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ABSTRACT 
 

Rain Water Harvesting (RWH) is any system that encompasses methods for collecting, 
concentrating and storing various forms of runoff for various purposes. Agriculture in semiarid 
tropics depends on the vagaries of weather, especially of the rain. Without doubt, the greatest 
climatic risk to sustained agricultural production in these areas, including Botswana, is rainfall 
variability. RWH has the potential to mitigate spatial and temporal variability of rainfall. Many 
methods of evaluating suitability for RWH, however, have limitations and/or drawbacks.  
This study presents an approach that will enable water managers to assess suitability of RWH for 
any given area by taking advantage of the capabilities of Earth Observation (EO) techniques and 
fuzzy multi-criteria analysis. Literature shows that the incorporation of fuzzy logic to multi-criteria 
analysis can improve the results in suitability analysis hence the study to explore these capabilities 
in RWH. 
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South East District of Botswana was used as the study area to identify suitable areas for macro 
RWH techniques using Analytical Hierarchical Process (AHP) and Fuzzy AHP integrated in GIS and 
RS. The study area was suitable for over 80% of the area, with AHP approach showing 87.1% 
suitable while Fuzzy AHP showing 92.2%, distributed between highly suitable (S1), moderately 
suitable (S2) and marginally suitable (S3). Validation process shows existing water bodies 
occupying only highly suitable area (44%) and moderately suitable (56%) and this was a good 
indication that the model has a good level of accuracy. Field visit showed an accuracy of 57% 
comparing model results with actual situation on the ground. 
In conclusion, even though AHP is widely used in the decision analysis, it is not capable of modeling 
the uncertainties inherent in the criteria and the confidence of the decision maker. Fuzzy AHP is 
seen to perform better as it incorporates the techniques of AHP, fuzzy numbers, fuzzy extent 
analysis, alpha cut and Lambda functions which are able to model the uncertainties inherent in the 
criteria and confidence of the decision maker since the process of decision making involves a range 
of criteria and a good amount of expert knowledge and judgments which in turn affect the outcome 
greatly. 
 

 

Keywords: Multi-criteria evaluation; AHP; fuzzy AHP; macro RWH; South East District. 
 

1. INTRODUCTION 
 
Rain Water Harvesting (RWH), described as the 
collection and concentration of runoff for 
productive purposes and domestic water supply 
[1,2,3,4] is very crucial in alleviating water 
shortages brought about by spatial and temporal 
variability of rainfall in the semiarid regions.  This 
variability causes dry spells which result in crop 
yield reductions thus jeopardizing the success of 
rainfed agriculture [5]. Where practised, RWH 
has mitigated the impacts of dry spells and 
production has been increased. In addition, other 
crops that require more water such as rice and 
maize are now produced under RWH in areas 
where otherwise they would never do well [6]. 

 
RWH techniques for crop production are 
generally classified into three types namely: In-
situ, Internal (micro) and External (macro) RWH. 
Implementation of these techniques requires 
assessment of the area for their suitability [7] 
since they are not suitable everywhere. 
Conventional methods such as land surveys, 
though accurate, are very expensive and time 
consuming to implement [7,8,9,10]. There is 
therefore, a need for methods that are easy to 
use, yet accurate, to identify potential areas. 
 
Spatial techniques such as Geographical 
Information System (GIS) and Remote Sensing 
(RS) are vastly used in suitability evaluation [7] 
and have proven to be good for reconnaissance 
survey of any land assessment. Their results 
could then be used as a guideline for pinpointing 
areas that could be targeted. Like any land 
assessment process, RWH involves an appraisal 
of a lot of factors and constraints to be 

successful, and this renders it a multi criteria 
analysis (MCA) problem. Whereas classical GIS 
has been seen to have weaknesses when 
dealing with overlays [11,12], Multi Criteria 
Decision Making (MCDM) has been found to 
handle multi criteria well and thus its inclusion in 
land suitability assessments can render better 
results compared to those done with GIS alone.  
 

