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Abstract

A simple formal procedure makes the main properties of the ordinary lagrangian operator
∇qL − d

dt
∇q̇L extendable to some higher order differential operators defined for functions

depending on the lagrangian coordinates q and on their derivatives of any order with respect to
time. The higher order calculated expressions can provide the lagrangian components, in the
classical sense of the Newton’s law, for a quite general class of forces.
At the same time, the generalized equations of motions recover some of the classical alternative
formulations of the Lagrangian equations.
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1 Introduction

The starting point of our investigation is the operator

L −→
(
∂L
∂q1

− d

dt

(
∂L
∂q̇1

)
, . . . ,

∂L
∂qℓ

− d

dt

(
∂L
∂q̇ℓ

))
(1.1)

which maps a function L on R2ℓ+1 depending on (q1, . . . , qℓ, q̇1, . . . , q̇ℓ, t) onto a vector of functions
on R3ℓ+1 now depending on the (3ℓ + 1)–independent variables (q1, . . . , qℓ, q̇1, . . . , q̇ℓ,

..
q1, . . . ,

..
qℓ, t).

Actually, d/dt means the total derivative operator that maps a funcion f(y1, . . . , yN , t) on RN+1

onto the function
N∑

j=1

∂f

∂yj
ẏj +

∂f

∂t
on R2N+1 where (y1, . . . , yN , ẏ1, . . . , ẏN , t) have to be considered

independent variables.

For the purpose of shortening notations, we make use of ∇y in order to list the derivatives with

respect to y1, . . . , yN of a function f : ∇yf =

(
∂f

∂y1
, . . . ,

∂f

∂yN

)
, so that (1.1) can be written as

L −→ ∇qL − d

dt
(∇q̇L)

It is known that a point transformation q̄1(q1, . . . , qℓ, t), . . . q̄ℓ(q1, . . . , qℓ, t), even depending explicitly

on t and respecting the nonsingularity condition det

(
∂q̄i
∂qj

)
i,j=1,...,ℓ

̸= 0, induces on the kinetic

variables the linear transformation

˙̄qi =
ℓ∑

j=1

∂q̄i
∂qj

q̇j +
∂q̄i
∂t

. (1.2)

We find it convenient to introduce the symbol JxF to denote the jacobian matrix

(
∂Fi

∂xj

)
i = 1, . . . , N2

j = 1, . . . , N1

for any x = (x1, . . . , xN1), F = (F1, . . . , FN2). According to this notation, we can also write ˙̄q =

(Jqq̄)q̇+
∂q̄

∂t
. If L̄ is the function L in the new variables, namely L̄(q̄, ˙̄q, t) = L(q(q̄, t), q̇(q̄, ˙̄q, t), t),

where q(q̄, t) is the inverse variable transformation inducing the kinetic transformation q̇(q̄, ˙̄q, t) =

(Jq̄q) ˙̄q+
∂q

∂t
, it makes sense to consider (1.1) in the new set of variables:

L̄ −→ ∇q̄L̄ − d

dt

(
∇ ˙̄qL̄

)
.

This transformation maps L̄ onto a ℓ–vector function in the 3ℓ+ 1 variables (q̄, ˙̄q,
..
q̄, t). Now, it is

well known (or very easy to check) that the operator maps in a way that the resulting vectors are
related by means of the jacobian matrix:

∇q̄L̄ − d

dt

(
∇ ˙̄qL̄

)
= (Jqq̄)

T

(
∇qL − d

dt
(∇q̇L)

)
. (1.3)

where T means transposition. For each component, (1.3) writes

∂L
∂q̄i

− d

dt

(
∂L̄
∂ ˙̄qi

)
=

ℓ∑
j=1

∂q̄j
∂qi

(
∂L
∂qj

− d

dt

(
∂L
∂q̇j

))
.

Thus, the effect of the change of variables q → q̄ = q̄(q, t) is that the operator has to be multiplied
by the jacobian matrix of the transformation.
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Such a change rule plays a fundamental role whenever a differential expression as (1.1) is used to
formulate a physical phenomenon like motion: operator (1.1) equal to the null vector is clearly the
set of the Euler–Lagrange equations for a Lagrangian function L = T − V , respectively kinetic and
potential energy. From a physical point of view the rule reflects the “covariant” behaviour of the
lagrangian components of the forces (including the inertial forces), namely the projections of the
forces on the configuration space. In other words, the Euler–Lagrange equations transform as the
components of covariant tensors.

