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ABSTRACT

In this paper, we first prove a theorem which gives considerably better bound for 0 ≤ t ≤ 1/2 than
Gaussian tail inequality (or tail bound for normal density) and thus is a refinement of Gaussian
tail inequality in this case. Next we present an interesting result which provides a refinement
of Gaussian tail inequality for t >

√
3. Besides, we also prove an improvement of Gaussian tail

inequality for 0 < t ≤ 1/2. Finally, we present a more general result which includes a variety of
interesting results as special cases.
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1 INTRODUCTION

The extremes of Gaussian random fields
have wide applications in finance, spatial
analysis, physical oceanography, and many other
disciplines [1,2]. Tail probabilities of the extremes
have been extensively studied in the literature,
with its focus mostly on the development of
approximations and bounds for the suprema
[3,4,5,6,7,8]. Tail probabilities of other convex
functions of Gaussian random process have also
been studied. For instance, Liu [9] and Liu and
Xu [10] derived the asymptotic approximations
of the tail probabilities of the exponential
integrals of Gaussian random fields; see also
Liu and Xu [11]. Most of the sharp theoretical
approximations developed in the literature hold
only for constant variance fields, which also need
certain smoothness conditions of the Gaussian
random fields [8,12]. For the case of less smooth
fields, the approximations involve the unknown
Pickands constants [5]. Numerical methods for
rare-event analysis of the suprema are studied
in [13] and more thoroughly in [12]; see also
Azas and Wschebor [14,15]. Simulation study for
the exponential integrals of the Gaussian random
fields has been studied in Liu and Xu [16,11,17].

2 REFINEMENT OF GAU-
SSIAN TAIL INEQUALITY

Let X be a random variable having normal
distribution with mean 0 and variance 1. The
following result known as Gaussian Tail inequality
(GTI) or the tail bound for normal density (for
reference see, Gordon R.D [18], Fan. P [19].

Theorem A. If X ∼N (0,1), then for t > 0,

P
(
|X | > t

)
≤

√
2
π

(
1
t

)
e−

t2
2 .

Here we first prove the following result which

gives considerably better bound for 0 ≤ t ≤ 1
2

than the Gaussian Tail inequality (GTI)and thus
is a refinement of the Gaussian Tail Inequality
(GTI) in this case.

Theorem 1. If X ∼N (0,1), then for t > 0,

P
(
|X | > t

)
≤ 1−

√
2
π

(t)e−
t2
2 .

Proof of Theorem 1. The probability density
function (p.d.f) of X is given by

ϕ(x) =
1
√
2π

e−
x2
2 , −∞ < x <∞. (2.1)

We then have,

P
(
X > t

)
=

∞∫
0

ϕ(x)dx −
t∫

0

ϕ(x)dx. (2.2)

Since ϕ(x) is an even function and a density of
probability, we have,

∞∫
0

ϕ(x)dx =
1
2
,

Hence from (2.2),

P
(
X > t

)
≤ 1

2
−

t∫
0

(
1
√
2π

)(
1

e
x2
2

)
dx. (2.3)

Since x ≤ t, it holds

x2

2
≤ t2

2
,

which implies,

e
x2
2 ≤ e

t2
2 .

This gives,

t∫
0

1

e
x2
2

dx ≥
t∫

0

1

e
t2
2

dx

=
1

e
t2
2

t∫
0

dx =
t

e
t2
2

.

Using this in (2.3), we get

P
(
X > t

)
≤ 1

2
−

t∫
0

(
1
√
2π

)(
t

e
t2
2

)
.
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Hence by symmetry,

P
(
|X | > t

)
= 2P

(
X > t

)
≤ 2

12 − t
√
2π e t2/2


= 1−

√
2
π

t e−
t2
2 .

This completes the proof of Theorem 1.

Remark 1. To verify that the Theorem 1 gives a
refinement of Gaussian Tail inequality (GTI) for
0 < t ≤ 1/2, we shall show that

1−
√

2
π

(
t e−

t2
2

)
<

√
2
π

(
e−

t2
2

t

)
. (2.4)

Since, e
t2
2 ≤ e

1
8 for 0 < t ≤ 1/2, and it can be

easily verified that e
1
8 < 6/5, so that e

t2
2 < 6/5.

