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Abstract 
To improve the power consumption of parallel applications at the runtime, 
modern processors provide frequency scaling and power limiting capabilities. 
In this work, a runtime strategy is proposed to maximize energy savings un-
der a given performance degradation. Machine learning techniques were uti-
lized to develop performance models which would provide accurate perfor-
mance prediction with change in operating core-uncore frequency. Experiments, 
performed on a node (28 cores) of a modern computing platform showed sig-
nificant energy savings of as much as 26% with performance degradation of 
as low as 5% under the proposed strategy compared with the execution in the 
unlimited power case. 
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1. Introduction 

Modern computing systems are being increasingly controlled by their power con-
sumption ranging from node components to a full fledged data center. The pow-
er/energy constraints are due to manifold reasons with technical and economical 
costs being the primary. To reach the exascale, modern computers must still 
nearly double their performance while the further increase in power consump-
tion becomes prohibitive. Therefore, power/energy consumption becomes a ma-
jor obstacle to application scalability, availability, and affordability, and it is ur-
gent to develop techniques that optimize energy consumption while maximizing 
performance. 

On the other hand, such optimization is a difficult task due in large part to a 1) 
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great variability in modern high-performance application workloads, and 2) com-
plexity of modern hardware architectures. These two factors have to be accu-
rately modeled to predict runtime performance under different power levels. 
Existing analytical and heuristic models fall short of this task because they can-
not account for the multitude of hardware characteristics as they relate to the 
application dynamic changes. Recently, machine learning (ML) has been proposed 
as an effective alternative to modeling application time-to-solution under dif-
ferent dynamic voltage and frequency scaling (DVFS) [1] and uncore frequency 
scaling (UFS) levels. Note that the uncore encompasses those processor func-
tions that are not handled by the core, such as L3 cache and on-chip intercon-
nect. In this work, machine learning models are first investigated for their use 
during the runtime performance modeling of a diverse set of application work-
loads exhibiting dynamically changing compute- and memory-intensities. The 
models are incorporated into a novel runtime strategy along with power and 
processor-frequency selections. The strategy aims to maximize energy savings 
under a user provided performance constraint. The strategy operates in a man-
ner transparent to the application and utilizes a timeslice based approach to se-
lect appropriate frequencies for the next timeslice. In a nutshell, as main contri-
butions, this work 
 Investigated and applied ML models for predicting performance during the 

runtime: 
 Considered uncore frequency scaling as an independent variable. 
 Employed dimensionality reduction to obtain a set of predictor variables from 

performance events. 
 Collected data for prediction on scientific workloads with diverse memory- 

accesses and computational patterns, including a large-scale quantum chemi-
stry package GAMESS [2]. 

 Evaluated three different ML algorithms as to their prediction accuracy vs 
time. 

 Investigated and tested two types of ML model construction, fully runtime and 
pretrained statically. 

 Proposed a transparent runtime strategy that incorporates the developed ML 
performance models to maximize energy savings. 

 Compared the proposed runtime strategy with its counterpart developed in 
authors’ prior work [3].  

The rest of the paper is organized as follows. Section 2 provides the related 
work. Section 3 outlines a previously developed performance model, used here 
for comparisons. Section 4, first, discusses hardware performance-event data 
collection along with dimensionality reduction; then, evaluates several ML algo-
rithms for their usage at the runtime and proposes two types of the ML model 
construction. Section 5 details the runtime strategy along with its implementa-
tion steps. Section 6 shows experimental results and comparisons with the prior 
approach. Section 7 concludes the paper. 
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2. Related Work 

There have been many previous research efforts that propose to use machine 
learning strategies for power and energy savings in modern computing systems. 
They target both single- and multicore systems using supervised and reinforce-
ment learning for power management, temperature management, and perfor-
mance maximization under a power constraint. 

In [4], a dynamic power management (DPM) technique is proposed for an ar-
bitrary number of sleep states that shuts down idle components based on clus-
tering of idle periods. In [5], authors have proposed a strategy for an arbitrary 
number of sleep states that minimize the power consumption under a given per-
formance constraint. Wang et al. [6] present an online hierarchical mechanism 
with application-level scheduling for an embedded system minimizes the total 
power consumption and finds an optimal point for power-delay relation for the 
connected devices. Albeit [4] [5] [6] operate on a single-core platform, they are 
relevant to the current work because they also deal with transparent strategies to 
manage dynamically power consumption of the processor. 