Remark 1.1. The conversion rule (1.3) can be framed in the abstract context of a geometric point of
view: operator (1.1) can be seen in terms of the jet bundles : indeed, the Euler–Lagrange equations
are the components of a 1–form along the projection of the jet bundle to the configuration manifold.
The covariance of the operator would be inherent in the definition; one of the first treatise in this
direction is Leon and Rodrigues [1]; other references for geometric approaches are Gracia et al.
[2] and Leon and Lacomba [3]. However, it is not in our mind to estabilish the framework and
the developement of a geometry for our investigation, rather aiming at a physical reading of the
analytical investigation.

In Section 2 we will consider a set of differential operators mapping functions depending on q, q̇,
. . . at any fixed order of derivative and still performing property (1.3).

Then the question arises, about which role can play the operators within the formulation of
dynamical laws for particular systems. The additional aspect, with respect to the standard theory,
is evidently the presence of higher order derivatives of the lagrangian coordinates. The question is
examined in Section 3.

2 Higher–order Differential Operators

The notation we will employ shows
h·
qk standing for qk with h dots:

h·
qk =

h︷︸︸︷
· · ··
qk , that is

dhqk
dth

(h-th

derivative with respect to t); the same for
h·
q = (

h·
q1, . . . ,

h·
qℓ). Unless stated otherwise, the notation

is valid also for s = 0, in the sense of the 0–derivative
0·
qk = qk.

For a fixed integer r ≥ 0, let Y be a real–valued function of q, of their time derivatives up to the
order r + 1 and of t:

Y(q, q̇, . . . ,
r·
q,

(r+1)·
q , t). (2.1)

For each index h = 0, 1, . . . , r + 1 we consider the operator

Or,h =
h∑

j=0

(−1)j
(

r + 1− h+ j
r + 1− h

)
dj

dtj
∇(r+1−h+j)·

q
(2.2)

which maps Y on R(r+2)ℓ+1 on a ℓ–vector function depending on the (r + 2 + h)ℓ+ 1 independent

variables q, q̇, . . . ,
r·
q,

(r+1)·
q , . . . ,

(r+h+1)·
q , t. For a fixed value of h the expression (2.2) contains

h+ 1 terms, which are worthy to be written explicitly, for greater clarity:
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h = r + 1 : ∇qYr − d
dt
∇q̇Yr +

d2

dt2
∇..

qYr + · · ·+ (−1)r+1 dr+1

dtr+1
∇(r+1)·

q
Yr,

h = r : ∇q̇Yr − 2 d
dt
∇..

qYr + 3 d2

dt2
∇...

qYr + · · ·+ (−1)r(r + 1) dr

dtr
∇(r+1)·

q
Yr,

. . .
h : ∇(r+1−h)·

q
Yr − (r + 1− h+ 1) d

dt
∇(r+1−h+1)·

q
Yr + . . .

· · ·+ (−1)j
(

r + 1− h+ j
r + 1− h

)
dj

dtj
∇(r+1−h+j)·

q
Yr + . . .

· · ·+ (−1)h
(

r + 1
r + 1− h

)
dh

dth
∇(r+1)·

q
Yr,

. . .
h = 1 : ∇r·

q
Yr − (r + 1) d

dt
∇(r+1)·

q
Yr,

h = 0 : ∇(r+1)·
q

Yr.

(2.3)

The case h = r + 1 needs a special comment: for r = 0 we get back to (1.1), for r > 0 the
operator is the left hand side of the lagrangian equations of higher–order Lagrangians, formulated
by Ostrogradski as early as in the 1850s; some current references for the study of this kind of higher
order Lagrangian are Gay-Balmaz et al. [4], Gracia et al. [2], Nesterenko [5] and Simon [6]. At
the same time, the generalized operator (2.2) is also implemented in the theoretical formulation
of non–standard higher order constrained systems: some studies in this sense are, for instance, in
Cendra and Grillo [7] and in Chen et al. [8].

