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ABSTRACT 
 
This study is aimed at identifying the problem associated with Ordinary Least Squares (OLS) in 
relation to the violation of assumptions of normality and constant variance. Mainly, the possible 
problem encountered when these assumptions are violated is the introduction of biases in the 
parameters of the fitted model thereby threatening the model’s efficiency. In this study, the 
Generalized Linear Model (GLM) is applied to overcome such problems and to ensure the 
efficiency of the model parameters. The major reasons being that the GLM does not require 
transformation and assumptions of classical regression. Instead, it employs a probabilistic 
approach in transforming the expected value of the dependent variable. The data used were 
obtained from the Central Bank of Nigeria Statistical Bulletin from 1981 to 2016, with each series 
consisting of 36 observations. The Gross Domestic Product (N’ Billion) was considered as the 
dependent variable (Y�) while Money Supply(X��), and Credit to Private Sector(X��)were considered 
as the independent variables (N' Billion). From the analysis, the results of the fitted regression 
model showed no significant relationship between the variables. The diagnosis on the residual 
series (using skewness, kurtosis, Jacque-Bera test and Breusch-Pagan-Godfrey test) provided 
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sufficient evidence that both validity and efficiency of the model parameters are threatened. 
However, the results of the GLM procedure provided the much needed significance, validity, and 
efficiency of the model parameters. Further findings from GLM procedure revealed that the 
standard errors of the parameters of OLS were biased having been far larger in values than those 
of the GLM. Hence, for studies involving the regression of a discrete-time stochastic series such as 
GDP on Money Supply and Credit to Private Sector, the GLM is analytically tractable than the OLS. 

 
Keywords: Homoscedasticity; linear model; normal distribution; ordinary least squares; poisson 

regression.  
 

1. INTRODUCTION 
 
Ordinary Least Squares (OLS) is an estimation 
method in classical regression analysis which 
seeks to use the criterion that the solution of a 
simple linear model must give the smallest 
possible sum of squared deviations of the 
observed dependent variable, say ��  from the 
estimates of their true means provided by the 
solution (see [1,2]). Intriguingly, the OLS method 
has become the most commonly used methods 
in regression analysis due to the attractive 
properties associated with its estimators based 
on certain assumptions about the way the data 
were generated. The ordinary estimator can 
easily be calculated since they are expressed 
mainly in terms of observable quantities; this is 
one property that popularized the application of 
ordinary least squares method. Other properties 
include: 
 

a. In any given sample, each estimator will 
produce only a single point value of the 
relevant population parameter (that is, 
OLS estimators are point estimators).  

b. Once the least squares estimates are 
obtained from the sample data, the 
sample regression line is obtained and 
such regression line passes through the 
sample means of the dependent and 
independent variables [2]. 

 
Also, the basic underlying assumptions of least 
squares are as follows:  
 

1. That the errors of the regression model 
must be normally distributed with zero 
mean and constant variance 

2. That the variance of the errors must be 
homogeneous  

3. That the error term must be 
uncorrelated. 

 
Despite the huge success and popularity of 
ordinary least squares method, with the violation 
of these basic assumptions, the least squares 

estimators become inefficient, standard errors of 
the parameters would not be correct and the t-
test statistic would be invalid [3,1,2,4]. 
 
However, one way of handling the problem of the 
OLS, is to undertake the transformations of 
dependent or independent or both dependent 
and independent variables. According to [1], the 
basic reason for transformations of the 
dependent variables is to remedy for non-
normality and heterogeneity in the variables and 
for simplification of the relationship between the 
dependent and the independent variables. 
Meanwhile, [5] pointed out that the use of 
transformations suggested by data still leads to 
problem of interpretation. Using transformed 
variables for regression analysis equally failed to 
provide inference on the targeted population. 
 
To avoid the problem of OLS along with that of 
transformations, this study seeks to adopt a 
Generalized Linear Model (GLM) approach which 
generalizes linear regression by allowing the 
linear model to be related to the response 
variable through a link function and by allowing 
the magnitude of the variance of each 
measurement to be a function of its predicted 
value. The difference between the GLM and OLS 
is: by particular model, the response distribution 
of one of the exponential family of distributions 
(which includes Normal, Poisson, Gamma, 
Binomial, Inverse Gaussian) and the link function 
(Identity, Logarithmic, Square root, Logistic, 
Power) which relates the mean of the response 
to a scale on which the model effects are 
combined additively [6]. 
 