Many factors dealt with in RWH such as soil 
texture, slope and rainfall are continuous in 
nature [13,14] and thus would be very difficult to 
be handled by GIS and/or MCDM. Previous 
methodologies used in identifying potential 
suitable areas for different RWH systems have 
either used GIS alone [15]; a combination of GIS 
and RS and to a limited extent MCDM [7,9,16]. 
To account for the continuous nature of different 
factors, fuzzy logic has been seen to produce 
better results compared to the above-mentioned 
methods. Fuzzy logic is an approach which takes 
into account the uncertainties in the criteria used 
and provides confidence to the decision maker. 
In addition, there is usually ambiguity and 
imprecision involved when selecting cut-offs in 
attributes associated with land use [13]. Under 
such uncertain situations fuzzy logic comes 
handy. Fuzzy logic aids in most precise 
presentation of such imprecise, incomplete and 
vague information [14,17]. The fuzzy logic 
approach has been used in site selection of 
many disciplines but has not been applied in the 
evaluation of suitable sites for RWH techniques. 
 

The objective of this study was to explore the 
capabilities of fuzzy logic into MCA for the 
assessment of suitability of RWH sites in 
semiarid South East District of Botswana using 
GIS and RS. 
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2. MATERIALS AND METHODS 
 
The study area is composed of arable and 
pastoral areas of South East District (25 - 27°S; 
24 - 26°E) as shown in Fig. 1. The climate is 
semiarid with an average annual rainfall range of 
459-761 mm. Most rainfall occurs in summer, 
which generally starts in late October and 
continues through March/April. Prolonged dry 
spells during the rainy season are common and 
rainfall tends to be localized. Mean maximum 
and minimum temperatures of the district vary 
between 22.5 – 33.0°C and 5.0 – 19.3°C, 
respectively. The underlying bedrock of South 
East District contains a number of different 
geological groups including granites, igneous 
and dolomite limestone. The areas exhibiting 
granitic bedrock are generally the flatter 
landscape and they usually form fertile soils in 
the district. Igneous rocks usually form shallow 
soils that are unsuitable for arable agriculture. 
The soils are also poor in terms of nutrient 
availability. The dolomite limestone is said to 
form fair to good soils for arable agriculture [18]. 
The formation of limestone also represents one 
of the best aquifers in the district. The vegetation 
structure of South East District is the Croton 
gratismus woodland and the species usually 
found in the area include Croton gratismus, 
Combretum-apiculatum, and Combretum-molle. 
The study area has a number of ephemeral 
rivers which experience flow and flash flooding 
during the rainy season. 
 
The logical arrangement of procedures which 
were used in determining the suitability of RWH 
techniques are depicted in Fig. 2. Four phases 
were performed, namely, framework of land 
suitability evaluation decision making, data 
processing in MCE, data processing in GIS and 
the integration of GIS and MCE, to come up with 
suitability maps. 
 
Phase I activities, that is, to prioritize criteria 
and/or constraints, were consecutively carried 
out as follows: 
 

2.1 Selection of RWH Techniques  
 
This step investigated possible RWH techniques 
in the study area by taking into account shortage 
of water, overexploitation of underground water, 
cropping patterns, soil patterns, agricultural 
markets, climate conditions and socioeconomic 
status of society. The study area was explored 
for its suitability of macro (ex-field, external) 
RWH technique. 

2.2 Formulation of the Evaluation Criteria  
 

After selecting the RWH technique, the next step 
was to identify relevant criteria (viz. factors and 
constraints) that were necessary for its spatial 
assessment. Criteria established in this phase 
were not unique, but the most relevant. The 
criteria established from literature on RWH 
assessment and RWH studies [9,16] included 
climate, hydrology, topography, agronomy, soils 
and socioeconomic factors. In addition, expert’s 
opinions were solicited by the use of 
questionnaires. Relevant factors for Ex-field 
RWH included, among others, rainfall, land use, 
soil texture, drainage and topography. Each 
criterion was considered as a thematic layer in 
the GIS. 
 

2.3 Hierarchical Organization of the 
Criteria 

 

Criteria become manageable when they are 
arranged in a hierarchical structure [19]. In 
developing the hierarchy, the top level is the 
ultimate goal of the decision at hand and the 
hierarchy then descends from the general goal to 
the more specific elements of the problem until a 
level of attributes and alternatives are reached 
[19]. In this study a four level hierarchical 
structure that was followed is shown in Fig. 3.       
In a GIS based multi criteria analysis the 
alternatives are represented in GIS databases. 
Each layer contains the attribute values assigned 
to the alternatives, and each alternative (e.g. cell 
or polygon) is related to the higher-level 
elements (i.e. attributes) [19]. The above 
hierarchy (Fig. 3) was transformed to a spatial 
decision problem. 
 

