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Energy storage in wind farms can stabilize the fluctuation of wind power output.

Shared energy storage can reduce the construction cost of energy storage

devices and stimulate the enthusiasm of wind farms to invest in energy storage.

The wind power base is composed of multiple wind farm groups. Existing

research methods did not consider how to allocate shared energy storage

among wind farm groups in the wind power base. This paper proposes an

energy storage capacity allocation method for wind farm groups. Firstly, a

bilevel model for the shared energy storage allocation is established. The

upper-level model optimizes the shared energy storage allocation of each

wind farm group with the goal of minimizing the over-limit power export risk in

the wind power base; The lower-level model calculates the over-limit power

export of each wind farm group according to the energy storage capacity

allocation and transfers the value of over-limit power export to the upper-level

model. The bilevel model can be converted to a two-stage model that can be

solved sequentially; The wind power base in Belgium is used for numerical

simulation to verify the effectiveness of the proposed model. Finally, the

sensitivity of confidence level, total energy storage capacity, and risk

preference factor are analyzed.
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1 Introduction

Integrating renewable energy into the power systemmakes the power systemmore

environmentally friendly (Kong et al., 2019). However, the substantial volatility of

renewable energy is one of the important factors limiting its large-scale grid

connection, which directly affects the stable operation of the power system (Ju

et al., 2019). In order to use large-scale renewable energy more effectively,

researchers all over the world discuss solutions to reduce the threat of large-scale

OPEN ACCESS

EDITED BY

Nantian Huang,
Northeast Electric Power University,
China

REVIEWED BY

Meng Song,
Southeast University, China
Chengcheng Shao,
Xi’an Jiaotong University, China

*CORRESPONDENCE

Zhiyi Li,
zhiyi@zju.edu.cn

SPECIALTY SECTION

This article was submitted to Smart
Grids, a section of the journal
Frontiers in Energy Research

RECEIVED 15 November 2022
ACCEPTED 22 November 2022
PUBLISHED 10 January 2023

CITATION

Zhu W, Song K, Gu Y, Luo Y, Shu J,
Weng H and Li Z (2023), Allocating the
capacity of shared energy storage for
wind farm groups based on the over-
limit power export risk.
Front. Energy Res. 10:1099262.
doi: 10.3389/fenrg.2022.1099262

COPYRIGHT

© 2023 Zhu, Song, Gu, Luo, Shu, Weng
and Li. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 10 January 2023
DOI 10.3389/fenrg.2022.1099262

https://www.frontiersin.org/articles/10.3389/fenrg.2022.1099262/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1099262/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1099262/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1099262/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.1099262&domain=pdf&date_stamp=2023-01-10
mailto:zhiyi@zju.edu.cn
https://doi.org/10.3389/fenrg.2022.1099262
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.1099262


renewable energy to the power system. Some researchers

design a dispatching strategy for wind farms with a

multiple-stage hybrid energy storage system (Zhang et al.,

2018), while other researchers discuss the optimal allocation

of energy storage capacity for stabilizing wind power

fluctuations (Zhu et al., 2020). Further, some studies reduce

curtailed wind energy through energy storage and demand

response (Bitaraf and Rahman, 2018). In addition, some

studies propose the capacity allocation method using big

data (Song et al., 2021). Some studies propose a power

smoothing method by using a battery system using the

fuzzy control strategy (Cong et al., 2018). The research

(Zhang et al., 2019) enhances performances on wind power

fluctuations mitigation by optimizing the operation schedule

of battery energy storage systems with considerations of

operation cost. In addition, some studies deal with the

calculation of short and long-term energy storage needs

and their dependence on the installed amount of solar

energy and wind power (Weiss and Schulz., 2013). Later

studies calculate the required energy storage capacity and

charging/discharging power ratings for different desired

operation scenarios (Lu et al., 2009).