The motivation for this study is based on the fact 
that previous studies involving Money Supply, 
Credit to Private Sector and economic growth in 
Nigeria for instance, [7,8,9,10,11,12,13,14] and 
[15] have applied OLS method but failed to 
account for the possible violation of assumptions 
of normality and homoscedasticity. Particularly, a 
reserved attention is given to the work of [16] 
who studied and modeled the autocorrelated 
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errors of the regression of GDP on Money 
Supply and Credit to Private Sector using 
generalized least squares method on a yearly 
data set ranging from 1981 to 2014. Their 
findings revealed that generalized least squares 
method outperformed the ordinary least squares 
method and in addition captured the unexplained 
variance embedded in the error term by AR(2) 
process. They recommended a possible check 
on a possible violation of assumption of 
homoscedasticity. Hence, in this study, we seek 
to improve on the work of [16] by updating the 
data set from 1981 to 2016 and adopting the 
generalized linear model to overcome the 
problem associated with the violation of 
assumption of normality and homoscedasticity. 
The reason for adopting the generalized linear 
model is to complement the generalized least 
squares method in overcoming the weaknesses 
of ordinary least squares method given that the 
generalized linear model provides the needed 
solution to the violation of assumptions of 
normality and homoscedasticity while 
generalized least squares method accounts for 
the presence of autocorrelated errors.   
 

2. MATERIALS AND METHODS 
 

2.1 Regression Model 
 
According to [1], the standard regression model 
is as follows: 
 

��  =  ��  +  �����  +  ����� + ⋯  +  �� ���  +
 ��,                                                              (1) 

 
where 
 
�� = dependent variable 
�� = regression parameters, i = 1,…, k 
��� = independent variables, i = 1,…, k 
��  = error term assumed to be i.i.d. N(0, ��

�) 
 
(See also [3,17,18,19]). Thus, the dependent 
variable for a time series regression model with 
independent variables is a linear combination of 
independent variables measured in the same 
time frame as the dependent variable. Estimates 
of the parameters of the model in (1) can be 
obtained by Least Squares Estimation Method.  
 
2.2 Method of Ordinary Least Squares 

for Simple Regression  
 
The least squares estimation procedure uses the 
criterion that the solution must give the smallest 

possible sum of squared deviations of the 
observed ��  from the estimates of their true 

means provided by the solution. Let ��� and ��� be 
numerical estimates of the parameters �� and ��, 
respectively, and let:  
 

���  =   ���   +   �����,                                      (2) 
 
be the estimated mean of Y for each ��,  � =
1,… , k.  
 

The least squares principle chooses ���  and ��� 
that minimize the sum of squares of the 
residuals, SSE: 
 

SSE  =  ∑ ��� − ����
��

�� �   =   ∑ ��
��

�� � ,             (3) 

 
where �� =  (�� − ���) is the observed residual for 
the ��ℎ observation. 
 
Also, we can express �� in terms of ��, ��, ��, and 
��.  Hence, we have: 
 

�� =  �� − �� − ����,                                    (4) 
 
and (4) becomes: 
 

SSE  =  ∑ (�� − �� − ����)��
� � � .                  (5) 

 
The partial derivative of SSE with respect to the 
regression constant, ��, that is:  
 

����

���
  =  

�

���
�∑ (�� − �� − ����)��

� � � �,           (6) 

 
with some subsequent rearrangement, the 
estimate of �� is obtained as: 
 

���   =  �
∑ ��

�
�� �

�
�− �� �

∑ ��
�
�� �

�
�.                       (7) 

 
The partial derivative of SSE with respect to the 
regression coefficient, ��, that is:  
 

����

���
  =  

�

���
�∑ (�� − �� − ����)��

� � � � ,           (8) 

 
rearranging  (8), we obtain the estimate of  ��  
as: 
 

���    =   
∑ ��� ��

∑ � �∑ � �
�
�� �

�
�� �

�
�
�� �

∑ ��
��

�� � �
�∑ � �

�
�� � �

�

�

  ,                       (9) 

 
See [20,1,2,17] for more details on Least 
Squares Estimation Method. 
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2.3 Diagnostic Test for Heteroscedaticity 
 

Breusch-Pagan-Godfrey (BPG) test is used to 
test for the presence of heteroscedasticity in the 
residuals of a fitted regression model. The test 
statistic is given as: 

 

BPG = 
�

�
  (ESS =∑ (� −̂ �)̅�) ≈ ��

� ,            (10) 

 

and under the null,  ESS is the Explained Sum of 
Squares, �̂ is the predicted value of � (residual 
term) and � ̅  is the mean of � (residual term)in 
the regression: 

 

��
�  =   ��   +  ����� + ⋯ +   �� ���,             (11) 

 

where ��
�  is a function of the non-stochastic 

variables � ’s. If ��  =   �� = ⋯ =  �� = 0 , ��
� =

 ��,  which is a constant. Therefore, to test 
whether ��

�  is homoscedastic, one can test the 
hypothesis that ��  =   �� = ⋯ =  �� = 0 . If the 
calculated value of the BPG exceeds the critical  
��  value at 5% level of significance, the 
hypothesis of homoscedasticity can be rejected; 
otherwise the hypothesis is not rejected (see [21, 
22,23,2]). 