This implies,

e−
t2
2 > 5/6, for 0 < t ≤ 1/2.

Now,√
2
π

(
te−

t2
2

)
+

√
2
π

(
e−

t2
2

t

)
=

√
2
π

(
e−

t2
2

)(
t +

1
t

)
>

√
1
2

(
5
6

)(
2
)

=
5

3
√
2
> 1.

Hence, √
2
π

(
e−

t2
2

t

)
> 1−

√
2
π

(
t e−

t2
2

)
,

or

1−
√

2
π

(
t e−

t2
2

)
<

√
2
π

(
e−

t2
2

t

)
,

which proves (2.4) for 0 < t ≤ 1/2.

Next we prove the following interesting result
which provides a refinement of Gaussian Tail
inequality (GTI) for t >

√
3.

Theorem 2. If X ∼N (0,1), then for t > 0,

P
(
|X | > t

)
≤

√
2
π

e−
t2
2

(
t4 − t2 +3

t5

)
.

Proof of Theorem 2. The p.d.f of X is given as
in (2.1), which on differentiation gives,

ϕ′(x) =
1
√
2π

e
x2
2 (−x)

= −x
(

1
√
2π

e
x2
2

)
= −xϕ(x). (2.5)

Now

P (X > t) =

∞∫
t

ϕ(x)dx

=

∞∫
t

xϕ(x)
x

dx

= −
∞∫
t

ϕ′(x)
x

dx. (by (2.5)).

Integrating by parts, keeping ϕ′(x) for integration
and 1/x for differentiation, we get

P (X > t) = −
[
1
x
ϕ(x)

]∞
t
+

∞∫
t

−ϕ(x)
x2

dx

=
ϕ(t)
t
−
∞∫
t

ϕ(x)
x2

dx. (2.6)

Now

∞∫
t

ϕ(x)
x2

dx =

∞∫
t

xϕ(x)
x3

dx

= −
∞∫
t

ϕ′(x)
x3

dx (by(2.5))

= −
∞∫
t

(
1
x3

)
ϕ′(x)dx.
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Integrating by parts as before, we get

∞∫
t

ϕ(x)
x2

dx = −
[(

1
x3

)
ϕ(x)

]∞
t
+

∞∫
t

ϕ(x)
(
−3
x4

)
dx

=
ϕ(t)
t3
− 3

∞∫
t

ϕ(x)

x4
dx.

Thus from (2.6),we have

P (X > t) =
ϕ(t)
t
−
ϕ(t)
t3

+3

∞∫
t

ϕ(x)

x4
dx. (2.7)

Again,

∞∫
t

ϕ(x)

x4
dx =

∞∫
t

x ϕ(x)
x5

dx

= −
∞∫
t

ϕ′(x)
x5

dx, (by(2.5))

= −
[
ϕ(x)
x5

]∞
t
+

∞∫
t

ϕ(x)
(
−5
x6

)
dx

=
ϕ(t)
t5
− 5

∞∫
t

ϕ(x)
x6

dx.

Hence from (2.7), we have

P (X > t) =
ϕ(t)
t
−
ϕ(t)
t3

+3
ϕ(t)
t5
− 15

∞∫
t

ϕ(x)
x6

dx

= ϕ(t)
(
1
t
− 1
t3

+
3
t5

)
− 15

∞∫
t

ϕ(x)
x6

dx.

(2.8)

Since
∞∫
t

ϕ(x)
x6

dx ≥ 0, therefore, we have from

(2.8),

P (X > t) ≤ ϕ(t)
(
1
t
− 1
t3

+
3
t5

)

=
ϕ(t)
t5

(
t4 − t2 +3

)
.

By symmetry,

P
(
|X | > t

)
= 2P (X > t)

≤ 2
ϕ(t)
t5

(
t4 − t2 +3

)
=

√
2
π

e−
t2
2

(
t4 − t2 +3

t5

)
.

This completes the proof of Theorem 2.

