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Abstract

We define fixed point results in Random cone metric space (RCMS) over Banach algebra. Also we give
related corollaries and illustrate the examples.
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1 Introduction

A cone metric spaces over Banach algebras was first developed by Liu and Xu[1]. Itoh[2] used random differential
equations to demonstrate random fixed point theorems in Banach spaces. In Cone random metric space, fixed
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point outcomes were constructed by Smriti Mehta et al.[3]. By utilising complete cone metric spaces, Seong-
Hoon Cho[4] established the idea of C-class functions and cyclic (α, β) -admissible mappings in Banach algebras.
Also some important paper for references here [5, 6, 7, 8, 9, 10, 11, 12].

In this paper, we use reference article [4, 13] for Random cone metric spaces (RCMS) instead of cone metric
spaces. In this work unique fixed point is referred to as “UFP” and fixed point is referred to as “FP”.

2 Preliminaries

Definition 2.1. Let (M,dB) be a RCMS and Φ set of all continuous family of mapping ζ : int (P)∪ int (P)→
int (P) ∪ {0} it satisfies ζ−1 (0) = 0 and ζ (t)� t for all t ∈ int(P).

Definition 2.2. Let (M,dB) be a RCMS and {xn (ω)} ⊂ Ω ×M be a sequence and x (ω) ∈ Ω ×M, it satisfy
the following:

1. limn→∞ xn(ω) = x (ω)⇔ ∀ r ∈ int(P), there is N :∀n>N, r − dB (xn (ω) , x (ω)) ∈ int (P) .

2. {xn (ω)} is a Cauchy sequence ⇔ ∀ r ∈ int (P) , there is N, ∀n,m>N, r − dB (xn (ω) , xm (ω)) ∈ int (P) .

Note that if limn→∞ dB (xn (ω) , x (ω)) = 0, then limn→∞ xn(ω) = x(ω). Converse is also true when P normal
cone is. If P is normal then xn(ω) is a Cauchy in Ω×M ⇔ limn→∞ dB (xn (ω) , x (ω)) = 0.

Definition 2.3. Suppose Ψ is set of all continuous family of function ξ : P → P such that ξ is strictly increasing,
x < y ⇔ ξ (x) < ξ(y) and if ξ−1 ({0}) = 0, if ξ (x) ≤ ξ(y) =⇒ x ≤ y.

Definition 2.4. Suppose C is set of all continuous family of function f : P × P → P such that ∀s, t ∈ P,
f (s, t) ≤ s , and if f (s, t) = t =⇒ Either s = 0 or t = 0. Then f ∈ C is a C-class function.

Definition 2.5. Define α, β : Ω ×M → P, where M is a non-empty set. T : Ω ×M → M is cyclic (α, β)−
admissible mapping if

1. α (x (ω))− e ∈ P, x ∈M =⇒ β (Tx (ω))− e ∈ P.

2. β (x (ω))− e ∈ P, x ∈M =⇒ β (Tx (ω))− e ∈ P.

3 Main Result

Theorem 3.1. Consider a complete RCMS (M,dB) and let T : Ω×M →M be such that

ξ (dB (Tx (ω) , T y (ω))) ≤ f(ξ (dB (x (ω) , y (ω))) , ζ(dB(x (ω) , y(ω)))) (3.1)

for all x (ω) , y (ω) ∈ Ω ×M with α (x (ω))β (x (ω)) − e ∈ P, where f ∈ C, ξ ∈ Ψ, ζ ∈ Φ. Additionally, the
following are fulfilled

(i) T is cyclic (α, β)−admissible.

(ii) ∃x0 (ω) ∈ Ω×M such that α (x0 (ω))− e ∈ P and β (x0 (ω))− e ∈ P.

(iii) Either T is continuous or if xn (ω) ⊂ Ω×M is a sequence with β (xn (ω))− e ∈ P ∀ n = 1, 2, 3, . . . and
x(ω) is a cluster point of {xn(ω)}, then β (x (ω))− e ∈ P.

After that, T has FP. As well, if

α (x (ω))− e ∈ Pandβ (x (ω))− e ∈ P (3.2)

Likewise, T has a UFP.
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Proof. Consider {xn(ω)} in Ω ×M by xn (ω) = Txn−1 (ω) = Tnx0(ω) for all n = 1, 2, 3, . . . , if it exist N such
that xN (ω) = xN+1(ω) is a FP of T . As a result, we presume xn (ω) 6= xn+1 (ω)∀n = 1, 2, 3, . . .
For any x0 (ω) ∈ Ω × M, then by (α, β)−admissible mapping we get α (x0 (ω)) − e ∈ P, it implies that
β (Tx0 (ω)) − e = β (x1 (ω)) − e ∈ P. Again if x1 (ω) ∈ Ω ×M , then by (α, β)−admissible mapping we get
α (x2 (ω)) − e = α (Tx1 (ω)) − e ∈ P, it implies that β (Tx2 (ω)) − e = β (x3 (ω)) − e ∈ P, inductively we have
∀n = 0, 1, 2, . . .