The above studies all refer to the use of energy storage devices

in a single wind farm to stabilize volatility, without considering the

sharing of energy storage among wind farms. The operation

efficiency of energy storage devices is low if the wind farm uses

energy storage devices individually. In order to fully tap the

application potential of energy storage, some studies propose

the concept of shared energy storage (Zhao et al., 2020). Some

studies propose a business model for utility-scale shared energy

storage systems (Ben-Idris et al., 2021), while other studies analyze

the complementary and controllable capabilities of energy storage

that promote new energy consumption, and study the multiple

energy storage sharing mechanism (Xv et al., 2022). Further, some

studies use a hybrid storage system for energy sharing within the

prosumers’ community (Mussadiq et al., 2022). In addition, some

studies propose a capacity allocation method for photovoltaic

microgrid energy storage systems based on time-sharing energy

complementarity (Cong et al., 2021). Some studies propose a bi-

level optimization problem aiming to improve the use of the

shared energy storage for distribution system flexibility

(Taşcıkaraoğlu et al., 2018). In addition, some studies propose a

shared energy storage strategy among multiple wind farms based

onwind power forecasting (Zhu et al., 2018). Later studies establish

a cooperative game model in which prosumers and energy storage

operators are themain participants to realize capacity optimization

of renewable energy and energy storage systems (Tian et al., 2021).

Some studies propose a novel shared energy storage planning

method considering the correlation of renewable uncertainties on

the supply side (Wang et al., 2022). However, how to reasonably

allocate the shared energy storage capacity and reduce the over-

limit power export risk of wind farm groups is still a problem to be

solved.

Large-scale wind power base is the main form of wind

power. Under the combined effect of multiple factors such as

large-scale wind power equipment, cost reduction, and

intensified market competition, the wind power base has

entered a new stage of installation growth and expansion.

Due to the large scale of the wind power base, the wind power

base is usually divided into different wind farm groups and

connected to the power grid through collection transformers

as shown in Figure 1.

The fluctuation of wind power is the main limiting factor for

the development of the wind power base. Based on the concept of

shared energy storage, this paper proposes an allocation method

of shared energy storage capacity for wind farm groups from the

perspective of minimizing the over-limit power export risk in the

wind power base. The innovations are as follows:

1) Conditional Value at Risk theory is used to characterize the

over-limit power export risk of each wind farm group.

2) A bilevel optimization model for shared energy storage

capacity allocation in wind farm groups is proposed, which

provides a theoretical basis for the reasonable allocation of

shared energy storage in wind farm groups.

3) A two-stage solution method for the bilevel optimization

model of shared energy storage capacity allocation is

proposed, and its equivalence is proved.

The remaining contents of this article are as follows: Section 2

introduces the shared energy storage for wind farm groups.

Section 3 introduces the energy storage allocation models and

the solution method. Section 4 analyzes the results through

FIGURE 1
Large-scale wind power base.

TABLE 1 Guidelines for wind farm grid connection.

Capacity Maximum output change
(15 min)

<30 MW 10 MW

30–150 MW 1/3 Capacity

>150 MW 50 MW
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simulation. Section 5 gives the conclusion and summarizes the

whole article.

2 Sharing energy storage for wind
farm groups

The fluctuation of wind power is a threat to the power grid

operation. Generally speaking, the long, high-speed, and wide-

range fluctuation process is more likely to pose a threat to the

power grid operation. In order to reduce the impact of wind

power fluctuations, State Grid proposed guidelines for wind

farms connected to the power grid, as shown in Table 1.

The real data of the wind farm group’s output in Belgium is

shown in Figure 2. We can see that the wind farm group’s output

has exceeded the limit 8 times a day, and the most serious over-

limit power is 14.78 MW. If grid connection is not allowed for the

part of over-limit power, 25.5 MWh of wind power will be

abandoned per day.

We define the over-limit power export risk in wind farms as

follows:

R � ∑NS

s�1
ηs ΔPwind

s − Plimit( ) (1)

where, ΔPwind
s represents power export change of adjacent

periods in wind farms. Plimit represents the guideline of power

export change shown in Table 1.NS represents the total number

of possible scenarios of power export in wind farms. ηs represents

the probability of occurrence of scenario s.