Remark 2. To verify that the Theorem 2 is a
refinement of Gaussian Tail inequality (GTI) for
t >
√
3, we note that t >

√
3 implies t2 > 3,

so that, 3− t2 < 0, which gives,(
t4 − t2 +3

t5

)
<
t4

t5
=

1
t
.

This implies,

√
2
π

e−
t2
2

(
t4 − t2 +3

t5

)
<

√
2
π

e−
t2
2

t
,

which shows that the bound obtained in Theorem
2 is better than the bound given by Gaussian Tail
inequality (GTI).

Our next Theorem gives an improvement of
Theorem 1 and therefore Gaussian Tail inequality
(GTI) for 0 < t ≤ 1/2.

Theorem 3. If X ∼N (0,1), then for t > 0,

P
(
|X | > t

)
≤ 1−

√
2
π

e−
t2
2

(
t +

t3

3

)
.

Proof of Theorem 3. The p.d.f of X is given as
in (2.1), while we have,

P (X > t) =

∞∫
t

ϕ(x)dx

=

∞∫
0

ϕ(x)dx −
t∫

0

ϕ(x)dx.

(2.9)
Integrating the 2nd integral in (2.9) by parts and
using the fact that

4
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ϕ′(x) = −xϕ(x), we get

t∫
0

ϕ(x)dx =

t∫
0

1.ϕ(x)dx

=
[
x ϕ(x)

]t
0
−

t∫
0

x ϕ′(x)dx

= tϕ(t)−
t∫

0

−x2 ϕ(x)dx

= tϕ(t) +

t∫
0

x2ϕ(x)dx. (2.10)

Since ϕ(x) is a decreasing function x ≥ 0, it
follows that ϕ(x) ≥ ϕ(t) for x ≤ t.
Hence from (2.10), we get

t∫
0

ϕ(x)dx ≥ tϕ(t) +ϕ(t)

t∫
0

x2dx

= tϕ(t) +ϕ(t)
[
x3

3

]t
0

= tϕ(t) +ϕ(t)
[
t3

3

]

= ϕ(t)
[
t +

t3

3

]
. (2.11)

Using (2.11) in (2.9) and the fact that

∞∫
0

ϕ(x)dx = P (X > t) =
1
2
, we get

P (X > t) ≤ 1
2
−ϕ(t)

[
t +

t3

3

]
.

By symmetry, this implies

P
(
|X | > t

)
= 2P (X > t)

≤ 1− 2
(

1
√
2π

e−
t2
2

)(
t +

t3

3

)
= 1−

√
2
π

e−
t2
2

(
t +

t3

3

)
.

This completes the proof of Theorem 3.

Remark 3. From (2.11), we have(
1
√
2π

e−
t2
2

)(
t +

t3

3

)
≤

t∫
0

ϕ(x)dx

≤
∞∫
0

ϕ(x)dx =
1
2
,

so that, √
2
π

e−
t2
2

(
t +

t3

3

)
≤ 1.

Finally, in this section we present the following
more general result, which include a variety of
interesting results as special cases.

Theorem 4. If X ∼N (0,1), then for t > 0,

P
(
|X | > t

)
=

√
2
π

e−
t2
2

(
1
t
− 1
t3

+
1·3
t5
−1·3·5

t7
+
1·3·5·7

t9
−· · ·

)
.

For the proof of this theorem, we need the
following lemma.

Lemma 1. If ϕ(x) is the p.d.f of the random
variable X ∼N (0,1), then for t > 0,

∞∫
t

ϕ(x)
x2n

=
ϕ(t)
t2n+1

−(2n+1)
∞∫
t

ϕ(x)
x2n+2

dx, for n = 0,1,2, ...

Proof of Lemma 1. The p.d.f of X is given as
in (2.1).Integrating by parts, keeping 1/x2n+1 for
differentiation and ϕ′(x) for integration and using
the fact that ϕ′(x) = −xϕ(x), we get for any integer
n ≥ 0, and t > 0,

∞∫
t

ϕ(x)
x2n

= −
∞∫
t

ϕ′(x)
x2n+1

dx

= −
[

1
x2n+1

ϕ(x)
]∞
t
+

∞∫
t

−
(2n+1)ϕ(x)

x2n+2
dx

=
ϕ(t)
t2n+1

−
∞∫
t

(2n+1)
ϕ(x)
x2n+2

dx

=
ϕ(t)
t2n+1

− (2n+1)

∞∫
t

ϕ(x)
x2n+2

dx.