 

2.4 Generalized Linear Model 
 

Generalized linear models as formulated by [24] 
provide a generalization of ordinary least squares 
expression that relates the random term (which is 

a linear predictor ��
′�) via a link function denoted 

by �(��) . Supposing ��,… ,��  denote � 

independent observations on a response. Note 
that��, � =  1,2,..,� is considered as a realization 
of a random variable ��. For the general linear 
model, it is assume to follow a normal distribution 
with mean  ��  and variance ��,  that is  
�� ~ �(��,��).  It is also assumed that the 
expected value ��  is a linear function of � 

predictors that take the values ��
′  = (���,… ,���) 

for the �-�ℎ case, so that �� =  ��
′�, where � is a 

vector of unknown parameters. 

 

In relation to the link function, a one-to-one 
continuous differentiable transformation  �(��) is 
introduced. It is noteworthy that in generalized 
linear model, it is the expected value ��that is 
being transformed not the response ��.  

Assuming that the transformed mean follows a 
linear model, then: 
 

E(��) = ��  =  ���(��
′�),                            (12) 

 

�(��)= ��
′�.                                              (13) 

 

Some common link functions identified are: 
 

The Identity Link: 

 

�(��) = ��
′�,                                             (14) 

 

which is used when the error follows a normal 
distribution. It is commonly used in a traditional 
regression. 
 

The Logit Link: 

 

�(��)= log �
��

� ���
� =  ��

′�.                      (15) 

 

Equivalently, 

 

�� =  
�� �

′ �

���
� �

′ �
.   

 

This is used when the error follows a binomial 
distribution. It is commonly applicable in Logistic 
regression. 

 

The Log Link: 

 

�(��)= log(��) = ��
′�.                              (16) 

 

Equivalently, 

 

�� =  ���
′� .  

 

This is used when the error follows a Poisson 
distribution. It is commonly applicable in Poisson 
regression. 

 

3. RESULTS AND DISCUSSION  
 

To ascertain the nature of the relationship 
between the ��  and each of  ���  and ��� ,  we 
regress ��  on ���  and ��� . The estimated model 
is shown in (17): 
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��  = 632.8187       +    2.5834���   +    2.2884���                                                                    (17) 
 

s.e        (1077.045)           (1.6246)             (1.6403) 
t-value   (0.5876)              (1.5901)            (1.3951) 
p-value  (0.5608)           (0.1213)               (0.1723) 
[Excerpts from Table 1]. 
 

Table 1. Output of Regression Model 
 

Dependent Variable: ��   
Method: Least Squares   
Date: 03/14/18   Time: 14:39   
Sample: 1981 2016   
Included observations: 36   
Variable Coefficient Std. Error t-Statistic Prob.   
C 632.8187 1077.045 0.587551 0.5608 
��� 2.583365 1.624620 1.590135 0.1213 
���  2.288438 1.640336 1.395104 0.1723 
R-squared 0.976454     Mean dependent var 20235.62 
Adjusted R-squared 0.975027     S.D. dependent var 31208.35 
S.E. of regression 4931.800     Akaike info criterion 19.92445 
Sum squared resid 8.03E+08     Schwarz criterion 20.05641 
Log likelihood -355.6401     Hannan-Quinn criter. 19.97051 
F-statistic 684.2591     Durbin-Watson stat 1.166935 
Prob(F-statistic) 0.000000    

 
From (17) it is observed that the constant term 
(which is the expected value of  ��  when ��� and 
���  are zero) is not significant given that its 
corresponding p-value is greater than 5% level of 
significance. Similarly, there appears to be no 
significant relationship between the dependent 
variable, ��   and the independent variables, ��� 
and ��� given that the p-values corresponding to 
���  and ���  are greater than 5% level of 
significance. Having failed to establish a 
significant relationship between the variables and 
for the purpose of argument, we assessed the 
residuals of the model in order to ascertain the 
nature of the relationship and improve upon the 
model. The graph of the residual series in Fig. 1 
shows that the relationship is nonlinear. The 
implication is that the fitted linear regression 
model is not suitable. 
 