Similarly to the current work, the work in [7] uses DVFS along with a learning 
based prediction. In particular, it proposes a supervised-learning based power 
management framework for minimizing energy consumption on a multicore chip 
equipped with DVFS on each core. A Bayesian classifier is employed for predict-
ing performance of each core per incoming task by observing a set of input fea-
tures. This predicted state is further used to find an optimal power management 
action in a pre-computed lookup table. 

Bartolini et al. [8] propose a distributed thermal management technique uti-
lizing model predictive control and self-calibration for minimizing energy con-
sumption under performance and temperature constraints. Specifically, each core 
takes a value of the predicted cycles per instruction (CPI) of the running task as 
input and chooses the minimum frequency value while satisfying the performance 
constraints. The work in [8] considers the power management with thermal and 
performance constraints and utilizes analytical modeling by just using the CPI 
performance event. The results are demonstrated in simulation only rather than 
in real time. 

In [9], a power management and task allocation framework based on Q-learn- 
ing is proposed to attain a trade-off between performance and power consump-
tion while simultaneously following the temperature constraints. A reinforce-
ment-learning based strategy is proposed in [10] to prepare a scheduling policy 
where system invokes DVFS and any penalty is considered in decision making 
through the learning process. The work in [11] proposes an online thermal man-
agement strategy for dual goal of maximizing performance and reducing thermal 
cycles under a temperature constraint. The policies are directed by a reinforce-
ment learning algorithm and apply a power management to optimize the desired 
goal. 

Using constrained energy minimization, modeling with the CPI performance 
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metric, and assessing the performance penalty due to DVFS are the aspects of [8] 
[9] [10] [11] that are most synergistic with the current work. While all the afore-
mentioned research makes use of the machine learning paradigm to approach 
power management, none attempts to model directly the out-of-order (OOO) 
processor pipeline and to consider the uncore frequency scaling, which are im-
portant factors in gaining maximum energy savings for highly changeable work-
loads as shown in the current work on a multicore platform. 

3. Overview of the Analytical Performance Model 

In the authors’ prior work [3], a frequency scaling runtime strategy that targeted 
both core and uncore power domains was proposed to save energy in parallel 
applications with a minimal performance loss. This strategy relied on the ana-
lytical performance and power models that were also developed by the authors. 
In particular, performance modeling of the core—uncore domain was expressed 
in the following Equation (1). 

Assume n levels of the core frequency and m levels of the uncore frequency 
denoted ( )cf i  1, ,i n=   and ( )uf j  1, ,j m=  , respectively, on a given pro-
cessor. The effect of the core and uncore frequency on the micro-operations re-
tired is identified by  

( ) ( ) ( )
( ) ( )exe, CPM LLC_MISSES ,
1

c
c j

c

f i
f i i j

f
µτ α β

 
= + × ×  

 
      (1) 

where 
 ( ),i jµτ  is the number of micro-operations retired per second at core fre-

quency ( )cf i  and uncore frequency ( )uf j .  
 CPMexe is the number of cycles per micro-operation retired. 
 α  ( 0 1α≤ ≤ ) is the processor out-of-order (OOO) overlap factor, which was 

determined experimentally. 
 LLC_MISSES is the number of memory accesses per micro-operation retired 

in a second. 
 jβ  is the number of cycles corresponding to the memory access latency at 

the uncore frequency ( )uf j .  
While the strategy based on this model delivered promising results of 15.3% in 

energy savings with 5.3% performance loss, its shortcomings were observed in 
applications with memory-intensive workloads, such as iterative linear system 
solvers, for which the the strategy saved less than 10% of energy. Such short-
comings may be explained by rather crude estimates of memory accesses per 
micro-instruction, which were modeled by only one parameter, last-level-cache 
(LLC) misses in Equation (1). Adding more performance events to model com-
plex application behavior appeared not feasible in the analytical expression be-
cause the interdependence of multiple events cannot be determined for the 
broadly applicable model. The single heuristic used in the model, the experimen-
tally determined OOO factor, already showed its narrow applicability scope since 
it had to be tuned beforehand for a given processor. 
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To overcome these deficiencies of the analytical model, machine learning ap-
proaches are considered in this paper in combination with analytical modeling 
of power and frequency levels. By definition, machine learning is suitable to con-
sider numerous parameters-features, such as multiple performance events here, 
for training and producing models that work without expressing the parameter 
dependencies explicitly. 