α (x2n (ω))− e ∈ P and β (x2n+1 (ω))− e ∈ P (3.3)

Similarly, β (x0 (ω))− e ∈ P, α (x1 (ω))− e ∈ P. On continuing this process we have

β (x2n (ω))− e ∈ P and α (x2n+1 (ω))− e ∈ P (3.4)

Hence
α (xn (ω))− e ∈ P and β (xn (ω))− e ∈ P (3.5)

Since, α (xn+1 (ω))− e ∈ P and β (xn (ω))− e ∈ P

α (xn+1 (ω))β (xn (ω))− α (xn+1 (ω))− β (xn (ω)) + e

= (α (xn+1 (ω))− e)(β (xn (ω))− e) (3.6)

Also,
α (xn+1 (ω)) + β (xn (ω))− 2e = (α (xn+1 (ω))− e)(β (xn (ω))− e) (3.7)

Hence,
α (xn+1 (ω))β (xn (ω))− e ∈ P ∀n = 1, 2, 3 . . . (3.8)

From equation (3.1), we have

ξ (dB (xn (ω) , xn+1 (ω))) = ξ(dB(Txn−1 (ω) , Txn(ω)))

≤ f(ξ (dB (xn−1 (ω) , xn (ω))) , ζ(dB(xn−1 (ω) , xn(ω))))

≤ ξ (dB (xn−1 (ω) , xn (ω)))∀n = 1, 2, 3, . . . (3.9)

Because ξ is increasing,
dB (xn (ω) , xn+1 (ω)) ≤ dB (xn−1 (ω) , xn (ω)) (3.10)

Hence {dB (xn (ω) , xn+1 (ω))} is decreasing and P is regular ∃s ∈ P,

lim
n→∞

dB (xn−1 (ω) , xn (ω)) = s (3.11)

Then
s ∈ int (P) ∪ {0} (3.12)

Assume s ∈ int (P) . Take limit n→∞ in (3.9) and using continuity of f, ξ and ζ

f (ξ (s) , ζ (s)) = ξ(s) (3.13)

Either if, ξ (s) = 0 or ζ (s) = 0. Hence s = 0, which is a contradiction to our assumption

s /∈ int(P) (3.14)

lim
n→∞

dB (xn (ω) , xn−1 (ω)) = 0 (3.15)

We demonstrate {xn(ω)} is a Cauchy. Suppose assume {xn(ω)} is not Cauchy.

By lemma 6 (SH Cho 2018) there exist r ∈ int (P) , a subsequences {xm(k)(ω)} and {xn(k)(ω)} of {xn(ω)}.
Furthermorem(k) is the smallest index number ∀k ∈ N, m (k) > n (k) > k from (3.5) we have α

(
xm(k)

)
β
(
xn(k)

)
−

e ∈ P with x (ω) = xm(k)(ω) and y (ω) = xn(k) (ω) , we have

ξ(dB(Txm(k) (ω) , Txn(k)(ω))) ≤ f(ξ(dB(xm(k) (ω) , xn(k)(ω))), ζ(dB(xm(k) (ω) , xn(k) (ω)))) (3.16)
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Using continuity of ζ, ξ, f and k →∞ we have

ξ (ζ (r))− f (ξ (ζ (r)) , ζ (ζ (r))) ∈ P ∩ (−P)

f (ξ (ζ (r)) , ζ (ζ (r))) = ξ (ζ (r)) (3.17)

Either ζ (ζ (r)) = 0 or ξ (ζ (r)) = 0. Thus ζ (r) = 0 and r = 0, it is not true for our assumption. Therefore
{xn(ω)} is Cauchy as well as from the completeness

x (ω) = lim
n→∞

xn (ω)∈Ω×M (3.18)

T is continuous, limn→∞ xn(ω) = Tx(ω) and x (ω) = Tx (ω) . Assume that (iii) hold,

βx(ω)− e ∈ P (3.19)

Because T is (α, β)−admissible, α (xn (ω))− e ∈ P
Using (3.5), it becomes, α (xn (ω))β (x (ω))− e ∈ P ∀ n = 1, 2, 3, . . .
From (3.1),

ξ(dB(Txn+1 (ω) , Tx(ω))) ≤ f(ξ(dB(xn (ω) , Tx(ω))), ζ(dB(xn (ω) , x (ω)))) (3.20)

Let n→∞ in (3.20), using continuity of f, ξ and ζ, then ξ(dB (x (ω) , Tx (ω)) ∈ P ∩ (−P).