Energy storage can effectively reduce the power

fluctuation of wind farm groups so that the power export

can meet the guidelines. In other words, energy storage can

effectively reduce the over-limit power export risk in wind

farm groups and improve wind utilization. Large-scale wind

power base usually contains multiple wind farm groups, and

each wind farm group is composed of multiple wind farms.

We define all wind farms connected to the same collection

substation as one wind farm group. As shown in Figure 3, the

wind farms inside the wind farm group are connected

through the collection station, and then connected to the

power grid. In order to reduce the over-limit power export

risk, wind farm groups install distributed energy storage

independently.

However, the high investment cost of energy storage is the

main obstacle for wind farm groups. Figure 4 shows the

schematic diagram of shared energy storage in the wind

power base. If each wind farm group constructs energy

storage independently in the wind power base, the investment

will be huge and the energy storage operation efficiency will be

low. As wind farm groups belong to the same wind power base,

there is only one single stakeholder in the wind power base. Using

the concept of sharing energy storage, wind farm groups can

jointly invest in energy storage equipment and coordinate

operation, which is a new idea for wind farm groups to

reduce power fluctuation. In the wind power base, the wind

farm groups’ output may vary greatly due to the wake effect. The

wake effect refers to the wake area where wind turbines obtain

FIGURE 2
Wind farm group’s output in Belgium.

FIGURE 3
Distributed energy storage in the wind power base.

FIGURE 4
Shared energy storage in the wind power base.
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energy from the wind and wind speed decreases downstream. If a

downstream wind turbine is located in the wake area, the input

wind speed of the downstream wind turbine will be lower than

that of the upstream wind turbine. Thus, wind farm groups can

jointly use centralized energy storage devices to smooth the wind

power output. By reasonably allocating shared energy storage in

wind power groups, the wind power base canmaximize the use of

shared energy storage devices due to the difference of the output

power in wind power groups.

In this way, the wind power base can reduce the over-limit

power export risk in a more effective way. If we allocate the

shared energy storage to each wind power group, it can be

equivalent to that each wind power group has a distributed

energy storage to reduce the power fluctuation. However, how

to characterize the over-limit power export risk of wind farm

groups, and how to reasonably allocate shared energy storage

capacity among wind farm groups to minimize the over-limit

power export risk of wind farm groups, have become new issues

worth studying.

CVaR is an effective method for risk measurement. It can

help us understand the expected risk of loss that exceeds a certain

value at a certain confidence level. CVaR is widely used in the

power system. Some studies use CVaR to describe the risk loss

when the real wind power output is beyond the predefined

uncertainty set (Zhang et al., 2018). Later studies use CVaR to

help the distribution system operator (DSO) to balance the

condition risk and the power generation dispatch cost in the

power generation dispatch for the lowest total cost (Ren et al.,

2019). The advantage of CVaR is that it is not a point probability

value, but the weighted average expected value of all losses above

the selected probability. In addition, CVaR can be optimized by

using the linear programming algorithm. Thus, CVaR is very

suitable to characterize the over-limit power export risk.

This paper will use CVaR to characterize the over-limit

power export risk of wind farm groups, and allocate the

shared energy storage in each wind farm group with the goal

of minimizing the over-limit power export risk in the wind

power base.

3 Model and methodology

In this section, we introduce a shared energy storage

allocation model for wind farm groups in the wind power

base based on CVaR. The goal of this model is to minimize

the over-limit power export risk in the wind power base. The

model framework is shown in Figure 5. The upper-level model

minimizes over-limit power export risk in the wind power base

with the constraints of energy storage allocation. The upper-level

model optimizes the allocation of shared energy storage capacity

in each wind farm group and obtains the allocation results of

shared energy storage capacity. Then, the upper-level model

transfers the allocation results to the lower-level model. The

lower-level model minimizes the over-limit power export of each

wind farm group according to the allocation results with the

constraints of the energy storage operation. The lower-level

model obtains the over-limit power export of each wind farm

group and transfers it to the upper-level model.