The next stage was to collect data to be used in 
the study. Some spatial data (including soil map) 
was obtained from the Ministry of Agriculture, 
Digital Elevation Model (DEM) from the African 
Monitoring of Environment for Sustainable 
Development (AMESD) project and aerial 
photographs from Department of Surveys and 
Mapping while rainfall data was obtained from 
Department of Meteorological services and 
AMESD project.  
 

More spatial data was achieved by processing 
and manipulating data in ArcGIS Environment.  
Questioners were used to elicit expert knowledge 
on the ratings and ranking of the relevant criteria. 
 

Phase II activities, that is, Multi Criteria 
Evaluation (MCE), involved the use of two 
approaches (after literature search): Analytical 
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Hierarchical Process (AHP) and Fuzzy AHP. 
AHP steps involved constructing/developing the 
pairwise comparison matrix (PCM) according to 
[19,20], standardization of the criteria according 
to expert knowledge and literature [7,9,15,21], 
assessing/estimation of relative weights 
according to [20,22], checking consistency 
according to [22] and obtaining the overall rating 
of criteria according to [19]. 
 
Fuzzy AHP steps [12,14,23] involved the 
following:  
  
2.3.1 Acquisition of normal (crisp) pairwise 

comparison matrices (PCM) 
 
The first step in Fuzzy AHP was the development 
of normal pairwise comparison matrices by 
decision makers as is done for AHP.  The 
consistency property of the matrix was also 

checked to ensure the consistency of judgments 
in the pairwise comparison. The PCM developed 
in AHP and their consistency ratios were adopted 
for Fuzzy AHP in this study. 
 

2.3.2 Fuzzifying the crisp PCM to fuzzy PCM  
 

The above crisp PCM’s were then converted into 
fuzzy matrices using pre-defined fuzzy triangular 
functions. The membership values of all the 
elements within the range were calculated as 
follows: 
 

Fuzzy 
number 

Membership function    

1�    (1, 1, 3) 
�̅  (x-2, x, x+2) for x = 2, 3, 4, 5, 6, 7 
9� (7, 9, 11) (1)  

 

Table 1 shows the pre-defined membership 
functions for triangular fuzzy  numbers.  

 

 
 

Fig. 1. Map of the study area in context of South East District and Botswana 
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Fig. 2. Conceptual flow of suitability of RWH approach 
 
Depending on the scores given for different criteria or alternatives fuzzy PCM is represented as 
follows:  

 
     (1,1,1)       (l 12, m12,u12) . . .  (l 1n, m1n,u1n) 
 

�̅ = (� � ij)nxn =    (l 21, m21,u21)  (1,1,1)  . . . (l 2n, m2n,u2n) 
    ⋮           ⋮              ⋮  ⋮ 
    
    (l n1, mn1,un1)       (l n2, mn2,un2) . . .       (1,1,1)                (2) 
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Where � � ij = (lij, mij, uij) = � � ij 
-1 = (1/uij,1/mij, 1/lij)  

 

For I,j =1,…,n and 1≠j. l,m,u are the lower bound, 
middle bound and upper bound respectively. 

 

2.3.3 Calculation of performance ratings and 
weights  

 

After fixing the range, the next step was to find 
out the performance ratings (xij) and weights (wj) 
of each of the alternatives with respect to all 
criteria. To achieve this, fuzzy extent analysis 
was employed as follows: 

 

x ij or wj = 
∑ ���

��� ��

∑ ∑ �����
���

�
���

            (3) 

  

where  i = 1,2,…,n; j = 1,2…,m and k=m or n 
depending on whether the reciprocal judgment 
matrix was for assessing the performance ratings 
of alternatives or weights of the criteria involved. 
The result of applying the above formula yielded 
the decision matrix (X) and the weight vector (W) 
as follows: 
   
        (l 1, m1,u1)   

� =       (l 2, m2,u2) ,  
     

                       ⋮     ⋮      ⋮   
      (l n, mn,un)                         (4)   
       
 

W = (w1,w2,…,wm) 
 

Where n is the number of alternatives and m is 
the number of criteria. 
 

2.3.4 Weighting multiplication from hierarchy 
 

After converting the fuzzy PCM to the 
performance ratings, the next step was to 

multiply them by the criterion weights which were 
obtained using the same step above. The result 
was a fuzzy weighted performance matrix (P) 
shown below, representing the overall 
performance of all alternatives with respect to 
each criterion.  
 
