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ABSTRACT

The red palm weevil (RPW), Rhynchophorus ferrugineus (Oliv.) is a serious pest of date palms and
causes substantial losses worldwide. Due to its hidden nature of habitat, managing this pest is
extremely difficult. This study reveals a new biological control agent that is beneficial for controlling
this pest. In the laboratory, the virus was isolated from a colony of diseased larvae; the median
lethal dose (LD50) and median lethal time (LT50) of this virus were determined, and the biological
activities of the virus were assessed. Microscopic examination of the diseased larvae provided an
evidence of the presence of polyhedral inclusion bodies (PIBs) in all typical tissues where the virus
is known to develop. Electron microscopic examination revealed various shapes of polyhedra,
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most of which were hexagonal and tetragonal. Experiments were conducted to investigate viral
propagation and virulence against different larval instars. The results showed that the initial
infected dose (5×103 PIB/larva) increased to 600×109 PIB/larva. The LT50 values decreased as both
viral concentration and larval age increased. Moreover, the percentage of larval mortality
significantly increased as larval age increased. It can be concluded that a viral dose of 80×106

PIB/ml is sufficient and adequate for suppressing weevil population.

Keywords: Date palm pest; larval mortality; biological control.

1. INTRODUCTION

Since 1992, the red palm weevil (RPW),
Rhynchophorus ferrugineus (Oliv.) has become
one of the most damaging pests of palm trees in
the northern region of Egypt  and damage from
this pest can lead to severe losses [1,2].

Many efforts have been made to control this pest
using different tools, such as chemical
insecticides [3-7], pheromones [8-13] and
gamma radiation [14,15]. Other biocontrol
agents, including yeast [16,17]; bacteria,
Pseudomonas aeruginosa [18-20]; fungi [21-29]
and cytoplasmic polyhedrosis virus (CPV) [30-33]
have also been used. Furthermore, reared
colonies of this pest, especially those reared in
the laboratory; appear to be susceptible to
several entomopathogens [34]. We hope that this
study will help researchers uncover critical
unexplored areas of controlling this serious pest.

This study involved laboratory investigations of a
disease caused by a virus originally isolated from
infected and dead RPW larvae. Experiments
were carried out on the purification, propagation,
and assessment of biological activities of this
virus. The dose - mortality (median lethal dose,
LD50) and time – mortality (median lethal time,
LT50) were subsequently determined.

2. MATERIALS AND METHODS

2.1 Rearing Technique

The methods of Salama, Moawed, 2008 were
adopted. RPW larvae were obtained from the
standard colony at the pests and plant protection
laboratory of National Research Center and
maintained at 25 ± 2 0C and 70 – 80% relative
humidity (RH). Samples of larvae, pupae and
adults were collected from the colony, distributed
into plastic trays (30×20×10 cm) that had
perforated covers, and reared on banana or
sugar cane. The adults were distributed into
similar plastic trays at a ratio of five males: ten

females per tray and supplied with sugar cane
pieces which served as an oviposition site and as
a food source.

2.2 Isolation, Purification, and Identifica-
tion of Polyhedral

The principal method of Bergold [35] regarding
the isolation and purification of viruses within
spruce budworm, Choristoneura fumiferana was
adopted. The diseased larvae and cadavers
exhibiting symptoms were macerated,
suspended in water, blended and filtered through
a muslin cloth to remove large debris. The
aqueous suspension containing the polyhedral
inclusion bodies (PIBs) was subsequently
purified by repeated centrifugation at 4000 rpm
for ten minutes. The collected polyhedra were
then washed with distilled water, and
centrifugation was repeated; the polyhedra were
the maintained in the refrigerator at 4ºC as an
aqueous suspension ready for use. Further
confirmation was achieved by reinfection of 30 -
day- old larvae and re isolation of the polyhedra
from those cadavers.

Identification of highly purified polyhedra was
performed by using an electron microscope. The
method of Vander Gest [36], as modified by
many authors was used [37-39]. A stock
suspension was standardized by using a
hemocytometer (Burker chamber) [34].