3.1 Bilevel model for energy storage
allocation

3.1.1 Upper-level model
The objective function of the upper-level model based on

CVaR is as follows:

min 1 − μ( )Fc + μCVaR (2)

where, μ represents the risk preference factor, Fc represents the

over-limit power export of wind farm groups, CVaR represents

the over-limit power export risk. The calculation formula of Fc is

as follows,

Fc � 1
NS

∑NS

s�1
∑NI

i�1
∑NT

t�1
Pex,s,i,t (3)

where, Pex,s,i,t represents the over-limit power export of wind

farm i at time t in scenario s. NS represents the number of

scenarios. NI represents the number of wind farm groups. NT

represents the total periods.

The calculation formula of CVaR is as follows,

CVaR � ∑NI

i�1
CVaRi (4)

CVaRi � βi +
1

NS 1 − α( ) ∑
NS

s�1
ϕi,s, ∀i ∈ 1, ..., NI[ ] (5)

ϕi,s ≥wi,s − βi, ∀i ∈ 1, ..., NI[ ]; s ∈ 1, ..., NS[ ] (6)
ϕi,s ≥ 0, ∀i ∈ 1, ..., NI[ ]; s ∈ 1, ..., NS[ ] (7)

where, CVaRi represents the over-limit power export risk of wind

farm i. βi represents the VaR value of wind farm i at α confidence

level. ϕi,s is the auxiliary variable, which represents the over-limit

FIGURE 5
Model framework.
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power export risk over VaR of wind farm i in scenario s. wi,s

represents the over-limit power export of wind farm i in scenario s.

The constrains of upper-level model is as follows:

ecapi ≥ 0.1 × eNi , ∀i ∈ 1, ..., NI[ ] (8)
ecapi ≥ 4 × pcap

i , ∀i ∈ 1, ..., NI[ ] (9)

∑NI

i�1
ecapi ≤Ecap (10)

∑NI

i�1
pcap
i ≤Pcap (11)

where, ecapi represents energy storage capacity allocated to wind

farm i. eNi represents the energy storage capacity of wind farm i.

pcap
i represents max real power output of energy storage allocated

to wind farm i. Ecap represents the shared energy storage

capacity. Pcap represents the max real power output of shared

energy storage.

In order to reduce the impact of wind fluctuations on grid

stability, the wind farm is required to be equipped with 10%

capacity energy storage, and the charging time should not less

than 4 h. To ensure the above requirements, constraints

(8)–(9) are added to the model (10)–(11) represents the

constraints of the allocation of shared energy storage in

wind farm groups.

3.1.2 Lower-level model
The lower-level model minimizes the over-limit power

export of the wind farm groups. The objective function of the

lower-level model is as follows:

min∑NT

t�1
max Ps,i,t − Ps,i,t−1

∣∣∣∣ ∣∣∣∣ − Pi,limit, 0( ) (12)

where, Ps,i,t represents the power export of wind farm i at time t

in scenario s. Pi,limit represents the power export fluctuation limit

value to wind farm i. The specific definition of Pi,limit are as

follows:

Pi,limit �

3 eNi ≤ 30

eNi
10

30< eNi ≤ 100

10 100< eNi

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(13)

There are two nonlinear terms in the objective function,

absolute value and maximum value, which need to be linearized.

Auxiliary variables Pex,s,i,t is introduced to equivalent the

objective function to the following linearized form:

min ∑
t∈NT

Pex,s,i,t (14)

Pex,s,i,t ≥Ps,i,t − Ps,i,t−1 − Pi,limit (15)
Pex,s,i,t ≥Ps,i,t−1 − Ps,i,t − Pi,limit (16)

Pex,s,i,t ≥ 0 (17)

The constraints of the lower-level model are as follows:

Ps,i,t � pN
s,i,t + pD

s,i,t − pC
s,i,t( ) (18)

es,i,t � 1 − si( )es,i,t−1 + ηCi p
C
s,i,t −

pD
s,i,t

ηDi
( ), ∀t ∈ 1, ..., NT[ ] (19)