This proves the Lemma 1.

5
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Proof of Theorem 4. The p.d.f of X is given as
in (2.1), while we have,

P (X > t) =

∞∫
t

ϕ(x)dx. (2.12)

Using above lemma with n = 0, it follows that

∞∫
t

ϕ(x)dx =
ϕ(t)
t
−
∞∫
t

ϕ(x)
x2

dx. (2.13)

Using above lemma with n = 1, it follows that

∞∫
t

ϕ(x)
x2

dx =
ϕ(t)
t3
− 3

∞∫
t

ϕ(x)

x4
dx. (2.14)

From (2.13) and (2.14), we get

∞∫
t

ϕ(x)dx = ϕ(t)
(
1
t
− 1
t3

)
+3

∞∫
t

ϕ(x)

x4
dx. (2.15)

Again using above lemma with n = 2, we obtain

∞∫
t

ϕ(x)

x4
dx =

ϕ(t)
t5
− 5

∞∫
t

ϕ(x)
x6

dx.

Hence from (2.15), we get

∞∫
t

ϕ(x)dx = ϕ(t)
(
1
t
− 1
t3

+
1·3
t5

)
− (3·5)

∞∫
t

ϕ(x)
x6

dx.

(2.16)
On proceeding in this way, a repeated application
of the above lemma yields,

∞∫
t
ϕ(x)dx = ϕ(t)

(
1
t
− 1
t3

+
1·3
t5
− 1·3·5

t7
+ · · ·

)
,

=
1
√
2π

e−
t2
2

(
1
t
− 1
t3

+
1·3
t5
− 1·3·5

t7
+· · ·

)
, (2.17)

which in conjunction with (2.12) gives

P (X > t) =
1
√
2π

e−
t2
2

(
1
t
− 1
t3

+
1·3
t5
− 1·3·5

t7
+ · · ·

)
.

By symmetry

P (|X | > t) = 2P (X > t)

=

√
2
π

e−
t2
2

(
1
t
− 1
t3

+
1·3
t5
− 1·3·5

t7
+ · · ·

)
.

This completes the proof of Theorem 4.
Some deductions.

1. A repeated application of the lemma above
shows that

0 ≤
∞∫
t

ϕ(x)
x2

dx =
ϕ(t)
t3
− 3

∞∫
t

ϕ(x)

x4
dx,

= ϕ(t)
[
1
t3
− 3
t5

]
+

∞∫
t

ϕ(x)
x6

dx,

...

= ϕ(t)
(
1
t3
− 1·3

t5
+
1·3·5
t7
− · · ·

)
,

which implies,

ϕ(t)
(
− 1
t3

+
1·3
t5
− 1·3·5

t7
+ · · ·

)
≤ 0.

Using this in Theorem 4, we get

P (|X | > t) ≤
√

2
π

e−
t2
2

t
,

which is Gaussian Tail inequality (GTI).

2. As before, a repeated application of the lemma
above, shows that

0 ≤
∞∫
t

ϕ(x)
x6

dx = ϕ(t)
(
1·3·5
t7
− 1·3·5·7

t9
+ · · ·

)
,

which gives,(
− 1·3·5

t7
+
1·3·5·7

t9
− · · ·

)
≤ 0.

Hence from Theorem 4, we obtain,

P (|X | > t) ≤
√

2
π

e−
t2
2

(
1
t
− 1
t3

+
1
t5

)
,

=

√
2
π

e−
t2
2

(
t4 − t2 +3

t5

)
for t > 0,

which is the conclusion of Theorem 2.

Many other interesting results can be deduced
from Theorem 4 in a similar fashion.
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3 CONCLUSION
These results of the authors can be used for
finding better tail bounds for normal density.
Certain results concerning the tail bound for
normal distribution are obtained. These results
refine known tail bound Gaussian Tail Inequality.
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