Now, let q̄(q, t) be a C∞–change of coordinates, with det Jqq̄ ̸= 0: the relation (1.2) can be extended
by successive derivations at any order k ≥ 1:

k·
q̄ =

k·
q̄(q, q̇, . . . ,

k·
q, t). (2.4)

Each of (2.4) exhibits a linear biunivocal correspondence between the variables at the highest order
of derivation: indeed, (2.4) writes explicitly

k·
q̄ = (Jq̄q)

k·
q+Φk−1(q, q̇, . . . ,

(k−1)·
q , t)

where

Φk−1 =

k−2∑
j=0

(
k − 1
j

)
(Jq

(k−1−j)·
q̄ )

(j+1)·
q +

∂

∂t

(k−1)·
q̄

(the formula is obtained by iterating the derivatives in (1.2) and by taking into account that
ds

dts
Jqq̄ = Jq

s·
q̄,

ds

dts
∂q̄

∂t
=

∂

∂t

s·
q̄ for any s ≥ 0).

Hence, for any given real–valued function Y(q, q̇, . . . ,
r·
q,

(r+1)·
q , t) we can compute Ỹ as the function

Y calculated in the inverse transformations with respect to (2.4):

Ỹ(q̄,, ˙̄q, . . . ,
r·
q̄,

(r+1)·
q̄ , t) = Y(q(q̄, t), q̇(q̄, ˙̄q, t), . . . ,

r·
q(q̄, ˙̄q, . . . ,

r·
q̄, t),

(r+1)·
q (q̄, ˙̄q, . . . ,

(r+1)·
q̄ , t), (2.5)

The considerable feature of (2.2) is that each of the r + 2 operators abides by the same rule (1.3)
of transformation: we state the following

Lemma 2.1. For any r ≥ 0 and any h = 0, . . . , r + 1 it holds

Or,h[Y] = (Jqq̄)
T Õr,h[Ỹ] (2.6)
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where Ỹ is computed as in (2.5) and Õr,h is the operator (2.2) where each
(r+1−h+j)·

q is replaced by
(r+1−h+j)·

q̄ , respectively, for j = 0, . . . , h.

Hint of the proof. One can proceed by induction on h: the case h = 0 is evident, since ∇(r+1)·
q

Y =

(Jqq̄)
T∇(r+1)·

q̄
Ỹ. Moreover, the case h = 1 will be checked in detail through next Section. The key

point in order to conclude the proof is the formula

Ju·
q

(u+s)·
q̄ =

(
u+ s
s

)
ds

dts
Jqq̄, s ≥ 0 (2.7)

(we already mentioned the case u = 0) which can be directly checked, or can be traced, for istance,
in Craig [9]; the case s = 0 shows the known property of “cancelling dots” within the jacobian
matrix of the transformation between variables showing the same number of dots. �

At this point, a relevant question could arise with regard to the role and the meaning that operators
(1.3) can assume from the physical point of view, somehow extending to more general contexts the
familiar situation r = 0, h = 1 for a Lagrangian L of a mechanical system.

As we already stated, the expression h = r + 1 is used in literature for higher–order Lagrangians,
like the function Y we introduced. In what follows, we will focus on the case h = 1 which covers

in our mind the generalization of the ordinary “Lagrangian binomial” O0,1[L] = ∇qL − d

dt
(∇q̇L).

Our aim consists in analysing the properties of the operator and in associating such a case with
concrete formulations of mechanical systems. An enlightening study of the case h = 1, r = 1 is
performed in Minguzzi [10].

3 The Extended “Lagrangian Binomial”

For any fixed integer r ≥ 0 let us consider the operator (2.2)

Or[Y] = ∇r·
q
Y − (r + 1)

d

dt
∇(r+1)·

q
Y (3.1)

(where we dropped the second index h = 1 for simplicity) which maps a real–values function Y(q, q̇,

. . . ,
(r+1)·
q , t) on R(r+2)ℓ+1 onto a ℓ–vector of functions in R(r+3)+1. As claimed before, we directly

check the property (2.6) for this case:

Proposition 3.1. For any fixed r ≥ 0 and any function Y as in (6.4), the operator (3.1) verifies

(2.6), that is Or[Y] = (Jq̄q)
T Õr[Ỹ], where Ỹ is computed as in (2.5).

Proof. We start from the calculation

∇(r+1)·
q

Y =

(
J(r+1)·

q

(r+1)·
q̄

)T

∇(r+1)·
q̄

Ỹ,

∇r·
q
Y = (Jr·

q

r·
q̄)T∇r·

q̄
Ỹ +

(
Jr·
q

(r+1)·
q̄

)T

∇(r+1)·
q̄

Ỹ

and we make use of the property (2.7) taking s = 0 and s = 1:

J(r+1)·
q

(r+1)·
q̄ = Jr·

q

r·
q̄ = Jqq̄, Jr·

q

(r+1)·
q̄ = (r + 1) d

dt
Jqq̄.