0≤pC
s,i,t ≤ I

C
s,i,tp

cap
i , ∀t ∈ 1, ..., NT[ ] (20)

0≤pD
s,i,t ≤ I

D
s,i,tp

cap
i , ∀t ∈ 1, ..., NT[ ] (21)

SOC mine
cap
i ≤ es,i,t ≤ SOC maxe

cap
i , ∀t ∈ 1, ..., NT[ ] (22)

ICs,i,t + IDs,i,t ≤ 1, ∀t ∈ 1, ..., NT[ ] (23)
es,i,1 � es,i,T (24)

where, pN
s,i,t represents wind power output of wind farm i at time t

in scenario s. pD
s,i,t represents discharging power of the energy

storage of wind farm i at time t in scenario s. pC
s,i,t represents

charging power of the energy storage of wind farm i at time t in

scenario s. es,i,t represents remaining power of the energy storage

of wind farm i at time t in scenario s. si represents self-loss-rate of

energy storage of wind farm i. ηCi and ηDi represent charging

efficiency and discharging efficiency for energy storage. SOC min

and SOCmax represent minimum and maximum state-of-charge

values for energy storage.

After the wind farm gets the allocated energy storage, its

power export depends not only on the output of wind farm but

also on the output of energy storage. The power balance

constraint can be expressed as constraint (18). Constraints

(19)–(24) are energy storage operation constraints.

Since the lower-level model is nonconvex, neither

Karush–Kuhn–Tucker optimality conditions nor duality

theory can be applied to transform the lower-level model

into a set of constraints so as to convert the original bilevel

model into an equivalent single-level model. Due to the

difficulty in solving the bilevel model, a two-stage solution

method is proposed for this bilevel model, which sequentially

solve two models.

3.2 Equivalent two-stage model

3.2.1 First-stage model
The objective function of the first-stage model is as follows:

min 1 − μ( )Fc + μCVaR (25)

The constraints of the first-stage model are all the constraints

of the upper-level model, that is, constraints (8)–(11). And all

constraints of the lower-level model, that is, constraints

(18)–(24). After solving the first-stage model, we obtain the

optimal value �ecapi and �pcap
i .

3.2.2 Second-stage model
The objective function of the second-stage model is as

follows:
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min ∑
t∈NT

Pex,s,i,t (26)

The constraints of the second-stage model are all the

constraints of the lower-level model, that is, constraints

(18)–(24). In addition, the constraints of the second-stage

model also include (27) and (28):

ecapi � �ecapi (27)
pcap
i � �pcap

i (28)

After solving the first-stage model and the second-stage

model sequentially, the energy storage allocation result and

the optimal value of CVaR are consistent with the results of

the bilevel model in 3.1. The effectiveness of the proposed two-

stage model is proved as follows.

3.3 Proof of effectiveness of two-stage
model

This section will prove the equivalence of the solution results

of the two-stage model and the bilevel model (Li et al., 2016).

Due to all the constraints in the first-stage problem are satisfied

in the original bilevel problem, we can infer that any feasible solution

to the original bilevel problem also corresponds to a feasible solution

to this first-stage problem. The following equation is always true.

f̂
one

two−stage ≤ f̂bilevel (29)

Where f̂
one

two−stage represents the optimal value of objective

function of the first-stage model. f̂bilevel represents the optimal

value of objective function of the bilevel model.

Since the objective function of the lower-level model in the

bilevel model is the power export fluctuation, which is also a

variable in constraint (6) in the upper-level model. The bilevel

model can be converted into the following form:

min 1 − μ( )Fc + μCVaR (30)
s.t. 2( ) − 4( )

6( ) − 10( )
14( ) − 23( )

(31)

ϕi,s ≥min ∑
t∈NT

Pex,s,i,t
⎛⎝ ⎞⎠ − βi, ∀i ∈ 1, ..., NI[ ]; s ∈ 1, ..., NS[ ]

(32)
Since the following inequality is always true:

min ∑
t∈NT

Pex,s,i,t
⎛⎝ ⎞⎠ − βi ≤ ∑

t∈NT

Pex,s,i,t − βi (33)