       (P1l, P1m, P1u)   

� =       (P2l, P2m, P2u)  
     
                       (⋮       ⋮         ⋮)  
  
      (Pnl, Pnm, Unu)        
              (5)
  
Where (P1l = wl x l1, P1m = wm xm1, P1u =wu xu1) 
 
The results obtained above were the uncertain 
range of values over which any value could be 
considered as a performance value thus helping 
to decide on the certainty of the decision maker. 
 
2.3.5 Embedding uncertainty of decision 

maker through alpha-cut analysis  
 
Alpha cut (α cut) method was used to account for 
the uncertainty in the fuzzy range. It transformed 
the weighted performance matrix into an interval 
performance matrix. The value of α ranged from 
0 to 1 and represented the decision maker’s 
degree of confidence regarding the alternative 
ratings and criteria weights. A larger α value 
indicated a more confident decision maker while 
a lower value indicated an uncertain decision 
maker. The interval performance matrix took the 
form: 
  

 

  [P11
α

 (l), P11
α

(r)]   [P12
α

 (l), P12
α

(r)] . . .  [P1n
α

 (l), P1n
α

(r)]  
Pα   =  [P21

α
 (l), P21

α
(r)]  [P22

α
 (l), P22

α
(r)] . . . [P3n

α
 (l), P3n

α
(r)]  

  ⋮               ⋮          ⋮  
      [Pn1

α
 (l), Pn2

α
(r)]  [Pn2

α
 (l), Pn2

α
(r) ]. . .   [Pnn

α
 (l), Pnn

α
(r)]                                          (6) 

 

Table 1. Fuzzy pairwise conversion 
 

Linguistic variables Crisp PCM  
value 

Positive  triangular fuzzy 
number 

Positive reciprocal  
triangular fuzzy number 

Equal 1 (1,1,1) if diagonal (1,1,1) 
Intermediate 2 (1,2,4) (1/4,1/2,1) 
Moderate 3 (1,3,5) (1/5,1/3,1) 
Intermediate 4 (2,4,6) (1/6,1/4,1/2) 
Strong 5 (3,5,7) (1/7,1/5,1/3) 
Intermediate 6 (4,6,8) (1/8,1/6,1/4) 
Very strong 7 (5,7,9) (1/9,1/7,1/5) 
Intermediate 8 (6,8,10) (1/10,1/8,1/6) 
Absolute 9 (7,9,11) 1/11,1/9,1/7) 
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Fig. 3. Hierarchical structure for the suitability of RWH techniques [14,19] 
 

2.3.6 Embedding attitude of the decision 
maker through lambda function  

 
The attitude of the decision maker also played a 
role in deciding the performance value. After 
embedding the uncertainty of the decision maker, 
there still existed a range to pick from. This 
therefore brought the issue of decision maker 
being pessimistic, optimistic and neutral. Lambda 
function index (λ) which takes the values 
between 0 and 1 was used to capture decision 
maker’s attitude. Decision maker with optimistic 
attitude would take the maximum Lambda; the 
moderate person would take the medium 
Lambda and the pessimistic person would take 
the minimum Lambda as follows: 
 
                    Cλ1 

Cλ=       Cλ2    
         ⋮ 
                     Cλn    

               (7) 
 
Cλ = λ*α(R) + [(1- λ)*αL], 
 

Where R is Right side and L is Left side; C λ  
=crisp value. 
 
The above steps were followed in this study to 
site suitable areas for macro rainwater 
harvesting. 
 
Phase III activities, that is, GIS Environment, 
used GIS to map suitability derived from AHP 
and Fuzzy AHP approaches. Since many maps 
were produced (e.g. soil depth, soil texture, 
rainfall distribution, drainage, relief, etc.), 
overlaying in GIS proved handy. Fig. 4 shows a 
schematic representation used for the criteria 
chosen. All the maps, except those of land cover 
and spatial distribution of rainfall, were converted 
to raster layers and re-sampled to a resolution of 
30 x 30 m to match the spatial resolution of Aster 
DEM. They were then re-classified as per the 
specifications of each RWH technique.  
 