Another diagnostic check on the residuals of the 
fitted regression model is the normality test. 
From Fig. 2, it could be observed that both tails 
of the Q-Q plot deviates from the normal line 
indicating that the distribution is non-normal. 
Also, the distribution is skewed to the left as 

indicated by the coefficient of skewness, -2.8654 
against zero which is meant to be the value 
accommodated by a normal distribution. 
Moreover, the coefficient of kurtosis is 12.8467 
greater than 3, the value occupied by a normal 
distribution. The value of the Jarque-Bera test 
statistic is 194.6995 with corresponding p-value 
= 0.0000 which is less than 5% level of 
significance, implying the rejection of the null 
hypothesis of normal distribution. Hence we can 
further affirm that the fitted regression model is 
not a good fit given that it was fitted under the 
assumption of normal distribution. 
 
The third diagnostic check on the fitted 
regression model is the heteroscedasticity test. 
From Table 2, the hypothesis of 
homoscedasticity is rejected given the Breusch-
Pagan-Godfrey test value of 13.2359 whose 
corresponding p-value of 0.0013 is less than 5%  
level of significance, that is, (p = 0.0000 < 0.05) 
meaning the assumption of constant variance is 
violated. The implication is that, the fitted model 
that was built under the assumption of constant 
variance is not a good fit. 

 

Table 2. Heteroskedasticity Test: Breusch-Pagan-Godfrey 
 

F-statistic 1.316052     Prob. F(2,33) 0.2819 
Obs*R-squared 2.659280     Prob. Chi-Square(2) 0.2646 
Scaled explained SS 13.23589     Prob. Chi-Square(2) 0.0013 
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Fig. 1. Graph of Residual Series of the Regression Model 
 

 
 

Fig. 2. Q-Q Plot of the Residual Series 
 
So far, we have established that the relationship 
between GDP (�� ) and each of Money Supply 
(���) and Credit to Private Sector (���) using OLS 
is not the best fit. However, to overcome the 
weaknesses of the OLS as related to this study, 
we employ the method of GLM which generalizes 
the ordinary linear regression to allow for 
response variables with error distribution models 
other than a normal distribution. Furthermore, a 
probabilistic approach which involves the log link 
function corresponding to a Poisson distribution 
is considered following the fact that GLM uses 

both the exponential and logarithmic functions at 
the same time to achieve linearity in the 
parameters especially where nonlinear 
relationship tends to exist. Hence, the fitted GLM 
is presented in (18): 
 

�� =   �(�.����      �     �.��������    �.������� )           (18) 
 
s.e         (0.0027)     (2.22 × 10��)  (2.21 × 10��) 
t-value     (3138.333)     (156.0586)     (- 84.0973) 
p-value     (0.0000)         (0.0000)            (0.0000) 
[Excerpts from Table 3]. 
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Table 3. Output of generalized linear model 
 

Dependent Variable: ��   

Method: Generalized Linear Model (Quadratic Hill Climbing) 

Date: 03/14/18   Time: 14:57   

Sample: 1981 2016   

Included observations: 36   

Family: Poisson (quasi-likelihood)  

Link: Log    

Dispersion fixed at 1   

Coefficient covariance computed using observed Hessian 

Convergence achieved after 6 iterations  

Variable Coefficient Std. Error z-Statistic Prob.   

C 8.462138 0.002696 3138.333 0.0000 

��� 0.000346 2.22E-06 156.0586 0.0000 

��� -0.000186 2.21E-06 -84.09732 0.0000 

Mean dependent var 20235.62     S.D. dependent var 31208.35 

Sum squared resid 7.97E+09     Quasi-log likelihood 7081739. 

Deviance 205166.6     Deviance statistic 6217.171 

Restr. Deviance 1379516.     Quasi-LR statistic 1174349. 