2.3 Artificial Infection

The virus was incorporated into the larval diet
[39]. Four viral concentrations were prepared:
10×106, 20×106, 40×106 and 80×106PIB/ml. One
milliliter of each concentration was removed by a
small pipette, and half of this dose (0.5 ml) was
distributed onto the upper surface and the sides
of a piece of banana fruit (100 gm), after which
several holes were created on the upper surface
of the piece by using a fine needle. The second
half of the dose was distributed onto the
perforated piece and administered to the larvae.
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2.4 Rate of Propagation of Ingested Virus
Dose

Bioassays were carried out using the droplet -
feeding method [40]. Larvae were allowed to sip
1µl from the virus suspension (5 × 106 PIB/ml = 5
×103 PIB per larva). Before sipping, the larvae
starved for 24 hours, and 30 larvae (25 days old)
were infected, after which the larvae were
transferred to separate cups and maintained at
25ºC. Larval mortality was recorded daily. Dead
larvae were collected, and the virus was isolated
from only one dead larva; the polyhedra were
maintained in 100 ml of distilled water. Five
suspensions, which served as replications of five
dead larvae, were used for counting polyhedra.

2.5 Bioassay Technique

Fifteen-, 30- and 45 - day - old larvae were
placed into plastic cups (10- cm diameter and 7-
cm height) that had perforated covers for
ventilation; the larvae were then allowed to feed
on a diet contaminated with the virus (10 g per
larva) as previously mentioned. Seventy- five
larvae were used for each concentration. A
similar number of larvae fed on diet treated with
1 ml of sterile distilled water; these larvae served
as a check. After consuming all the treated diet,
the larvae fed on untreated fresh food. The
larvae were examined daily until each larva had
either died or pupated.

The samples of dead larvae or pupae were
examined for the presence of the pathogen
under a phase - contrast microscope. All
experiments were carried out at 25±2oC and
70±5% RH. Percent mortality was calculated,
and the insects that failed to survive to adulthood
were considered dead.

2.6 Statistical Analysis

The results were subjected to probit analysis in
accordance with the Finney method [41], and the
data were statistically analyzed using F-tests
(ANOVA) to compare the LD50 values. Duncan's
multiple range test was used to compare
mortalities [42].

3. RESULTS AND DISCUSSION

3.1 Symptomatology of the Disease

The administration of the viral concentrations to
the RPW larvae (15-30 days old) led to the
development of typical viral symptoms that

clearly appeared on the older larvae. The
observed symptoms could be described as
follows: the normal white color changed to a
yellowish color 7-10 days after infection. The
larvae whose symptoms appeared late
consumed less food. The diseased larvae fed
always on the external surfaces of the sugar
cane pieces, while the healthy larvae fed on the
interior parts. The larvae became swollen and
lethargic, and the body became flabby after
which death occurred (Fig. 1). When the older
larvae (30-45 days old) were infected with the
virus, some died at the larval stage; and the
others died as pupae or emerge later as
deformed adults. Most of the treated larvae died
in their cocoons leading to a deformed larval-
pupal stage.

These symptoms of the diseased RPW larvae
somewhat agree with those caused by other
baculoviruses in their respective hosts [43-49].
The presence of an intermediate stage (larval -
pupal stage) that developed from infected larvae
may be due to an increase in juvenile hormone in
the diseased insects as a result of infection
[50,51].

3.2 Polyhedra

Many polyhedra were suspended in the body
fluids in the samples of dead larvae examined
under the light microscope. Additionally,
numerous polyhedra were observed in the fat
bodies, which appeared as spherical bodies
measuring 0.3µm in diameter (Fig. 2).

Electron microscopic examination of the highly
purified polyhedra revealed that they are irregular
in shape and vary in diameter (0.3 - 7µm). The
majority are polygonal (tetra - hexagonal) and
have a diameter of 1.5 - 2.5µm or have navicular
or spherical (5 - 7µm) shape (Fig. 3).

These measurements and descriptions are
similar to those mentioned by some authors
[34,52] and regarding insect virus classification.
The description of this virus agrees with that of
other viruses infecting coleopteran insects such
as the Indian rhinoceros beetle, Oryctes
rhinoceros (Linnaeus) [53-55], and the RPW of
coconut [30].