4. Machine Learning Model Construction 

In this section, first the relevant performance data to train and test the model is 
selected using the reasoning based on the processor operation and the nature of 
workloads. Then three different ML algorithms are evaluated for the time vs ac-
curacy trade-off along with the investigation of two possible modes to perform 
ML training stage: during the runtime and pretraining statically. 

4.1. Performance-Event Data Collection 

In general, the workload behavior of an application varies throughout its execu-
tion, exhibiting memory- or compute-intensive patterns on a fine-grained scale. 
Hence, runtime performance modeling is typically done in small time intervals, 
called here timeslices. For modeling energy consumption, timeslices of a fixed 
duration on the order of the frequency scaling overhead have proven to be a 
good choice in the authors’ earlier work (see e.g., [12]), where it has been shown 
that the timeslices of 250 ms incur a low modeling overhead and are sustainable 
for large-scale applications, such as GAMESS quantum chemistry calculations, 
which are considered in the present work as well. 

4.1.1. GAMESS Overview 
GAMESS is one of the most representative freely available quantum chemistry 
applications used worldwide to do ab initio electronic structure calculations. A 
wide range of quantum chemistry computations may be accomplished using 
GAMESS, ranging from basic Hartree-Fock and Density Functional Theory 
computations to high-accuracy multi-reference and coupled-cluster computa-
tions. 

The central task of quantum chemistry is to find an (approximate) solution of 
the Schrödinger equation for a given molecular system. An approximate (uncor-
related) solution is initially found using the Hartree-Fock (HF) method via an 
iterative self-consistent field (SCF) approach or restricted HF (RHF), and then 
improved by various electron-correlated methods, such as second-order Mø ller- 
Plesset perturbation theory (MP2). The SCF-HF and MP2 methods are imple-
mented in two forms, namely direct and conventional, which differ in the han-
dling of electron repulsion integrals (ERI, also known as 2-electron integrals). 
Specifically, in the conventional mode all ERIs are calculated once at the begin-
ning of the interactions and stored on disk for subsequent reuse whereas in the 
direct mode ERIs are recalculated for each iteration as necessary. The SCF-HF 
iterations and the subsequent MP2 correction find the energy of the molecular 
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system, followed by evaluation of energy gradients. 
GAMESS mesoporous silica nanoparticles (MSN) inputs were used for the ML 

model training and testing. Specifically, MSN 11-, 16-, 22-, and 32-fragment RHF 
calculations using a state-of-the-art effective fragment molecular orbital (EFMO) 
method were considered. The inputs are referred to as msn-11, msn-16, msn-22, 
and msn-32 in the rest of the paper. 

Additionally, several NAS parallel benchmarks (NPB) [13] were chosen to fur-
ther increase the mix of compute- and memory-intensive workloads with com-
mon scientific irregular computation patterns. Both NPB and GAMESS were ex-
ecuted on the Xeon based platform and data on certain performance events—as 
detailed below—was collected for a 250 ms timeslice duration. The core and un-
core frequency ranges on the Xeon platform are 1.2 - 2.3 GHz and 1.4 - 2.7 GHz, 
respectively. Instead of collecting event data for each and every (core, uncore) 
frequency pair, only four bracketing combinations were considered—(2.3, 2.7), 
(1.2, 2.7), (2.3, 1.4), and (1.2, 1.4)—to ensure that, at prediction time, no extra-
polation is necessary and an interpolation is sufficient. 

4.1.2. Selection of Performance-Counter Events 
The hardware platform used in this work employs an Intel Xeon E5-2695 v3 
processor that comprises 14 cores. Each processor core is equipped with multiple 
hardware performance counters, which provide runtime count for such events as 
micro-operations retired and L3 cache misses. Similar to the analytical model in 
Equation (1), the ML performance model considers the micro-operations retired 
as the measure of processor performance at different core—uncore frequencies 
to predict performance in a given timeslice. 