5
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Thus

∇r·
q
Y − (r + 1) d

dt
∇(r+1)·

q
Y

= (Jqq̄)
T∇r·

q̄
Ỹ + (r + 1) d

dt
(Jqq̄)

T∇(r+1)·
q̄

Ỹ − (r + 1)(Jqq̄)
T d

dt
∇(r+1)·

q̄
Ỹ − (r + 1) d

dt
(Jqq̄)

T∇(r+1)·
q̄

Ỹ

= (Jqq̄)
T

(
∇r·

q̄
Ỹr − (r + 1) d

dt
∇(r+1)·

q̄
Ỹr

)
whence the validity of (2.6) for the selected case, since (Jqq̄)

−1 = Jq̄q. �

The additional properties we need about the operator (3.1) concern the derivatives of a given
function: the most evident is the following

Proposition 3.2. For any L(q, q̇, t) it holds O0[L] = Or

[
drL
dtr

]
, that is

∇qL − d

dt
∇q̇L = ∇r·

q

drL
dtr

− (r + 1)
d

dt

(
∇(r+1)·

q

drL
dtr

)
. (3.2)

Proof. We first remark that
drL
dtr

= ∇q̇L ·
(r+1)·
q +Φ(q, q̇, . . . ,

r·
q, t) hence ∇(r+1)·

q

drL
dtr

= ∇q̇L, so
that (3.2) is equivalent to

∇r·
q

drL
dtr

= ∇qL+ r
d

dt
∇q̇L. (3.3)

For r = 1 it is immediate to check that ∇q̇
dL
dt

= ∇qL+ d
dt
∇q̇L; for r > 1 we proceed by induction

on r, assuming that (3.3) holds. Let us take advantage of the property concerning the inversion
between total derivative and gradient:

∇n·
q

dF

dt
− d

dt
∇n·

q
F = ∇(n−1)·

q
F (3.4)

which is valid for any real values–function F (q, q̇, . . . ,
n·
q, t) and any n ≥ 1. By employing (3.4) with

F = drL
dtr

and n = r + 1 one achieves

∇(r+1)·
q

dr+1L
dtr+1

= ∇r·
q

drL
dtr

+
d

dt

(
∇(r+1)·

q

drL
dtr

)
= ∇r·

q

drL
dtr

+
d

dt
∇q̇L

and, by virtue of the induction assumption (3.3),

∇(r+1)·
q

dr+1L
dtr+1

= ∇qL+ (r + 1)
d

dt
∇q̇L

hence (3.3) holds for r + 1, too. �

We render now relation (3.4) more general by means of the following

Proposition 3.3. For any function U(q, q̇, . . . ,
s·
q,

(s+1)·
q , t), s ≥ 0 and any index r ≥ s it is

Or

[
dr−sU
dtr−s

]
= Os[U ]. (3.5)

Proof. It has to be checked that

∇r·
q

dr−sU
dtr−s

− (r + 1)
d

dt

(
∇(r+1)·

q

dr−sU
dtr−s

)
= ∇s·

q
U − (s+ 1)

d

dt
∇(s+1)·

q
U . (3.6)

6
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Since ∇(r+1)·
q

dr−sU
dtr−s = ∇(s+1)·

q
U , (3.6) can be written as

∇r·
q

dr−sU
dtr−s

= (r − s)
d

dt
∇(s+1)·

q
U +∇s·

q
U . (3.7)

We refer again to (3.4) which is used r− s times for F =
dr−s−1U
dtr−s−1

, F =
dr−s−2U
dtr−s−2

, . . . , F = U and

n = r, r − 1, . . . , r − (r − s) + 1 = s+ 1 respectively:

∇r·
q

dr−sU
dtr−s

= ∇r·
q

(
d
dt

dr−s−1U
dtr−s−1

)
=

d

dt

(
∇r·

q

dr−s−1U
dtr−s−1

)
+∇(r−1)·

q

dr−s−1U
dtr−s−1

,

∇(r−1)·
q

dr−s−1U
dtr−s−1

= ∇(r−1)·
q

(
d
dt

dr−s−2U
dtr−s−2

)
=

d

dt

(
∇(r−1)·

q

dr−s−2U
dtr−s−2

)
+∇(r−2)·

q

dr−s−2U
dtr−s−2

,

. . . . . . . . .

