment-> Insert Money(a) -> Calculate -> b=a-c -> Eject Ticket -
>end

 (1, 100, 2, 200)

TC4 Select ticket Type->Select Destination(p) -> Select Number of
Tickets(n) -> c=p*n -> Display Amount to be inserted -> Process
Payment-> Insert Money(a) -> Calculate -> b=a-c -> Eject Ticket ->
Return Money -> end

(1, 100, 2, 2010)

On solving the equations 19 and 20, we found
the values of u, ∆a, ∆p, ∆n given below:

u=0,
-2∆p-100∆n =-20- ∆a
∆a=-20, ∆p =0, ∆n=0

New values of x, p, n, a are obtained by adding
the values of ∆a=-20, ∆p =0, ∆n=0 to (x, p, n, a).

 (x, p, n, a)=(1, 100, 2, 200).

Here computed new values lead to traversal of
the desired activity path and computed new
approximation of test inputs which traverse an
activity diagram is obtained from previous
approximation of the solution and it’s residual.
This technique will be used iteratively to obtain
new input values until desired activity path is
traversed.

Similarly test data for other test paths are
calculated and recorded in Table 5.

Java programming language is used for
implementation of the proposed approach. For
the given problem there are two decision nodes
13 and 15 which take input values. Java program
contains functions of the decision nodes 13and
15 of the programs. And Initial input is taken in
the program as (p, n, a) = (100, 2, 220).

Then decision node symbol is provided based on
the path traversal then our program generates
test data corresponding that path. Fig. 3 shows
the test data for test path 2.

5. COMPARISON WITH THE RELATED
WORKS

Swain et al. [24] presented a technique of test
case generation using UML 2.0 sequence
diagram. Authors constructed a Message
Dependency Graph from sequence diagram.
Conditional predicates are selected from
message dependency graph by traversing the
graph. Slices are computed for each conditional
predicates and test cases are generated for each
slice. Test data is generated by satisfying all
constraints corresponding each slice. Swain et
al. [25] used condition slicing and generated test
cases from UML interaction diagram. Authors
used message guards of interaction diagram and
created conditioned slice for each message
guards. For each conditioned slices test cases
are generated. This approach is advantageous
when number of messages in sequence diagram
is in large number. Li et al. [26] used extenics
theory for generation of test cases from UML
activity diagram. Authors converted the UML
activity diagram into Euler circuit and applied the
Euler circuit traversal algorithm to generate test
cases. Generated test cases consist of test
cases sequences there is no input data.

Jena et al. [27] used UML activity diagram for
test paths generation and test cases are
generated from Activity flow graph of the activity
diagram by traversing the graph in Depth First
Search manner. Technique presented by authors
only generates test paths not exactly test cases.
Kundu and Samanta [28] presented an approach
of test cases generation from UML 2.0 with use

Rhmann and Saxena; JSRR, 11(5): 1-10, 2016; Article no.JSRR.26872

9

case scope. Authors considered test coverage
criteria called activity path coverage criteria. Test
cases generated from their approach can detect
faults like synchronization faults, faults in loops.
Their technique will not be efficient when the
activity diagram will be larger.

Samuel and Mall [29] used dynamic slicing
technique on the flow graph of activity diagram
then sliced the diagram for each conditional
predicates and test cases generated for each
slice. In their technique if there are large number
of conditional predicates then there will be a lot
of test cases corresponding each conditional
predicated while in our technique conditional
predicates on each path are considered
simultaneously to generate test data which will
reduce the number of test cases. In their
approach authors do not check each valid test
path. Their technique generates two test cases
for each condition while our technique generates
only one test case for each condition or decision
nodes. In Fig. 4 number of generated test cases
from our technique and technique presented by
Samuel are compared. In the presented case
study there are four test cases generated while
by using Samuel technique there will be 6 test
cases corresponding each conditional node in
the flow graph as there are 3 conditional nodes in
flow graph.

Fig. 4. Number of test cases by our technique

and technique presented by Samuel
% reduction in number of test cases will

be=2/6*100=33.33%

6. CONCLUSIONS

Slicing was initially developed for software
programs. It helps to manage the complexity of
the large programs. In the present work, test
cases are generated from UML activity diagram
using an iteration method. For each test path
generated from AFG of the UML activity diagram
there is test data which executes that test path.
Our approach used a decision slicing criteria
which slices the activity diagram based on
decision nodes of the activity diagram. Then
iterative method is used to generate the test data

corresponding each path of the activity diagram.
This method is an innovative method which uses
the iterative method of numerical analysis for
generation of test cases from UML activity
diagram. Most of the techniques used by
researchers generate only test paths of activity
diagram while our technique generates test paths
along with the input data. Our approach
generates the reduced number of test cases and
test data generated by our approach satisfies the
activity paths. In future research other UML
diagrams may be used with the iterative methods
for test data generation. Presented relaxation
based technique which is used to solve the
equations of test paths may be useful in
identifying the infeasible test paths from UML
diagrams and identification of infeasible paths
from UML may cut down the testing cost
drastically.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Mall R. Fundamentals of software

engineering. Second Edition, Prentice Hall,
India; 2003.