The Xeon E5-2695 v3 processor has approximately 190 performance events1, 
which makes it intractable to read all of them and use in an ML model for the 
runtime performance prediction. Therefore, only certain most relevant and im-
pactful, events must be selected. In particular, the following procedure was un-
dertaken. All the events, along with their event codes, are scraped and those 
events that are a part of aggregation or are not related to processor performance 
have been omitted. For example, there are about twelve performance events that 
deal with resource stalls (e.g., RESOURCE_STALLS.LB, RESOURCE_STALLS. 
ROB, RESOURCE_STALLS.RS), eleven of which are aggregated in a single event 
RESOURCE_STALLS.ANY that is taken as the one dealing with stalls in the ML 
model. By continuing with agrregation in other event groups, the number of 
events was brought down to 45, thereby reducing the data-variable dimensional-
ity by more than 75%. 

A custom C language program had to be developed to periodically and selec-
tively collect the performance-event data as follows. To read a specific event, the 
event code is first written to a given performance-event select register whose ad-
dress starts from 0 × 186. Then the value of the event is read from the corres-
ponding performance-event counter whose address starts from 0 × C1. Next, the 

 

 

1https://perfmon-events.intel.com/snbep.html. 
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event values were monitored at the runtime. It was observed that many event 
values were at zero. Therefore, all such events were also dropped, which left only 
ten events further reducing the dimensionality drastically. 

Table 1 shows the resulting set of events considered in this work along with 
their ranges on the NPB and GAMESS inputs. Note that, for the input to ML 
models, the event values are to be normalized by the UOPS_RETIRED event 
value of the corresponding timeslice, so that the events are made invariant to 
core—uncore frequency changes in order to increase the accuracy of predictions 
at the runtime and to further reduce the number of events to nine. 

4.2. Evaluation of Different ML Algorithms 

Execution performance modeling may be treated as the multiple regression prob-
lem. Hence, three appropriate algorithms tackling this problem were chosen as 
follows: Linear Regression (LR), K-Nearest Neighbors (KNN), and Random For-
est Regressor (RFR) [14]. The train-test validation was used for the evaluation 
on the collected data (Section 4.1). Due to a large variety of workloads in the da-
taset, the training data may be assumed to come from many different distribu-
tions, and thereby allowing the model to better generalize on a variety of test da-
ta. Furthermore, the stratified sampling [15] was employed to avoid random sam-
pling bias in the dataset. 

In the authors’ previous works [3] [12], it was determined that the LLC miss 
count (see event #1 in Table 1) was considered a greatly important parameter 
for modeling because an LLC miss leads to a DRAM access during which there is 
an opportunity to reduce the processor frequency and, thereby, obtain energy 
savings with minimum performance penalty. As a consequence, the train and  
 

Table 1. Resulting set of performance events considered as independent variables with corresponding ranges in micro-operations. 

# Event Name Description Range, (μops) 

0 UOPS_RETIRED counter for μops retired 9.159146e7 - 8.133418e9 

1 MEM_LOAD_UOPS_RETIRED.LLC_MISS miss in last-level L3 cache (LLC) 1.0e−6 - 1.7e−2 

2 BR_INST_RETIRED.ALL_BRANCHES all (macro) branch instructions retired 3.5e−3 - 2.5e−1 

3 BR_MISP_RETIRED.ALL_BRANCHES 
all mispredicted macro branch 

instructions retired 
3.0e−6 - 6.1e−3 

4 LONGEST_LAT_CACHE.MISS 
core-originated cacheable demand 

requests that missed LLC 
2.0e−6 - 3.1e−2 

5 LONGEST_LAT_CACHE.REFERENCE 
core-originated cacheable demand 

requests that refer to LLC 
2.4e−6 - 1.0e−1 

6 MEM_UOPS_RETIRED.ALL_LOADS counter for load μops retired 2.8e−4 - 2.14e0 

7 MEM_UOPS_RETIRED.ALL_STORES counter for store μops retired 1.3e−3 - 1.1e0 

8 OFFCORE_REQUESTS.ALL_DATA_RD demand and prefetch data reads 1.3e−5 - 1.4e0 

9 RESOURCE_STALLS.ANY resource-related stall cycles 1.0e−5 - 5.6e−2 
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test sets have to be representative of a variety of LLC miss values in the entire 
dataset. Table 2 shows the ranges of LLC misses and the corresponding bin 
numbers into which the misses were sampled. Figure 1 presents the resultant 
training dataset distribution into bins based on the LLC misses incurred. Note 
that the relatively low and high values of LLC misses correspond to the com-
pute- and memory-intensive application inputs, respectively. It has been ob-
served that the test set exhibited a distribution similar to that shown in Figure 1. 
Hence, the sampling categories in Table 2 were chosen for use in the ML algo-
rithms considered here. 