∇(s+1)·
q

d

dt
U =

d

dt
∇(s+1)·

q
U +∇s·

q
U .

Since

∇(r−1)·
q

(
dr−s−1U
dtr−s−1

)
= ∇(r−1)·

q

(
dr−s−2U
dtr−s−2

)
= · · · = ∇(s+1)·

q
U ,

relation (3.7) easily follows. We remark that (3.2) is (3.6) whenever s = 0. �

4 Extending Kinetic Energy and Potential Forces

In order to give a real physical context to the operator (3.1) a nd to place in a right way the properties
discussed above, we introduce a system of N material points {Pi,mi}i=1,...,N . If (xi, yi, zi) are the
cartesian coordinates of the i–point with respect to a fixed frame of reference, we list all of them
orederly in a 3n–vector X ∈ R3N . Calling L = (m1Ṗ1, . . . ,mN ṖN ) the 3N–vector of the linear
momentum of the system, we define

Tr =
1

2

r·
L ·

(r+1)·
X . (4.1)

For r = 0 (4.1) is the standard kinetic energy T0 = 1
2
L · Ẋ = 1

2

N∑
i=1

miṖ
2
i . A second case to be

remarked is r = 1, providing the acceleration energy (see Neimark and Fufaev [11]):

T1 =
1

2

.

L ·
..

X =
1

2

N∑
i=1

mi

..

P
2

i . (4.2)

Now, if the system of points is subjected to m < 3N independent holonomic constraints, the
coordinates X turn out to be expressed by ℓ = 3N −m lagrangian coordinates according to X(q, t),
q ∈ Rℓ (the dependence on t is due to possible rheonomic constraints). The function Tr of (4.1) is

now Tr = Tr(q, q̇, . . . ,
r·
q,

(r+1)·
q , t). The well known relation between the lagrangian components of L

and (3.1) regarding the case r = 0 can be expanded to higher derivatives by means of the following

Proposition 4.1.
(r+1)·
L · ∂X

∂qk
=

d

dt

∂Tr

∂
(r+1)·
qk

− 1

r + 1

∂Tr

∂
r·
qk

, k = 1, . . . , ℓ (4.3)

7
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Proof. It suffices to replicate the steps of the standard case r = 0, by writing

(r+1)·
L · ∂X

∂qk
=

d

dt

r·
L · ∂X

∂qk
−

r·
L · ∂Ẋ

∂qk
, k = 1, . . . , ℓ.

On the other hand, one has

∂Tr

∂
(r+1)·
qk

=
r·
L ·∂

(r+1)·
X

∂
(r+1)·
qk

=
r·
L · ∂X

∂qk
,

∂Tr

∂
r·
qk

=
r·
L ·∂

(r+1)·
X

∂
r·
qk

= (r + 1)
r·
L · ∂X

∂qk

where the second equalities in each of the two sequences are deduced from relations analogous to
(2.7). �
Remark 4.1. In the case r = 1, the acceleration energy (4.2) verifies

∂T1

∂
··
qk

= L̇ · ∂X
∂qk

and the Newton’s law makes us write the equations of motion in the form

∂T1

∂
··
qk

= Fk, k = 1, . . . , ℓ

where Fk is the k–lagrangian component of the force. The just written equations are the Appell
equations (for which Whittaker [12] is a historical reference), in the special case of pseudovelocities
matching with the generalized velocities.

Assume now that the system of forces FFF ∈ R3N exerting on (P1, . . . , PN ) admits a function U(q, q̇,

. . . ,
(s+1)·
q , t), s ≥ 0, such that

FFF · ∂X
∂qk

=
∂U
∂

s·
qk

− (s+ 1)
d

dt

∂U

∂
(s+1)·
qk

. (4.4)

The case s = 0 corresponds to a force connected to a generalized potential U(q, q̇, t)hl: some relevant
instances are the Lorentz force in an electromagnetic field or the couple Coriolis force–centrifugal
force exerted by a reference frame in uniform rotation. Both circumstances of Lorentz force and
non inertial forces fall in the case of linear dependence on the velocity

FFF(q, q̇, t) =
(
JT
q α− Jqα

)T

q̇+∇qβ − ∂α

∂t

(with appropriate α and β) combined with the potential U1(q, q̇, t) = α(q, t) · q̇+ β(q, t).