Thus ξ (dB (x (ω) , Tx (ω))) = 0

Hence x (ω) = Tx (ω).

The Uniqueness Part: Suppose we have some other fixed point ρ(ω) then from (3.2),
α(x (ω))− e ∈ P and β (ρ (ω))− e ∈ P. Hence α(x (ω))β (ρ (ω))− e ∈ P.
From (3.1)

xi(dB(x (ω) , ρ(ω))) = ξ(dB(Tx, Tρ))

≤ f(ξ(dB(x (ω) , ρ(ω))), ζ(dB(x (ω) , ρ(ω))))

≤ ξ(dB(x (ω) , ρ(ω))).

Hence
f(ξ(dB(x (ω) , ρ(ω))), ζ(dB(x (ω) , ρ(ω)))) = ξ(dB(x (ω) , ρ(ω)))

Either ξ(dB(x (ω) , ρ(ω))) = 0 or ζ(dB(x (ω) , ρ(ω))) = 0.
⇒ dB (x (ω) , ñ (ω)) = 0 and x (ω) = ρ (ω).

Example 3.2. Let A = R2, P = {(℘1 (ω) , ℘2 (ω)) ∈ A : ℘1 (ω) , ℘2 (ω) ≥ 0}, ||k (ω) || = |℘1 (ω) + ℘2 (ω)| ∀ k =
(℘1 (ω) , ℘2 (ω)) ∈ A. Define multiplication kג of k = (℘1 (ω) , ℘2 (ω)) and ג = (`1 (ω) , `2 (ω)),

kג = (k1 (ω) 1ג (ω)− k2 (ω) 2ג (ω)− k2 (ω) ((ω)1ג

A unit e = (0, 1) , P is regular cone,

int (P) = {(℘1 (ω) , ℘2 (ω)) ∈ A : ℘1 (ω) , ℘2 (ω) > 0} .

Let M = R2 and dB : Ω×M → P defined as d (k, (ג = max{|℘1 (ω)− w2 (ω)| , |℘2 (ω)−w1 (ω) |}. Then (M,dB)
is a complete RCMS and dB (k (ω) , ג (ω)) ∈ int (P) with k (ω) 6= (ω)ג . Define T : Ω×M → P by

Tk =

{
1
10
k, k = (℘1 (ω) , ℘2 (ω)) ∈ P , ||k|| < 1

e(k1(ω),k2(ω)), otherwise

Let ζ (t) = 1
3
t and ξ (t) = t ∀ t = (t1, t2) ∈ P. Define α, β : M → P by

α (k) = β (k) =

{
e, k = (℘1, ℘2) ∈ P and ||k|| < 1

0, otherwise
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Let f (s, t) = s− ζ (s) ∀ s, t ∈ P, we have

f(ξ(dB(k (ω) , ,(((ω)ג ζ(dB(k (ω) , −((((ω)ג ξ(dB(Tk (ω) , T (((ω)ג

=
17

30
max{|℘1 (ω)− `2 (ω)| , |℘2 (ω)− `1 (ω)|}

Hence ξ(dB(Tk (ω) , T (((ω)ג ≤ f(ξ(dB(k (ω) , ,(((ω)ג ζ(dB(k (ω) , ((((ω)ג
∀ k (ω) , ג (ω) ∈ Ω×M With α (k (ω))β (k (ω))− e ∈ P.

Let kn (ω) =
∣∣∣ 1
n+6

∣∣∣ +
∣∣∣ 3
n+6

∣∣∣ ∀ n = 1, 2, 3 . . . Then kn ∈ P and ||xn|| < 1. Hence β (kn) − e = (0, 0) ∈ P.

limn→∞ kn = (0, 0) and (0, 0) is a cluster point of {xn} . β (kn)− e = (0, 0) ∈ P.
Hence (0,0) is a FP of T .

Corollary 3.3. Let M be complete RCMS, define T : Ω×M →M such that

ξ(dB(α (k (ω))β(k(ω)) Tk(ω), T (((ω)ג ≤ f(ξ (dB(k(ω), Tk(ω))), ζ(dB(ג(ω), T ((((ω)ג (3.21)

∀ k (ω) , ג (ω) ∈ Ω×M, ξ ∈ Ψ and ζ ∈ Φ. If it holds (i),(ii) and (iii) of theorem (3.1) and equation (3.2). Then
T has a UFP.