After dividing the entire data set into train (80%) and test set (20%), which are 
the commonly used ratios for evaluating machine learning models [14], the pre-
diction accuracy of the three algorithms was determined as shown in Figure 2. It 
can be observed from Figure 2 that, while the KNN and RFR algorithms have 
much higher train accuracy than LR does so, they all have nearly the same test 
accuracy. A large discrepancy between train and test accuracies of KNN and 
RFR is intrinsic to their design (see, e.g., [14]), which is different from that of 
LR. 
 

 
Figure 1. Assignment of the train data set samples to bins based on their 
LLC-misses count. 

 

 

Figure 2. Train and test accuracy for the three ML algorithms. 
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Table 2. Ranges of LLC misses and their associated bins. 

Range of LLC Misses Bin 

0.00 - 0.05 1 

0.05 - 0.1 2 

0.1 - 0.2 3 

0.2 - 0.3 4 

0.3 - 1.0 5 

 
In this work, an important ML algorithm selection criterion is the time to use 

the obtained ML model dynamically. In particular, the said time has to be on the 
order of the timeslice duration considered here so that the overall application 
performance is not degraded. Figure 3 shows the time to predict a single data 
point, i.e., to apply the ML model only once to predict the runtime performance, 
spent by the three algorithms. It can be seen that this time is the lowest for LR. 
Additionally, LR is designed to accurately capture a relationship between the re-
sponse and predictor variables, contrary to the other two ML algorithms that pre-
dict based on the boundary estimates. Therefore, LR is selected to model perfor-
mance in the runtime strategy developed in this work (see Section 5). 

4.3. Training Stage: Performed Statically or Dynamically 

When considering dynamic usage of the ML models, the prediction stage has to 
be always done at the runtime to react to the actual input into the model, which 
is changing on the timeslice scale in this work. Now, the training stage may be 
performed either statically, before the execution, resulting in the pretrained 
model applied in each timeslice during the execution, or dynamically, such that 
both (re)training and prediction are done in each timeslice on the newly ac-
quired data as a part of the runtime strategy. Obviously, the overhead from ap-
plication of the former—termed here pretrained statically or trn-Static for 
short—affects the performance less during each timeslice. However, trn-Static 
may lead to less accurate predictions, thereby affecting both the overall energy 
savings and time-to-solution. Furthermore, the OOO overlap factor α (see Equa-
tion (1)) is still determined experimentally, as in the analytical modeling, when 
trn-Static is used since all the model training is done completely offline similar 
to analytical modeling. The latter—termed here fully runtime or all-Runtime 
for short—appears the most agile and incorporates α implicitly in the model at 
each timeslice. The application of the ML model with all-Runtime too, if care is 
not taken, may come at a price of lesser accuracy and higher performance loss 
accumulating for the entire execution. To train with all-Runtime efficiently, both 
the training time and the training sample size have to be considered. Figure 4 
shows the time to train the model on the entire collected data set for the three 
algorithms. It can be observed from Figure 4 that LR has the lowest time among 
the three algorithms, and thus, corroborates its selection in the runtime strategy. 
Also, Figure 5 shows that LR exhibits a stable performance when the sample size  
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Figure 3. One-time application of the ML model. 
 

 

Figure 4. Model timings on the entire dataset. 
 

 

Figure 5. The LR model training on the increasing sample sizes. 
 
grows from 100 to 2000, which is another argument in support of the selection 
of LR. 

5. Design and Implementation of the Runtime Strategy 

This section outlines the combination of the proposed ML model with the ones 
for power and frequency level, which are similar to those used in authors’ earlier 
work [3]. Then, it describes in detail the algorithmic steps implementing the 
strategy. The proposed strategy utilizes ML modeling to maximize energy sav-
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ings of a parallel application on a compute node. In each timeslice, for each core, 
the strategy gathers the relevant performance-counter information, which is 
used to model the performance and power for the next timeslice to be executed 
in order to determine the next optimal core and uncore frequencies for each core, 
followed by the application of the chosen frequency pair before commencing the 
next timeslice. 