Phase IV activity, that is, integration of results 
from MCE and GIS environment, entailed the 
incorporation of the results from phase II and III. 
ArcGIS was used to achieve this and the raster 

Alternative 

Soil 

Objectives 
Attribute 

Goal 

Suitability 

Topographic 

Land cover 

Texture 

Rainfall 

Depth 

Climate 

Land cover types 

Slope 

S1 

S2 

N1 

S3 

N2 

Drainage 
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calculator and overlay procedures were used. 
After calculating the weights, all the products 

were overlaid to come up with the final suitability 
maps. 
 

 
 

Fig. 4. Schematic representation of the procedures used to generate criteria maps in GIS 
 

Final 
suitability 

Soil Map 
Aerial  
Photos 

DEM 
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Slope 
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Land cover 
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Soil depth 
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of Drainage 
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Drainage 
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Testing and validation of the approaches used in 
the study were carried out by adopting the 
approach of using existing areas of water 
impoundment [16]. Data was collected from the 
Ministry of Agriculture for water bodies and it was 
augmented by classifying LANDSAT and 
digitizing from aerial photographs of 1m x 1m 
resolution. The assumption made was that these 
areas are suitable for storing water that is why 
they are used as dams. Another assumption was 
that they have or are sited in places where there 
are drainage patterns to impound them therefore 
the drainage pattern in the study area was also 
used to validate the results obtained. The 
drainage pattern was obtained by using 
hydrology toolbox embedded in ArcGIS 10. The 
water bodies’ layer was overlain with the final 
suitability map derived to check where the water 
bodies fell. Area covered by the different water 
bodies was calculated as per suitability classes. 
The area covered by water bodies was assumed 
to be highly suitable and those without water 
were said to be unsuitable. If the area within the 
water body falls within the area classified as 
suitable in the final suitability map, then the 

suitability model would be said to be good as it 
would be agreeing with the independent data.  
 
Another way of validating the model was 
achieved by collecting points in the resultant 
suitability map and confirming them with field 
data (ground truthing). Points were collected by 
taking x and y coordinates at the confluence of 
the map grid reference. An error matrix was then 
constructed from the reference data and the 
classification data. Several measures of 
classification accuracy such as percentage 
correct, percent correct by category and both 
errors of commission and omission by category 
were calculated. Kappa statistic or coefficient 
was also calculated to determine the agreeability 
of the classified data compared to reference 
data. 
 

3. RESULTS AND DISCUSSION 
 

Figs. 5 a-h show the distribution of soil texture, 
soil depth, soil drainage, land cover, relief, slope 
(%), rainfall, and constraint areas, respectively, 
of the study area. 
 

 
 

Fig. 5(a). Soil texture map 
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Fig. 5(b). Soil depth map 
 

 
 

Fig. 5 (c). Soil drainage map 
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Fig. 5 (d). Land cover map 
 

 
 

Fig. 5(e). Aster DEM 
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Fig. 5 (f). Slope map 
 

 
 

Fig. 5 (g). Rainfall distribution map 
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Fig. 5(h). Constraint areas for macro RWH 
 

Table 2. Overall Pair-wise comparison matrix for macro RWH 
 

Macro RWH Climate Topography Soil Land cover Weights 
Climate 1 2 3 5 0.4530 
Topography  1 2 4 0.3089 
Soil   1 2 0.1579 
Land cover    1 0.0803 

C.I = 0.007   R.I = 0.008 
 

3.1 AHP 
 
The pairwise comparison matrices shown in 
Tables 2 and 3 together with consistency index 
(CI) and consistency ratio (CR) of less than 0.10 
indicate  a reasonable level of consistency in the 
pairwise comparison. 
 

Table 3. Pairwise comparison for soil 
attributes of macro RWH 

 
Soil Drainage Texture Weights 
Drainage 1 2 0.6667 
Texture 1/2 1 0.3333 

C.I = 0   R.I = 0 

The aggregation of relative weights of objectives 
and attribute levels to produce composite 
weights resulted in ratings and rankings shown in 
Table 4. 

 
Table  4. Different criteria for macro RWH with 

their weights and their order of importance 

 

Technique Criteria Weights Ranking 

Macro 
RWH 

Climate 0.4530 1 

Topography 0.3089 2 

soil 0.1579 3 

Land cover 0.0803 4 
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Armed with weights for the whole criteria, the 
suitability map (using ArcGIS 10) for macro RWH 
techniques was obtained as shown in Fig. 6. 
From the map above, 87.1% of the total available 
area is suitable for macro RWH techniques with 
21.3% being highly suitable (S1). The unsuitable 
area (N1 and N2) only occupies 12.9% of which 
11.6% is occupied by N1. The results are 
summarized in Table 5. 
 