It can be seen from the above formula that the feasible region

of the bilevel model is not smaller than that of the first-stage

model. We can prove that the following inequality is always true:

f̂
one

two−stage ≥ f̂bilevel (34)

Since (29) and (34) is always true, we can infer that the

following equality is always true:

f̂
one

two−stage � f̂bilevel (35)

The above formula shows that the optimal objective function

value of the two-stagemodel is equal to that of the bilevelmodel. The

over-limit power export risk of wind farm groups is determined by

the results of shared energy storage allocation. Since the optimal

objective function of the first-stage model is the same as that of the

bilevel model, and the over-limit power export risk of wind farm

groups is the same, the results of optimal energy storage allocation of

the first-stage model are also the same as those of the bilevel model.

Finally, after the optimal allocation of energy storage is

obtained from the first-stage model, the second-stage model

optimizes the power fluctuation of wind farm groups

according to the energy storage allocation. Because the

second-stage model and the lower-level model in the bilevel

model have similar structures under the same energy storage

allocation scheme, the optimal decision variable values obtained

by solving the second-stage model and the lower-level model in

the bilevel model must also be the same. This shows that after

solving the first-stage model and the second-stage model in

sequence, the energy storage allocation and the optimal value

of CVaR are completely consistent with the results of the bilevel

model. The proof is over.

4 Case study

The case studies are conducted based on the wind power

base in Belgian. The wind power base contains three wind

FIGURE 6
Historical data of wind power output.
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farm groups with installed capacity of 250, 150, and 100 MW

respectively. Historical wind power output data of the wind

power base in Belgian is used as the scenario in the above

model, and the time interval is 15 min. The energy storage

capacity of three wind farm groups is allocated by using the

proposed energy storage allocation method. We use MATLAB

with the mixed-integer programming solver Gurobi to solve

all the optimization problems (Gurobi Optimizer Reference

Manual, 2020).

Historical data of wind farm groups in Belgian is shown in

Figure 6.

As shown in Figure 7, Wind farm 2 has the highest volatility,

followed by wind farm 1, and wind farm 3 has the lowest

volatility. The confidence level of over-limit power export risk

is 0.9. The total scale of shared energy storage is 100 MWh/

50 MW. The charging and discharging efficiency of energy

storage is 90%. The self-discharging rate is 0.001.

4.1 Energy storage allocation results

The VaR and CVaR values of wind farm groups and the

energy storage allocation results are shown in Table 2.

According to the historical output of the wind farm groups,

wind farm 2 has the largest fluctuation (6 times out of the limit).

If energy storage is allocated only according to the principle of

reducing fluctuation, wind farm 2 should get the largest energy

storage capacity. However, we have the constraint that the wind

farm must be equipped with energy storage with the capacity of

10% of the wind farm installation capacity. The energy storage

capacity allocated to wind farm 1 is more than that of wind farm

2 only because the capacity of wind farm 1 is larger. Figure 8

shows the remaining power of energy storage shared by each

wind farm.

If grid connection is not allowed for the part of power

fluctuation exceeding the limit, the three wind farm groups

can reduce the wind power curtailment of 7.2 MWh,

10.94 MWh, and 8.23 MWh respectively after energy

distribution and storage.

4.2 Sensitivity analysis

4.2.1 Confidence level
The shared energy storage allocation results under

different confidence levels are shown in Table 3. The value

of VaR and CVaR under different confidence levels are shown

in Figure 9.

It can be seen from the figure that, the value of CVaR

increases with the increase of confidence level, and the value of

VaR also increases. VaR is equal to CVaR when the confidence

level is 0.99. This is because the total number of scenarios in

the model is 100. When the value of CVaR exceeds the

expectation of VaR at 99% confidence level, there is only

one scenario representing tail risk, so the value of CVaR is

equal to VaR.

FIGURE 7
Over-limit power export.

TABLE 2 Solution results.