To better predict the next timeslice performance characteristics, a few past 
neighboring timeslices may weigh in their actual characteristics along with the 
current predicted values. In particular, following the work in [3], a history-win- 
dow predictor has been built into the strategy such that some function g accepts 
a window of several neighboring values and outputs a prediction for the next 
timeslice. After each prediction, the window slides forward by one position. 

The performance loss tolerated due to energy savings has to be bounded (typ-
ically, at no more than 10%). Hence, the potential performance loss must be 
calculated and kept within the upper bound for the core—uncore frequency pre-
diction to be feasible. A frequency-pair subset F contains all such feasible fre-
quency pairs. The following expression calculates the performance loss 

 
( ) ( )( ),c uf i f jδ  as proposed in [16] when the application is executed on a core 

frequency ( )cf i  and uncore frequency ( )uf j  as compared with the execution 
at the highest, level 1, core and uncore frequencies.  

( ) ( )( ) ( ) ( )
( )

1,1 ,
, .

1,1c u

i j
f i f j

µτ µτ
δ

µτ
−

=                  (2) 

Note that the value of the micro-operations retired µτ , relates directly to ap-
plication performance. 

5.1. Power Modeling 

To account for the instantaneous power consumption in the proposed runtime 
strategy and to select the core and uncore frequencies that minimize the system 
energy under a performance constraint, the Intel RAPL tool [17] is used, which 
provides instantaneous processor power consumption. The processor power con-
sumption, denoted ( ),pP i j  at the core and uncore frequencies ( )cf i  and  

( )uf j , respectively, varies proportionally to the cube of the frequency values, as 
shown in [3]. Consequently, the value ( ),pP i j  may be expressed as  

( ) ( ) ( )3 3
1 2, ,p c uP i j k f i k f j= × + ×                  (3) 

where 1k  and 2k  are constants. The values of 1k  and 2k  were determined 
through a regression analysis similar to the one proposed in [3] Then, the total 
power consumption ( ),TP i j  of core, uncore, and DRAM domains is as fol-
lows:  

( ) ( ) static, , ,T p mP i j P i j P P= + +                    (4) 

where mP  is the memory power consumption (determined at the runtime from 
RAPL), and staticP  is the static power consumption of the three domains, de-
termined to be 40 Watts using RAPL. 
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5.2. Choosing the Optimal Frequency Levels 

Finally, given the predictions for the next timeslice r of the performance and to-
tal power at all the available core—uncore frequency level pairs ( ), , 1, ,i j i N=   
and 1, ,j M=  , an optimal pair ( ) ( )( ),c c u uf o f o  has to be selected to minim-
ize the performance loss (in Equationg (2)). In other words, a total energy mi-
nimization problem may be solved as follows:  

( ) ( )( )
( ) ( )( )

( ) ( )( )
,

, 1 , min , 1 , ,
c u

T c u c u Tf i f j F
P o o o o P i j i jτ δ τ δ

∈
 × + = × +       (5) 

where τ  is the fixed timeslice duration, the term ( )( )1 ,i jτ δ+  represents the 
next interval execution time, which is possibly larger than τ  by factoring in the 
performance loss corresponding to the operation at a frequency from the feasible 
subset F. 

5.3. Runtime Energy-Saving Algorithm 

Figure 6 displays the steps of the algorithm underlying the proposed runtime 
strategy. Step 1 profiles the application for duration τ  and obtains the relevant 
event values from the performance counters. Next, Step 2 predicts value of events 
for the next timeslice r to be executed by using the history-window algorithm 
with the window of size of three, in which averaging as the g function proved 
sufficient for the given workloads and timeslice duration. Step 3 calls either fully 
runtime or pretrained statically ML model with the LR algorithm (in function 
useML_LR) to predict the micro-operations retired for all the core—uncore fre-
quency pairs, returned as set Mτ . 

Next (Step 4), a subset F Mτ∈  is determined consisting of all those core— 
uncore frequency pairs for which the predicted performance loss does not ex-
ceed the performance-loss constraint γ . The threshold value of γ  is provided 
by the user while the actual resulting performance loss is measured using the  
 

 

Figure 6. Pseudo-code for the ML-based energy-saving runtime strategy. 
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number of micro-operations retired at the end of a timeslice. In Step 5, the pow-
er consumption for all the core—uncore frequency combinations is obtained. 
Then, in Step 6, an appropriate operating frequency pair is chosen from solving 
the energy minimization problem as described in Section 5.2. 