3.2 Fuzzy AHP (FAHP) 
 
As experts are not totally certain regarding 
suitability parameters of the RWH techniques in 
question and their requirements, an alpha cut 
value (α) of 0.6 (indicating 60%) of uncertainty in 
the experts’ knowledge, and a lambda ג( ) of 0.5 
(indicating moderate attitude) of uncertainty over 
the range of their requirements, were applied in 
this study. Fig. 7 and Table 6 show the results of 
suitability for macro RWH techniques.                                                                                                                  
 
Fig. 7 and Table 6 show that macro RWH is 
highly suitable (S1) for 28.4% of the total area 

while 63.8% is distributed between other suitable 
classes (S2 and S3) with S3 dominating the area 
(33.8%). The unsuitable (N1 and N2) area only 
occupies 7.8% of the study area. 

 
Table 5. Area suitable for macro RWH (AHP) 

under different classes 
 

Suitability class Area (km
2
) % Area 

S1 107.32 21.3 
S2 149.27 29.7 
S3 181.53 36.1 
N1 58.99 11.6 
N2 6.31 1.3 

 
Table 6. Area suitable for macro RWH (Fuzzy 

AHP 0.5) under different classes 
 

Suitability class Area (km
2
) % Area 

S1 143.1 28.4 
S2 150.8 30.0 
S3 170.2 33.8 
N1 38.1 7.6 
N2 1.3 0.3 

 

 
 

Fig. 6. Suitability map of macro RWH technique using AHP approach 
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Fig. 7. Suitability map of macro RWH technique using Fuzzy AHP approach 
 

In the overall it is evident from the results that the 
study area is mostly suitable for macro RWH 
techniques while less than quarter of the area is 
not suitable. 
 

3.3 Sensitivity Analysis 
 

In Fuzzy AHP approach, an Alpha-cut value of 
0.6 was considered for this study assuming that 
the decision environment was certain to a certain 
level since the process involved criteria, which 
were measured with comparatively good 
accuracies by advanced technologies (e.g. slope 
derived from DEM). The decision maker on the 
other hand decides on the criteria selected and 
thus some level of uncertainty is involved. The 
sensitivity of the approach is therefore illustrated 

using Lambda 0, 0.5 and 1 for macro RWH 
technique. Figs. 8-10 show the results obtained 
using an Alpha cut of 0.6 and Lambda values of 
0, 0.5 and 1 respectively. 

 
The results for macro RWH at Lambda 0 show 
that the highly suitable area is 24.8% and that 
the unsuitable (N2) area is 1.0%. For Lambda 
0.5, the most suitable area increased to 28.4% 
while that for highly unsuitable (N2) area is 
decreased to 0.3%. Comparisons of the results 
for the three Lambda values are shown in Table 
7.The general trend is that the area               
under suitability classes S1 and S2 increases as 
the decision maker’s attitude becomes optimistic 
but that of classes S3, N1 and N2 decreases. 

 

Table 7. Comparison of results for macro RWH undertake by three Lambda values 
 

Class Lambda 0 Lambda 0.5 Lambda 1 
Area % Area Area % Area Area % Area 

S1 124.8 24.8 143.1 28.4 152.1 30.2 
S2 113.2 22.5 150.8 30.0 173.8 34.5 
S3 199.3 39.6 170.2 33.8 148.6 29.5 
N1 61.2 12.2 38.1 7.6 28.2 5.6 
N2 5.0 1.0 1.3 0.3 0.7 0.1 
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Fig. 8. Suitability of macro RWH technique using Fuzzy AHP approach (Lambda 0) 
 

 
 

Fig. 9. Suitability of macro RWH technique using Fuzzy AHP approach (Lambda 0.5) 
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It is noticeable that there is a shift from lower 
suitability classes to higher classes when one 
moves from no confidence (pessimistic) to 
moderate and absolute confidence (optimistic)  
i.e. Lambda 0, 0.5 and 1. 
 
It is thus concluded that Lambda can be used to 
measure the uncertainty of the expert 
knowledge. The analysis seems to be affected by 
the attitude of the decision maker as the results 
show significant changes in areas occupied by 
different classes. These shifts in the classes are 
also noticeable in Figs. 8-10. 