VaR CVAR Energy storage capacity

Wind farm 1 0.00 2.45 25.00 MWh/6.25 MW

Wind farm 2 0.00 14.00 41.44 MWh/10.36 MW

Wind farm 3 2.54 13.85 33.56 MWh/8.39 MW

Total amount 2.54 30.30 100.00 MWh/25.00 MW

FIGURE 8
The remaining power of energy storage allocated to wind
farm groups.
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4.2.2 Capacity of shared energy storage
In order to further investigate the impact of different shared

energy storage capacities on over-limit power export risk,

different shared energy storage capacities are set for

simulation. When other parameters remain unchanged, the

total shared energy storage capacity is taken as 100 MWh to

150 MWh respectively. The value of VaR and CVaR, the energy

storage allocation results, and the average daily power exceeding

are shown in Figure 10.

When the total energy storage capacity reaches 110 MWh, the

value of VaR in wind power base is 0. The power export of three

wind farm groups will be over-limit at 90% confidence level. The

average value of CVaR of the three wind farm groups is less than

20.38. With the increase of the total energy storage capacity, CVaR

value of the three wind farm groups will gradually decrease, but the

rate of reduction will be slower and slower. It can be seen that when

the total energy storage capacity reaches 130MWh, the energy

storage allocated to wind farm 1 will be greater than 25MWh. We

can infer that the energy storage constraint with 10% capacity of the

TABLE 3 Solution results.

Confidence level Energy storage capacity

Wind farm group 1 Wind farm group 2 Wind farm group 3

0.9 25.00 MWh/6.25 MW 18.82 MWh/4.705 MW 16.18 MWh/4.045 MW

0.95 25.00 MWh/6.25 MW 17.94 MWh/4.485 MW 17.06 MWh/4.265 MW

0.99 25.00 MWh/6.25 MW 19.18 MWh/4.795 MW 15.82 MWh/3.955 MW

FIGURE 9
VaR and CVaR under different confidence levels.

FIGURE 10
Solution results under different capacity of shared energy
storage. (A) CVaR and VaR under different capacity of shared
energy storage (B) Capacity allocation under different capacity of
shared energy storage (C) Average over-limit power under
different capacity of shared energy storage.
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wind farm will no longer work when the total energy storage

capacity exceeds 130MWh. We define the daily over-limit power

of the wind farm group as the total amount of over-limit power in a

day. It also can be seen that when the total energy storage capacity

increases, the average daily over-limit power of wind farm groups

will decrease. With the increase of the total shared energy storage

capacity, the average daily over-limit power will decrease more

slowly. If the over-limit power cannot be connected to the grid, the

wind abandonment rate of wind farm groups will decrease with the

increase of the total shared energy storage capacity, but the marginal

benefit of the total shared energy storage capacity will gradually

decrease.

4.2.3 Risk preference factor
Figure 11 shows the value of VaR, CVaR, and daily average

over-limit power of wind farm groups under different risk

preference factors.

Different energy storage allocation methods under different risk

preference factors lead to different values of CVaR. When the risk

preference factor is larger, CVaR value of wind farm groups is

smaller, and the shared energy storage allocation scheme tends to be

more conservative; When the risk preference factor is less than 0.3,

the average over-limit power of wind farm increased significantly

with the increase of risk preference factor; When the risk preference

factor ismore than 0.3, the increase of risk preference factor had little

impact on the average over-limit power of wind farm.

5 Conclusion

This paper proposes a method to allocate energy storage

capacity for wind farm groups based on CVaR. A bilevel model

with the objective function of minimizing the over-limit power

export risk of wind farm groups is established. Then, a two-stage

solution method for the bilevel model is proposed. The

effectiveness of the two-stage method is proved. The model

and solution algorithm proposed in this paper are used to

allocate the energy storage of Belgian wind farm groups. The

sensitivity of confidence level, total energy storage capacity and

risk preference factors on the optimal allocation of shared energy

storage are analyzed. The results show that the proposed method

can significantly reduce the over-limit power export risk of wind

farm groups and improve the utilization rate of wind energy.
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