6. Experimental Results 

The experiments were performed on a compute node having two Intel Xeon 
E5-2695 v3 14 core Haswell-EP processors with 32 GB (4 × 8 GB) of DDR4. The 
core and uncore frequency ranges are 1.2 - 2.3 GHz and 1.0 - 2.6 GHz, respec-
tively. To measure the socket and DRAM power, Intel RAPL API was used. The 
user-defined performance-loss tolerance γ  was taken as 10%, which is a typical 
value to allow for energy savings (see, e.g., [18]). 

Performance and Energy Savings 

Figure 7 shows the performance degradation of the proposed runtime strategy 
relative to the performance with both the core and uncore frequency levels stay-
ing at their maximum. The four NAS benchmarks are shown as “xx.yy.zz”, 
where “xx”, “yy”, and “zz” denote benchmark name, class, and number of processes 
used, respectively. The four GAMESS MSN inputs are distinguished by their 
fragment sizes (11, 16, 22, and 32). The proposed runtime strategy is also com-
pared with the one developed earlier in [3]—termed here eq-PerfMod—the per-
formance model of which is outlined in Section 3. 

The EP benchmark is invariably CPU-intensive throughout the execution with 
its performance degrading in a linear manner with the reduction in the core 
frequency. Therefore, the all-Runtime and eq-PerfMod execute EP at the lowest  
 

 

Figure 7. Performance loss for the NAS and GAMESS inputs when operated under the proposed runtime strategy on a 
28-core Haswell-EP node. 
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uncore frequency all the time. On the other hand, trn-Static executes the EP 
benchmark primarily at the 1.6 GHz core frequency and the 1.8 GHz uncore 
frequency, thereby significantly degrading its performance. The reason for trn- 
Static to select such a low core frequency for EP is that it has been pretrained on 
data, which came from a broad set distributions, while EP is showing an obvious 
compute-intensive penchant. Similarly, a poor prediction tendency of trn-Static 
may be observed for the memory-intensive inputs, such as the CG benchmark. 
Although the value of the LLC misses for CG is much higher than that for EP, 
the high bandwidth DDR4 is able to significantly overlap computational work 
with memory accesses [19]. Hence, its memory intensity is not enough to war-
rant a significant reduction in the core frequency, which is correctly detected by 
both trn-Static and eq-PerfMod. For the memory-intensive MG, trn-Static re-
duces both core and uncore frequency to 1.5 GHz and experiences significant 
performance degradation of ~20%. The reason for trn-Static performing poorly 
is that it fails to interpolate and generalize on the data generated during the run-
time. The ML model with trn-Static seems to average when generalizing on the 
unseen data. Therefore, trn-Static performs poorly for all the NAS benchmarks. 
The ML model with all-Runtime, on the other hand, for a given workload, adds 
training on a single input of the currently executed application per timeslice and, 
thus, is able to generalize much better. Such an advantage of all-Runtime, is even 
more pronounced in the MSN inputs. 

For the four MSN inputs, only all-Runtime succeeds in maintaining the per-
formance constraint by primarily executing he MSN inputs at 1.1 GHz uncore 
frequency and the highest core frequency. The dynamic changes in the workload 
parameters listed in Table 1 are even more pronounced for the MSN inputs than 
those are for the NAS benchmarks. Hence, the poor performance of the trn-Static 
and eq-PerfMod is observed, which is due to the same reasoning as for the NAS 
benchmarks. They both operate the MSN inputs with the core frequency between 
1.4 and 1.6 GHz and the uncore frequency between 1.5 and 1.7 GHz. Although 
the two switch to similar core—uncore frequency ranges, the trn-Static tends to 
execute the MSN inputs at the lower end of the range of the core frequencies. 
Overall, across all the eight inputs, the average performance loss incurred by 
all-Runtime, trn-Static, and eq-PerfMod was 5.1%, 21.8% and 10.9%, respective-
ly. 