 
3.4 Comparisons for AHP and Fuzzy AHP 

Approaches 
 
The results of the two approaches are compared 
to see how they modeled suitability of macro 
RWH technique. 

 
In Fig. 11, results of the two approaches can be 
said to be comparable. The highly suitable area 
is around 20-30% while N2 is around 1%. Fuzzy 
AHP has higher values than AHP for S1 and S2 

while the reverse is true for S3, N1 and N2. It 
seems that fuzzy AHP shifts the area that was 
classified as unsuitable by AHP to suitable areas. 

In the overall, suitable area for macro RWH for 
both approaches is over 80%. 
 

The results of the two approaches are somewhat 
comparable since moderate confidence and 
moderate attitude is used for Fuzzy AHP. 
Moderate confidence and attitude is modelled 
using the middle number in the fuzzy PCM, 
which could be reduced to classical AHP save for 
the effects of Lambda and Alpha cut. Although 
AHP incorporate expert knowledge, it fails to 
incorporate the uncertainty in the data used, 
expert knowledge, one’s judgements and 
attitude. 
 

Fuzzy AHP can give good results since it 
incorporates uncertainty of the expert and one’s 
attitude while comparing criteria. This approach 
further incorporates uncertainty that arise while 
expressing the preference over these criteria. For 
instance when expressing the preference of 
topography over land use one can only express 
one’s opinion such as topography is more 
preferred to land use. Where the decision maker 
is unable to be explicit about his/her judgements, 
Fuzzy AHP becomes handy since it gives interval 
judgements than fixed value judgements thereby 
allowing one to set one’s level of confidence and 
the attitude of one’s judgements.  
 

 
 

Fig. 10. Suitability of macro RWH technique using Fuzzy AHP approach (Lambda 1.0) 



Fig. 11. Comparison of results for 
 

Fig. 12. Water bodies locations in the final suitability map for macro RWH techniques

3.5 Validation and Testing of the Results
 
Fig. 12 and Table 8 show the results of the 
validation process using existing wat
From the results, 44% of the dam area falls in the 
highly suitable area (S1) while 56% falls in S2 
class. None of the area falls in classes S3, N1 
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12. Water bodies locations in the final suitability map for macro RWH techniques
 

3.5 Validation and Testing of the Results 

Fig. 12 and Table 8 show the results of the 
validation process using existing water bodies. 

% of the dam area falls in the 
highly suitable area (S1) while 56% falls in S2 
class. None of the area falls in classes S3, N1 

and N2 which represent low suitability and non
suitability. From the results the model could be 
said to be reliable as it has made predictions that 
agree with the independent data.  
 
Apart from using existing water bodies to validate 
the model, the study area was sampled at eac
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suitability. From the results the model could be 
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Apart from using existing water bodies to validate 
the model, the study area was sampled at each 
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confluence of the x and y coordinates in the grid 
(Fig. 13) to further validate the model. The points 
were then visited to assess the status of the 
area. 
 

Table 8. Distribution of the area of water 
bodies in suitability levels of final suitability 

map 
 

Independent data Model output 
Water 
 body ID 

Area  
(sq km) 

S1 S2 S3 N1 N2 

1 0.18 0.11 0.07 0 0 0 
2 0.74 0.13 0.61 0 0 0 
3 0.25 0.23 0.02 0 0 0 
4 0.05 0 0.05 0 0 0 
5 0.29 0.20 0.09 0 0 0 

 
In order to assess accuracy, an error matrix table 
was constructed (Table 9). 

 
From the error matrix table, percent commission 
and omission errors, percent correct, Kappa 
coefficient and Kappa standard error at 95% 

confidence level were calculated. Table 10 
shows a summary of the results obtained. 
 

The percent Correct Observed (calculated by 
dividing the sum of the diagonal entries of the 
error matrix by the total number of reference 
entries) provided an overall accuracy 
assessment of the classification and for this 
study it was 57.14%. This could be said to be fair 
given the fact that few points (due to financial 
constraints) were considered. 
 