3.3 Rate of Virus Propagation

The virus was propagated by infecting 25 – day-
old larva by allowing the larvae to sip 1 µl of the
viral suspension that contained 5×106 PIB/ml
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(equal to = 5×103 PIB per larva). Table 1 shows
the relationship between the amount of input and
output of the polyhedra. The initial ingested dose
(5×103 PIB per larva) clearly increased to 3×109

PIB per larva; this means that the rate of virus
propagation was 1: 6×103 polyhedra at the end of
infection or until the death of the larvae. The
virus mass multiplied by 600.00 PIB from one
PIB. By re-examining infections of the Egyptian
cotton leaf worm, Spodoptera littoralis
(Boisduval), by its native nuclear polyhedrosis
virus (NPV), the initial dose (7500 PIB/larva)
grew to 2.9×109 PIB/larva [39]. This finding
means that one polyhedron multiplied and
produced 380000 polyhedra during infection.

3.4 Effects on Larvae

The virulence of cytoplasmic polyhedrosis virus
(CPV) on R. ferrugineus larvae was expressed
as the percent mortality among 15-, 30-, and 45-
days – old treated larvae. The results in Table 2
show that all tested viral concentrations caused
higher larval mortality than the control. Percent
mortality increased as viral concentrations
increased, while susceptibility to the pathogen
decreased as larval age increased at any given
dose. For example, the viral concentration of
20×106 PIB/ml caused 89.3%, 73.4% and 58.8%
mortality in the 15-, 30- and 45-day-old larvae,
respectively.

3.5 Effects on Pupae and Adults (PA)

The pupae that resulted from post - infected
larvae, failed to emerge or emerged as deformed
adults were considered dead. Table 2 shows that
the larvae at all ages gave similar responses to
all tested concentrations. Percent pupal and
adult mortalities ranged from 84 - 100%.

3.6 Cumulative Effect of CPV on Larvae,
Pupae, and Adults (LPA)

The harmful effects as described by the percent
mortality of LPA, were greater in younger larvae
(15 - days old) than in older larvae (30- and 45 -
day- old). The continuous presence of the virus
in the pupae may explain the non-significant
percent mortality differences among the LPA of
all ages (Table 2).

3.7 Time - Mortality Data (LT50) Due to
CPV

The daily mortality data that were recorded,
could be used to estimate could be made of the
median lethal time (LT50) for each larval age at

given dose (Table 3). Only those larvae finally
dying from the virus were included in the
calculations.

The values of LT50 were decreased with
increasing of both viral concentration and
younger age. These values increased from 8.5 -
17.0 days for 15 - days old larvae to 10.5 - 22.0
days for 45 - days old larvae. With higher viral
concentration (80×106 PIB/ml) LT50 values
ranged between 8.5 - 10.5 days while there are
no significant differences between the two oldest
ones (30- and 45 - days old larvae).

3.8 Dose - Mortality Data (LD50)

The LD50 values and associated statistics of CPV
against the three larval ages of R. ferrugineus
are presented in Table 4. The LD50 increased
from 6.7×106 PIB/ml for 15 - day- old larvae to
14.5×106 and 18.4×106 PIB/ml for 30- and 45-
day- old larvae, respectively. There was a
significant difference in LD50 values between the
three larval ages. The older larvae (30-45 days)
have LD50 values approximately 2.0 and 3.0
times greater, respectively, than those of 15-
day- old larvae. The older larvae are much less
susceptible, but the deleterious effects of the
virus appeared in subsequent stages. Several
studies have highlighted the potential benefits of
using viruses as entomopathogens to maintain
insect pests populations below economic
thresholds. In the present study, the obtained
results concerning larval, pupal and adult
mortalities; LT50; LD50; and deleterious effects of
the virus strongly agree with those previously
reported on Western oak looper, Lambdina
fiscellaria somniaria (Hulst) [56], Gypsy moth,
Lymantria dispar (Linnaeus) [57], Egyptian cotton
leaf worm, S. littoralis [39] and the black
cutworm, Agrotis ipsilon (Hufnagel) [49] in that
the LT50 values decreased as the viral dose
increased. A similar phenomenon: high doses led
to a rapid effect, while lower doses required more
time to develop and, propagate, after which the
effects appeared [58].

Additionally, an increase in mortality was
generally accompanied by a decrease in the LT50
values at all tested concentrations, and the LD50
values increased as larval age increased. Similar
conclusions were reached on the effects of
baculoviruses on other harmful pests [59-67].
Decreased larval susceptibility was strongly
correlated increased body weight. Moreover,
infection with the CPV during all developmental
stages of RPW was reported in India. In the
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present study, the infected larvae emerged as
deformed adults, and these deformations led to
significant suppression of the weevil population.