Prob(Quasi-LR stat) 0.000000     Pearson SSR 173460.2 

Pearson statistic 5256.370     Dispersion 1.000000 
 
From the model in (18), we observed that the 
intercept is significant given that the p-value is 
less than 5% level of significance (p = 0.0000< 
0.05), that is, when  ��� and ���  are zero, then 
the value of ��   will remain at ��.���� =
4731.94 (� ′�������) . Also, the relationship 
between ��  and ���  is found to be significant 
since the corresponding p-value is less than 5% 
level of significance (p = 0.0000 < 0.05), that is, 
for any unit increase in ��� , ��  increases by 
��.���� = 1.0003 (� ′�������) . Similarly, the 
relationship between  ��  and ���  is found to be 
significant in that the corresponding � -value is 
less than 5% level of significance (p = 0.0000 < 
0.05), that is, for a unit increase in ��� ,  �� 
increases by ���.���� = 0.9998 (� ′�������). The 
diagnostic checks on the fitted GLM revealed 
that the distribution is marginally skewed to the 
right as indicated by the coefficient of skewness, 
0.6325 against zero which is meant to be the 
value accommodated by a normal distribution. 
Moreover, the coefficient of kurtosis is 3.3906 
approximately equal to 3, the value occupied by 
a normal distribution. The value of the Jarque-
Bera test statistic is 2.6292 with corresponding �-
value = 0.2686 which is greater than 5% level of 
significance, implying no rejection of the null 
hypothesis of normal distribution. Also, evidence 

from Q-statistic for the squared residuals of the 
fitted GLM showed that assumption of 
homoscedasticity is not violated given that the Q-
statistic value for the first 16 lags is 18.340 with 
its corresponding �-value, 0.304 which is greater 
than 5% level of significance. Hence, we can 
affirm that the fitted GLM is a good fitted model, 
assuming that normality and homoscedasticity 
are not violated. However, our main interest is in 
comparing the ordinary least squares with the 
generalized linear model, regarding the efficiency 
of the model parameters when the violation of 
assumptions of normality and homoscedasticity 
(constant variance) are taken into consideration. 
As it is evident in Table 4, the intercept of the 
GLM appears to be more efficient than that of the 
OLS, given that the standard error of the 
intercept of GLM is far smaller than that of the 
OLS model. Also, the �-value pertaining to the 
intercept of GLM is significant, that is,                          
(p = 0.0000 < 0.05 ) while the p-value of the            
OLS is not significant, that is, (p = 0.5608> 0.05). 
Similarly, the coefficient, ��   in GLM appeared 
more efficient with a standard error smaller               
than that of the OLS. The coefficient, ��   in               
GLM equally appeared more efficient                           
with a smaller standard error than that of the 
OLS.
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Table 4. Ordinary least square vs generalized linear model 
 

Model Ordinary Least Square (OLS) Generalized Linear Model (GLM) 
 ��  �� �� �� �� �� 

Parameter 632.8187 2.5834 2.2884 8.4621 0.0003 -0.0002 
Standard Error (s.e) 1077.045 1.6246 1.6403 0.0027 2.22 × 10�� 2.21 ×  10�� 
t-value 0.5876 1.5901 1.3951 3138.333 156.0586 - 84.0973 
p-value 0.5608 0.1213 0.1723 0.0000 0.0000 0.0000 

 
4. CONCLUSION 
 

This study in particular fitted a regression model 
of GDP (�� ) on the Money Supply (��� )  and 
Credit to Private Sector (���) aiming at identifying 
problems of OLS in relation to the violation of the 
assumptions of normality and constant variance. 
The provision of the needed remedy to these 
problems is achieved through the GLM 
procedure by ensuring efficiency in the model 
parameters. From our findings, the fitted 
regression model showed no significant 
relationship between the dependent and 
independent variables with the parameters not 
adequate at 5% level of significance. Moreover, 
diagnostic checks on the residual series of the 
fitted regression model; Q-Q plot, skewness, 
kurtosis and Jarque-Bera test all revealed that 
the assumption of normality is violated, as well 
as the Breusch-Pagan-Godfrey test which 
showed that the assumption of homoscedasticity 
is also violated. Possibly, this could be the 
reason for the inadequacy of the parameters. 
However, with the validity of the fitted regression 
model threatened, as indicated by the diagnostic 
checks, the results of the GLM procedure 
showed that all the parameters are adequate at 
5% level of significance. Also, the diagnostic 
checks based on skewness, kurtosis, Jarque-
Bera test, and Q-statistic revealed that the 
assumptions of normality and homoscedasticity 
are not violated. The implication is that, when the 
OLS is applied and the assumptions of normality 
and homoscedasticity are violated, then biases 
are being introduced into the model parameters. 
Therefore, the GLM provides the needed solution 
by generalizing the OLS method. Hence, for 
studies involving the regression of discrete-time 
stochastic series, the GLM is still more tractable 
than the OLS regression. For a further research 
consideration, the effect of interaction between 
money supply and credit to the private sector on 
GDP can be evaluated. 
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