Table 9. Error matrix 
 

D
a
ta

 C
la

s
s
if

ic
a

ti
o

n
 Reference Data 

 S1 S2 S3 N1 N2 Row 
total 

S1 1 0 0 0 0 1 
S2 0 1 1 0 0 2 
S3 0 1 1 1 0 3 
N1 0 0 0 1 0 1 
N2 0 0 0 0 0 0 
Column  
total 

1 2 2 2 0 7 

 

 
 

Fig. 13. Location of sampled points 
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Table 10. Summary of error matrix 
 

Category % Commission % Omission % correct category 
by category 

S1 0 0 100 
S2 50 50 50 
S3 67 50 33 
N1 0 50 100 
N2 0 0 0 
Weighted Kappa 
Coefficient 

Kappa standard error (at 0.95 Confidence 
interval) 

 

0.604 0.2174 
Observed Correct Total Observed % Observed correct 
4 7 57.14% 

 
On the basis of category by category 
assessment, percent correct by category was 
calculated (Table 10) and the results show that 
the classification performed best for S1 and N1 
categories with S1 having 0% omission and 
commission errors and N1 with 0% commission 
errors and 50% omission errors. S3 was least 
correctly classified (33%) with a commission 
error of 67% and omission error of 50%.  
 
In addition to errors of commission and omission, 
Kappa coefficient was found to be 0.604     
(Table 11), indicating the strength of agreement 
between classified data and reference data as 
being ‘’moderate’’ for this study.  
 

Table 11. Interpretation of Kappa 
 

Kappa coefficient Strength of 
agreement  

< 0.0 Poor 
0.00 – 0.20 Slight 
0.21 – 0.40 Fair 
0.41 – 0.60 moderate 
0.61 – 0.80 substantial 
0.81 - 100 Almost perfect 

 
In the overall, several measures of classification 
accuracy showed that the model performed well 
or moderate but a more rigorous accuracy 
exercise could be performed if more data was 
made available to improve the accuracy results. 
 

4. CONCLUSIONS 
 
GIS and Remote sensing techniques have been 
widely used in spatial assessments and spatial 
decision making, and have been found to 
perform well in modelling spatial data. However, 
the arbitrary choice of weights in spatial site 
suitability assessments has made the universal 

acceptance of results from geospatial techniques 
difficult. 
 

To overcome the weight allocation problem MCE 
has been incorporated into these techniques. 
AHP, which is a comprehensive, logical and 
structured multi-criteria decision making 
technique, has been widely used in suitability 
evaluations including RWH assessments. In spite 
of its conceptual simplicity and computational 
efficiency in structuring the problem in a 
systematic manner and in calculating weights, 
the traditional AHP suffers some shortcomings. 
The major shortcoming is its inability to handle 
impression and attitude of the decision maker in 
deciding the criteria.  
 
The current study proposed and demonstrated 
the use of Fuzzy AHP to deal with ambiguity in 
RWH assessments. Fuzzy AHP, with embedded 
techniques such as fuzzy numbers, fuzzy extent 
analysis, α-cut and λ index can adequately 
handle the inherent uncertainty and imprecision 
of the human decision making process and 
provide the flexibility and robustness needed for 
the decision maker to better understand the 
decision problem and their decision behaviours. 
With this approach, the decision maker’s attitude 
towards risk is adequately reflected by optimism 
index, λ, while their degree of confidence is 
handled using α-cut.  
 
The above approaches can also be used to 
check the sensitivity of the model. For this study, 
λ index of 0, 0.5 and 1 were used and it was 
seen that there was a significant change 
between lambda 0, 0.5 and 1. Changing the 
values of alpha cut and Lambda showed the 
sensitivity of the process. 
 
Suitability for macro RWH was achieved in the 
study area using AHP and fuzzy AHP. The 
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results showed that over 80% of the study area is 
suitable for macro RWH distributed between S1, 
S2 and S3. S1 and S2 occupy a smaller area in 
AHP compared to results in Fuzzy AHP. 
 
Several measures of classification accuracy were 
calculated including errors of commission and 
omission. In addition, statistical measures such 
as Kappa coefficient of agreement were 
calculated and the results showed a moderate 
accuracy with overall %age correct of 57.14 and 
Kappa coefficient of 0.604. Percent errors of 
omission and commission on category to 
category basis were also calculated and S1 had 
none of the errors while S3 performed least with 
67% error of commission and 50% error of 
omission. 
 
The suitability maps generated can be the first 
step in determining the viable water resource 
management option for the study area since the 
spatial context is captured. Furthermore, the 
maps generated can be used as an awareness 
tool to alert those who are interested in practicing 
RWH for crop production. 
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