2. Offut J, Abdurazik A. Generating tests from
UML specifications. Proceeding of the
second international conference on UML,
lecture notes in computer science. Berlin.
1999;416-429.

3. Utting M, Legeard B. Practical model
based testing a tool approach. Elsevier.
San Francisco; 2007.

4. Larman C. Applying UML and patterns: An
introduction to object-oriented analysis and
design and the unified process. 2

nd
 edition,

Prentice Hall Professional; 2002.
5. OMG UML Specification. OMG unified

modeling language TM, super structure
version 2.2; 2011.
Available:http://www.omg.org/spec/UML/2.
2/Superstructure

6. Booch G, Raumbaugh J, Jacobson I. The
unified modeling language user guide
(second edition). Addison Wesley; 2005.

7. France R, Ghosh S, Trong TD, Solberg A.
Model-driven development using UML 2.0:
promises and pitfalls. IEEE Computer.
2006;39(2):59-66.

8. Andrews A, France R, Ghosh S, Craig G.
Test adequacy criteria for UML design

0

2

4

6

8

Our

technique

Samuel

technique

Number of Test Cases

Rhmann and Saxena; JSRR, 11(5): 1-10, 2016; Article no.JSRR.26872

10

models. Software testing verification and
reliability. ISSRE. 2003;13(2):95-127.

9. Andrews A, France R, Ghosh S, Craig G.
Test adequacy assessment for UML
design model testing. 14

th
 International

Symposium on Software Reliability
Engineering. 2003;332-343.

10. Pilone ND, Pitman N. UML 2.0 in nutshell.
O’ Reilly; 2005.

11. Linzhang W, Jiesong Y, Xiaofeng Y, Jun H,
Xuandong L, Guoliang Z. Generating test
cases from UML activity diagram based
on gray-box method. In 11

th
 Asia-pacific

Software Engineering Conference
(APSEC04). 2004;284-291.

12. Rhmann W, Zaidi T, Saxena V. Use of
genetic approach for test case prioritization
from UML activity diagram. International
Journal of Computer Applications. 2015;
115(4):8-12.

13. Boghdady PN, Badra NL, Hashem M,
Tolba MH. A proposed test case
generation technique based on activity
diagrams. International Journal of
Engineering and Technology. 2011;11(3):
37-57.

14. Canfora G, Cimitile A, Lucia AD.
Conditioned program slicing. Information
and Software Technology. 1998;40(11):
595–607.

15. Weiser M. Programmers use slicing when
debugging. Communication of the ACM.
1982;25(7):446-452.

16. Gallagher KB, Lyle JR. Using program
slicing in software maintenance. IEEE
Transactions on Software Engineering.
1991;17(8):751-761.

17. Harman M, Okunlawon M, Sivagurunathan
B, Danicic S. Slice-based measurement
of coupling. 19

th
 ICSE, Workshop on

Process Modeling and Empirical
Studies of Software Evolution, Boston,
Massachusetts, USA; 1997.

18. Harman M, Danicic S. Using program
slicing to simplify testing. Journal of
Software Testing, Verification and
Reliability. 1995;5(3):143-162.

19. Gupta N, Mathur AP, Soffa ML. Automated
test data generation using an iterative

relaxation method. ACM SIGSOFT. 1998;
11:231-244.

20. OMG. Unified modeling language (UML)
Superstructure Specification, version 2.1.
Technical report.

21. Swain RK, Panthi V, Mohpatra DP, Behera
PK. Prioritizing the test scenarios from
UML communication and activity diagrams.
Innovations Syst. and Soft. Eng. 2014;
10(3):165-180.

22. Sapna PG, Balkrishnan AK. An approach
of generating minimal test cases for
regression testing. Procedia Technology.
2015;87:188-196.

23. Scheid F. Numerical analysis. Schaum’s
Outline Series. McGraw-Hill Book
Company; 1968.

24. Swain RK, Panthi V, Behera PK and
Mohapatra DP. Slicing based test case
generation using UML 2.0 sequence
diagram. Int. J. Computational Intelligence
Studies. 2014;3:2-3.

25. Swain RK, Panthi V, Behera PK. Test case
design using slicing of UML interaction
diagram. 2

nd
 International Conference

on Communication, Computing &
Security, Procedia Technology. 2012;6:
136-144.

26. Li L, Li X, He T, Xiong J. Extenics-based
test case generation for UML activity
diagram. First International Conference on
Information Technology and Quantitative
Management, Procedia Technology. 2013;
17:1186-1193.

27. Jena AK, Swain SK, Mohapatra DP. A
Novel Approach of test case generation
from UML Activity diagram. International
Conference on Issues and Challenges in
Intelligent Computing Techniques. 2014;
621-629.

28. Kundu D, Samanta D. A novel approach to
generate test cases from UML activity
diagram. Journal of Object Technology.
2009;8(3):65-83.

29. Samuel P, Mall R. Slicing-based test case
generation from UML activity diagrams.
ACM SIGSOFT Software Engineering
Notes. 2009;34(6):1-14.

© 2016 Rhmann and Saxena; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://sciencedomain.org/review-history/15675