The eq-PerfMod, despite depending on the heuristic performance analysis, is 
dynamic in nature, contrary to trn-Static, and is updated with the most current 
LLC misses in each timeslice, thereby adapting at the runtime and yielding better 
energy savings than those obtained by the trn-Static in all the tested applications. 
Figure 8 shows the energy savings corresponding to the performance losses in 
Figure 7. 

Since both all-Runtime and eq-PerfMod operated the EP benchmark at the 
lowest uncore frequency, they were able to reduce energy consumption by more 
than 20%. The trn-Static on the other hand, provided only 13% of energy savings. 
A maximum of only 4.8% in energy savings was achieved for CG benchmark  
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Figure 8. Energy savings for the NAS and GAMESS inputs when operated under the proposed runtime strat-
egy on a 28-core Haswell-EP node. 

 
since, overall, it is neither memory- nor compute-intensive due to the DDDR4 
memory effects. For the MG and FT benchmarks, all-Runtime yields more energy 
savings than the other two strategy variants do and it saves 6.8% and 10.4% of 
energy, respectively. Note that, for CG, MG, and FT, the trn-Static and eq-PerfMod 
provide similar energy savings. However, trn-Static achieves them by aggressively 
applying frequency scaling, and thereby breaching the performance constraint 
while eq-PerfMod applies frequency scaling more carefully and yields a much 
smaller performance degradation. By comparing broadly, a minor trend is ob-
served where trn-Static gradually starts to improve its prediction (cf. Figure 8) 
for the MSN inputs with the increase in the size of the MSN calculation. Larger 
MSN inputs afford more opportunities, in terms of the number of timeslices, for 
the trn-Static to pretrain on the stabilized workload parameters beyond the errat-
ic initialization phase, which may skew smaller MSN calculations. Overall, small-
er calculations lead to more sensitivity in the trn-Static due to fewer data points 
available to capture a given workload changes reliably. Therefore, longer execu-
tion traces are preferred for the proposed ML model, which is consistent with 
the idea where more data produces better performing models. 

The maximum energy savings (26%) among all the inputs are obtained by 
all-Runtime for a GAMESS MSN input (msn-11) because all-Runtime uniformly 
executes the MSN inputs at the reduced uncore frequency without tinkering with 
the core frequency. The other two variants do reduce the core frequency for the 
MSN inputs, consequently resulting in their much lower energy savings. Overall, 
across all the eight inputs, the average energy savings by all-Runtime, trn-Static, 
and eq-PerfMod were 17.7%, 7.2%, and 9.9%, respectively. 

Figure 9 traces the change in the core frequency for the three tested variants  
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Figure 9. Change in core frequency for the msn-11 input during the first 50 seconds of 
execution. 
 
on the msn-11 input during the first 50 seconds of its execution. It can be ob-
served that all-Runtime keeps the core frequency at ~2.1 GHz while trn-Static 
and eq-PerfMod prescribe around 1.6 GHz and 1.8 GHz, respectively, thereby 
severely degrading the application performance. The reason for their selecting a 
relatively low core frequency values is that they both rely on a static performance 
model (static heuristic components for eq-PerfMod), which is not being dynam-
ically updated at each timeslice as this is done in all-Runtime . 

7. Conclusions and Future Work 

In this paper, a runtime strategy using both DVFS and uncore frequency scaling 
is proposed to maximize energy savings for a parallel application under a given 
performance constraint. Machine learning based performance modeling was de-
veloped such that it incurs low overhead during its runtime usage while deliver-
ing a good prediction accuracy. Strategy variants with a training stage performed 
statically or dynamically were analyzed and compared with authors’ previously 
developed strategy. 

Experiments on a 28-core Haswell-EP platform with the NAS-NPB benchmarks 
and GAMESS MSN inputs showed that the proposed strategy provided significant 
energy savings with minimal performance degradation. Specifically, for an MSN 
input, 26% energy savings was achieved with a small 5% performance loss. Over-
all, a clear win of the proposed fully runtime ML model was demonstrated by its 
highest average energy savings of 17.7% with the lowest average performance 
loss of 5.1%. 

Future work will focus on developing runtime power-limiting strategies dri-
ven by machine learning modeling that will maximize performance under a giv-
en power budget. The proposed runtime strategy will be further extended to 
multinode multi-GPU scenario where performance modeling for GPUs will be 
explored. Ensemble modeling options would be explored to boost the prediction 
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accuracy of the utilized ML models. 
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