Corollary 3.4. Let M be complete RCMS, define T : Ω×M →M such that

ξ(dB(α (k (ω))β( k(ω)) Tk(ω), T (((ω)ג ≤ f(ξ(dB(k(ω), Tk(ω))), ζ(dB(ג(ω), Tk(ω)))) (3.22)

∀ k (ω) , ג (ω) ∈ Ω×M, ξ ∈ Ψ and ζ ∈ Φ. If it holds (i),(ii) and (iii) of theorem 3.1 and equation (3.2). Then
T has a UFP.

4 Applications

Theorem 4.1. Consider a complete RCMS (M,dB) and let T : Ω×M →M be (α, β)−admissible mapping

ξ (dB (Tk (ω) , T ג (ω))) ≤ ξ(dB(k(ω), y(ω)))− ζ(dB(k(ω), y(ω))) (4.1)

for all k (ω) , ג (ω) ∈ Ω×M with α (k (ω))β (k (ω))− e ∈ P,where ξ ∈ Ψ and ζ ∈ Φ such that

ζ (ξ (t)) ≤ ζ(t) ∀ t > 0 (4.2)

k0 (ω) ∈ Ω ×M such that α (k0 (ω)) − e ∈ P and β (k0 (ω)) − e ∈ P. Suppose that α (k0 (ω)) − e ∈ P and
β (k0 (ω))− e ∈ P, where k0 (ω) ∈ Ω×M such that
If either

(i) T is continuous or

(ii) if {kn (ω)} ⊂ Ω× M is a sequence such that limn→∞ dB(kn(ω),k(ω)) = 0 and β (kn (ω))−e ∈ P ∀ n =
1, 2, 3, . . . then β (k (ω))− e ∈ P.

Then T has a FP in M . If α (k (ω))β ג) (ω))− e ∈ P for all fixed points k(ω), (ω)ג of T , then T has UFP.

Proof. Let f (s, t) = s− ζ (s) , ∀ s, t ∈ P where k < 3
5

. Then f is the C− class function.
For any k (ω) , ג (ω) ∈ Ω×M with α (k (ω))β (k (ω))− e ∈ P

0 ≤ ξ(dB(k(ω), −(((ω)ג ξ(dB(k(ω), −(((ω)ג ξ(dB(Tk(ω), T (((ω)ג

≤ ξ(dB(k(ω), −(((ω)ג ζ( ξ(dB(k(ω), −((((ω)ג ξ(dB(Tk(ω), T (((ω)ג

= f(ξ(dB(k(ω), ,((ω)ג ζ(dB(k(ω), −(((ω)ג ξ(dB(Tk(ω), T .(((ω)ג

This result is same as from (3.1) and also it satisfies all the conditions of theorem (3.1).
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Corollary 4.2. Consider a complete RCMS (M,dB) and let T : Ω×M →M be (α, β)−admissible mapping

dB (Tk (ω) , T ג (ω)) ≤ dB(k(ω), −((ω)ג ζ(dB(k(ω), (((ω)ג (4.3)

for all k (ω) , ג (ω) ∈ Ω×M with α (k (ω))β (k (ω))− e ∈ P, where ζ∈ Φ.
Suppose that α (k0 (ω))− e ∈ P $ and β (k0 (ω))− e ∈ P, where k0 (ω) ∈ Ω×M.
Assume that the condition of (iii) in theorem (3.1) and α(k (ω))β (k (ω))− e ∈ P for all fixed points of T. Then
it has a UFP of T.
Take α (k (ω)) = β (k (ω)) = e in theorem (4.1), it has a following results.

Corollary 4.3. Consider a complete RCMS (M,dB) and define T : Ω×M →M such that

ξ(dB(Tk(ω), T (((ω)ג ≤ ξ(dB(k(ω), −(((ω)ג ζ(dB(k(ω), (((ω)ג (4.4)

∀ k (ω) , ג (ω) ∈ Ω×M, ξ ∈ Ψ and ζ ∈ Φ with ζ (ξ (t)) ≤ ζ(t) for all t > 0.
Then T has UFP in Ω×M .

Corollary 4.4. Consider a complete RCMS (M,dB) and define T : Ω×M →M such that

dB(Tk (ω) , T ג (ω)) ≤ dB(k(ω), −((ω)ג ζ(dB(k(ω), (((ω)ג (4.5)

∀ k (ω) , ג (ω) ∈ Ω×M, where ζ ∈ Φ. Then T has UFP in Ω×M .

5 Conclusions

In this article, we discussed fixed point(FP) results in complete random cone metric space via Banach algebra.
Also, we gave an important example and corollaries related to our main result.
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