In order to improve notations, if one introduces the matrix–vector product (JqX)Tw =

 w · ∂X
∂q1

. . .
w · ∂X

∂qℓ


providing the ℓ lagrangian components of any 3n–vector w, (4.3) and (4.4) can be written in terms
of the operator (3.1) respectively as

(JqX)T
(r+1)·
L = − 1

r + 1
Or[Tr], (JqX)TF = Os[U ]. (4.5)

It is also worthy to remark that (4.3) allows us to place in the context of (3.1) special forces
proportional to the acceleration, or the rate of change of acceleration or even further derivatives
with respect to time:

FFFA = L
(h+1)·
X (4.6)

8
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where h ≥ 1 and L is a diagonal matrix with positive entries. Calculations very close to those
concerning (4.3) lead to

L
(h+1)·
X · ∂X

∂qk
=

d

dt

∂UA

∂
h·
qk

− 1

h

∂UA

∂
(h−1)·
qk

, k = 1, . . . , ℓ

where UA =
1

2
L

h·
X ·

h·
X. According to the notation of (3.1) we can also write

(JqX)TFFFA = − 1

h
Oh−1[UA]. (4.7)

For h = 1 and L listing the masses of the points one recovers the inertial forces. A second
circumstance to have in mind is the Abraham–Lorentz force (due to the electromagnetic radiation
on an accelerating charged particle), which can be modeled choosing h = 2:

FFFA = L
...

X, UA =
1

2
L

..

X ·
..

X

where the diagonal matrix L depends on the charge of the particle, the speed of light and on the
electric and magnetic constants. The lagrangian components of the force verify in this case

FFFA · ∂X
∂qk

=
d

dt

∂UA

∂
..
qk

− 1

2

∂UA

∂q̇k
.

5 Other Types of Forces

Let us make a very simple point: for any real values–function γ(q, q̇, . . . ,
i·
q, t) and any index h ≥ 1

it holds
Oi[γ] = ∇i·

q
γ. (5.1)

This allows us to count the following cases in the formal stucture (3.1):

(i) a system of forces FFFR such that the lagrangian components verify

(JqX)TFFFR = −∇σ·
q
R(q, q̇, . . . ,

σ·
q, t) (5.2)

for some function R and some positive integer σ;

(ii) a general force GGG(q, q̇, . . . ,
(ϱ−1)·
q , t), ϱ ≥ 1.

In the first case, by virtue of (5.1) we have

Oσ[−R] = (JqX)TFFF . (5.3)

The signus − is appropriate if we think of the case σ = 1, producing the dissipation force FFFR =
−(JqXµ)q̇, where Xµ = (µ1P1, . . . , µnPn) (µi friction coefficients) is a practical notation. The
lagrangian components are (JqX)TFFFR = −Dq̇, being D(q, t) = (JqX)T JqXµ symmetric and
positive definite, and R = − 1

2
q̇ · Dq̇. Condition (5.2) writes in this case ∇q̇R = −Dq̇.

With regard to case (ii), the device of defining the function γϱ(q, q̇, . . . ,
ϱ·
q, t) = (JqX)TGGG·

ϱ·
q provides,

according to (5.1),
Oϱ[γϱ] = (JqX)TGGG. (5.4)

In this way the lagrangian components of a generic force GGG(q, . . . ,
(ϱ−1)·
q , t) can be intercepted by

the operator (3.1) by means of a function γϱ, at the expense of expanding the variables to the

subsequent derivative
ϱ·
q.

9
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6 Equations of Motion

We are going now to assemble the various aspects: the main objective is to encompass contributions
of different kinds under the one equation (3.1), for appropriate r and Yr.

Basing on the Newton’s law splitted on the lagrangian components

(JqX)T L̇ = (JqX)TFFF , (6.1)

we model the dynamical term FFF . We separate the contributions according to

FFF = FFF0 +FFFS +FFFA +FFFR +GGG (6.2)

exhibiting the following features:

(i) FFF0 originates from a potential U0(q, t) such that (JqX)TFFF0 = ∇qU0,

(ii) the term FFFS corresponds to a generalized potential and verifies (4.4) for some s ≥ 0, so that
(JqX)TFFFS = Os[Us] for an appropriate Us,

(iii) the contributionFFFA is caused by acceleration effects or by higher order effects and it accounts
for condition (4.6) with a suitable integer h ≥ 1; the function (4.7) provides the lagrangian
components of the force according to Oh−1[UA] = −h(JqX)TFFFA;

(iv) the term FFFR is of the (5.2) type for some σ ≥ 1 and the lagrangian components verify (5.3),

(v) the contribution GGG concerns a generic force depending on q, q̇, . . . ,
(ϱ−1)·
q and possibly t for

some ϱ ≥ 1: the formal settlement to have in mind is (5.4).