Many possible reasons for differences in the
progression of a disease in different instars have
been suggested by Vail and Hall [68]: the

effective dose per larva may vary according to
(1) alkalinity of the mid gut required for
dissolution of the ingested polyhedra and/or for
the survival of viral particles, (2) the number of
viral particles entering the hemocoel, and (3) the
virulence of viral particles that enter the
hemocoel.

Table 1. Rate of propagation of RFCPV and mean number of polyhedral presented in one
infected larva

Replicate (a) PIB / one big square
(Mean ± SE)

No. PIB / Larva Ratio (d)
1 : 2Input Output

1 13.6 ± 0.45

5 ×103 3 ×109 (c) 1 : 600 ×103
2 13.2 ± 1.65
3 10.2 ± 0.86
4 16.4 ± 1.21
5 11.0 ± 0.92
General mean 12.0 ± 1.03 (b)

(a) Five different suspensions prepared from 5 – dead larvae
(b) Number of PIB / one big square in the haemocytometer

No. PIB / µl = b × conc. × dilution
(c) No. PIB / µl = 12 × 250 ×10 = 30200 ~ 30000

No. PIB / ml = 30000 ×103 = 30 ×106

No. PIB / larva = 30 ×106 x 100 (Total volume) = 3 ×109

(d) Rate of propagation (Ratio) = input / output

Table 2. Percent mortality among immature stages at different ages of R. ferrugienus exposed
to its RFCPV

Age
(Days)

Viral conc.
1 ×106 PIB / ml

% Mortalities *
L PA LPA

15

0 10.7 a 4.5 a 14.7 a
10 77.4 b 88.2 c 97.3 b
20 89.3 c 100.0 d 100.0 b
40 89.3 c 75.0 b 97.3 b
80 100.0 d 0.0 100.0 b

30

0 5.4 a 5.6 a 10.7 a
10 48.0 b 87.2 b 93.3 b
20 73.4 c 85.0 b 96.0 bc
40 81.3 cd 92.9 bc 98.7 bc
80 88.0 d 100.0 c 100.0 c

45

0 4.0 a 4.2 a 8.0 a
10 39.9 b 87.8 bc 86.7 b
20 58.8 c 88.1 bc 94.7 c
40 74.7 d 84.2 b 96.0 c
80 79.9 d 93.3 c 98.7 c

L = Larvae, PA = Pupae and Adults, LPA = Larvae, Pupae and Adults
* Values followed by the same letters are not significantly different (P > 0.05)

Table 3. LT50 – values of R. ferrugienus larvae after infecting with different concentrations of
its RFCPV

Larval age
(days)

Viral concentration (PIB / ml)
10 x 106 20 x 106 40 x 106 80 x 106

15 17.0 10.0 11.5 8.5
30 0.0 * 15.5 13.5 10.5
45 0.0 * 22.0 12.0 10.5

* No data available and percent larval mortality was less than 50%
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Table 4. LD50 – values of R. ferrugienus larvae after infecting with different concentrations of
its RFCPV

Larval age
(days)

LD 50

PIB / ml *
90 % Fiducial limit Slope

± SE
Susceptibility
level **lower upper

15 6.7 ×106 a 4.6 8.3 1.48 ± 0.306 1.0
30 14.5 ×106 b 11.3 18.6 2.20 ± 0.245 2.16
45 18.4 ×106 b 12.4 22.8 2.13 ± 0.173 2.75

* Values followed by the same letters are not significantly different (P > 0.05)
** Susceptibility level = LD 50 of every larval age / LD 50 of 15 day – larval age

Fig. 1. Dead and intermediate larval – pupal stage of RPW larvae due to treatment with CPV

Fig. 2. Spherical white polyhedral (light microscope)
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Fig. 3. Electron microscope (X3.500): Different shapes of polyhedra, Nanvicular, Spherical,
Tetragonal and Hexagonal

4. CONCLUSION

The use of viruses obtained from naturally
infected RPW, including CPV, should be
seriously considered for biological control of this
pest. A viral dose of 80×106 PIB/larva was
sufficient and adequate for suppressing weevil
populations; this dose resulted in 80 - 100%
larval mortality. Always, in date palm plantations,
the irrigation regime seems to affect RPW
infestation. The continual contact of water at the
stipe base creates a favorable environment for
RPWs to lay their eggs. Additionally, severely
damaged and dead palm trees should be
eliminated.
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