For a given system of forces (6.2) we set r = max(s,m − 1, σ, ϱ). On the ground of the previous
analysis, we are going to prove the following

Proposition 6.1. The equations of motion for the set of material points (mi, Pi), i = 1, . . . , N
subject to the system of forces (6.2) are

Or[Yr] = ∇r·
q
Yr − (r + 1)

d

dt
∇(r+1)·

q
Yr = 0 (6.3)

where

Yr =
drL
dtr

+
dr−sUS

dtr−s
− 1

h

dr−(h−1)UA

dtr−(h−1)
− dr−σR

dtr−σ
+

dr−ϱγϱ
dtr−ϱ

(6.4)

and L = 1
2 L ·Ẋ+ U0, where L is the 3N–vector of the linear momenta miṖi, i = 1, . . . , N .

Proof: By virtue of Propositions 1.2, 1.3 and the linearity of (3.1) we can write

Or[Yr] = O0[L] +Os[US ]−
1

m
Om−1[UA]−Oσ[R] +Oϱ[γϱ].

On the one hand, the first of (4.5) calculated for r = 0 means O0[L] = −(JqX)T L̇+∇qU0; on the
other hand, the second in (4.5) and (4.7), (5.3), (5.4) entail

Os[US ]−
1

m
Om−1[UA]−Oσ[R] +Oϱ[γϱ] = (JqX)T (FFFS +FFFA +FFFR +GGG)

so that (6.3) is equivalent to (JqX)T (−Q̇+FFF) = 0, that is (6.1). �

A significant example for the extended formalism is the already mentioned Abraham–Lorentz force
(see Rohrlich [13] for a review), where the term 2

3
e

..
v is added to the electomagnetic Lorentz force

e(E+v∧B): the latter term is of type (ii), with s = 0, while the first term is of type (iii), h = 2 (see

10
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also (4.6)).The arrangement of the Abraham–Lorentz force under Lagrangian equations of motion
is in Carati and Galgani [14].

In the end, we remark that combining (3.1) with (3.4) calculated for n = r + 1 and P = Yr, one
finds

Or[Yr] = ∇(r+1)·
q

dYr

dt
− (r + 2)

d

dt
∇(r+1)·

q
Yr. (6.5)

Whenever Or[Yr] = 0 gives the equations of motion, by replacing d
dt
∇(r+1)·

q
Yr with 1

r+1
∇r·

q
Yr in

(6.5) one achieves

∇(r+1)·
q

dYr

dt
− r + 2

r + 1
∇r·

q
Yr = 0 (6.6)

which can be considered a sort of generalized Nielsen’s equations, in the sense that the case r = 0

∇q̇
dL
dt

− 2∇qL = 0 (6.7)

for L(q, q̇, t) corresponds to the set known as the Nielsen form of the equations of motion (a
relatively recent study is in Wang and Mei [15]).

7 Conclusions

The covariance property (2.6) of the binomial expression (3.1) with respect to point transformations
provides access to make use of it for the motion of a systems under wide assumtions about
the dynamical strains. The physical motivation of the higher order operator passes through the
Newton’s law and the lagrangian components of an overall force (6.2). The latter one includes
generalized potentials (4.4), kinematic effects (4.6), generalized dissipative forces (5.2) or even non
structured forces. For specific values of the indexes, the standard equations for the known and
ordinary cases are reproduced.

By means of the property (3.5), all these effects can be encompassed by the function Yr, where r
depends on the highest order of derivative occurring in each contribution. The order of the equations
of motion (6.3) is r+2. As (6.4) shows, the unifying procedure possibly requires derivations on the
individual terms: on the other hand, the compact expression (6.3) may facilitate the investigation
on specific properties of the system, in the same way as the energy balance can be deduced from
the ordinary lagrangian equations of motion.

At the same time it is interesting to detect that some alternative form of the equations of motion,
involving the derivatives of state functions (Nielsen or Appell equations) can be recovered from the
set of equations (6.3).

An interesting further development will be the investigation of operators (2.2), for h ̸= 1, especially
with regard to their bearing on real physical systems. On the other hand, the context is well suited
for letting more the constraint equations more general, embracing linear and nonlinear holonomic
restrictions.
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